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Abstract

We give a proximal bundle method for minimizing a convex function f over a closed
convex set. It only requires evaluating f and its subgradients with an accuracy
¢ > 0, which is fixed but possibly unknown. It asymptotically finds points that are
e-optimal. When applied to Lagrangian relaxation, it allows for e-accurate solutions
of Lagrangian subproblems, and finds e-optimal solutions of convex programs.

Key words. Nondifferentiable optimization, convex programming, proximal
bundle methods, approximate subgradients, Lagrangian relaxation.

1 Introduction

We consider the convex constrained minimization problem
fo=f{f(z):z €5}, (1.1)

where S is a nonempty closed convex set in the Euclidean space IR™ with inner product
(-,-) and norm | - |, and f : R® — IR is a convex function. We assume that for fixed
accuracy tolerances €5 > 0 and ¢; > 0, for each y € S we can find an approzimate value f,
and an approzimate subgradient g, of f that produce the approzimate linearization of f:

RO = Fo+ (g —9) SFO) e with fily) = f, 2 f@y) — . (1.2)

Thus f, € [f(y) — €5, f(y) + €] estimates f(y), while g, € O f(y) for the total accuracy
tolerance € 1= €5 + ¢, i.e., g, is a member of the e-subdifferential of f at y

Qefly):={g:f() = fly)—e+{g,-—v) }.

The above assumption is realistic it many applications. For instance, if f is a max-type
function of the form
fyy=sw{F) 22}, (1.3)
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where each F, : R™ — IR is convex and Z is an infinite set, then it may be impossible to
calculate f(y). However, we may still consider the following two cases. In the first case
of controllable accuracy, for each positive € one can find an é-maximizer of (1.3), i.e., an
element z, € Z satisfying F, (y) > f(y) — € in the second case, this may be possible only
for some fixed (and possibly unknown) & < oo. In both cases we may set f, := F, (y) and
take g, as any subgradient of F, at y to satisfy (1.2) with e; :=¢€, ¢, := 0; then ¢ = &

A special case of (1.3) arises in Lagrangian relazation [Ber99, §5.5.3], [HUL93, Chap.
XII], where problem (1.1) with S := IR} is the Lagrangian dual of the primal problem

sup ¥o(z) st. ¥;(2) 20, j=1n, z € Z, (1.4)

with Fy(y) = to(2) + (y,%(2)) for ¥ := (¥1,...,%s). Then, for each multiplier y > 0,
we only need to find z, € Z such that f, := F, (y) > f(y) — € in (1.3) to use g, :=
1(z,). For instance, if (1.4) is a semidefinite program with each 4; affine and Z being
the set of symmetric positive semidefinite matrices of order m with unit trace, then f(y)
is the maximum eigenvalue of a symmetric matrix M(y) depending affinely on y [Tod01,
§6.3), and z, can be found by computing an approximate eigenvector corresponding to the
maximum eigenvalue of M (y) via the Lanczos method [HeK02, HeR00].

This paper extends the proximal bundle method of [Kiw90] and its variants [Hin01,
ScZ92], [HUL93, §XV.3] to the inexact setting of (1.2) with unknown e; and ¢, Our
extension is natural and simple: the original method is run as if the linearizations were
exact until a predicted descent test discovers their inaccuracy; then the method is restarted
with a decreased proximity weight. Since our descent test (or similar ones) is employed
as a stopping criterion by the existing implementations of proximal bundle methods, our
analysis also sheds light on their behavior in the inexact case (cf. §4.5).

We show that our method asymptotically estimates the optimal value f, of (1.1) with
accuracy €, and finds e-optimal points. In Lagrangian relaxation, under standard convexity
and compactness assumptions on problem (1.4) (see §5), it finds e-optimal primal solutions
by combining partial Lagrangian solutions, even when Lagrange multipliers don’t exist.
This seems to be the first such result on primal recovery in Lagrangian relaxation.

We now comment briefly on other relations with the literature.

The setting of (1.2) subsumes those in [Hin01, Kiw85, Kiw95a]. Indeed, suppose that
for some nonnegative tolerances €7, €}r and é,, for each y € S we can find some

e[l -5, W)+ and g, €0,/(). (1.5)

Then (1.2) holds with e; := &; and ¢, := éf +&. We add that & = & = & in [Kiw85],
[Hin01] uses é; = & = 0, i.e., exact values f, = f(y), whereas [Kiw95a] employs (1.2)
with €, = 0 (corresponding to & =& :=¢; = ¢ and & := 0 in (1.5)).

First, our method is more widely applicable than those in [Hin01, Kiw85, Kiw95a], since
[Kiw85, Kiw95a] assume that the étolerances in (1.5) are controllable and can be driven
to 0, whereas [Hin01] needs exact f-values. Thus only our method can handle Lagran-
gian relaxation with subproblem solutions of unknown accuracy. Second, our convergence
results are stronger than those in [Hin01], since they handle constraints and practicable
stopping criteria (cf. §4.2). Third, our method is much simpler than that of [Hin01].
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Finally, the method of [Sol03] works in the setting of (1.2) with ¢; = 0 and known
(possibly varying) tolerances €; employed in its stopping criterion and the descent test. If
the tolerances are below a fraction of a stopping threshold A > 0, the method terminates,
ensuring that the traditional stopping criterion of bundle methods is met for this A. In
turn, the framework of [Mil01, §4.5] is related to those in [Kiw85, Kiw95a).

The paper is organized as follows. In §2 we present our proximal bundle method. Its
convergence is analyzed in §3. Several modifications are given in §4. Applications to
Lagrangian relaxation of convex and nonconvex programs are studied in §5.

2 The inexact proximal bundle method

We may regard (1.1) as an unconstrained problem f. = min fg with the essential objective
fs = f+is, (2.1)

where ig is the indicator function of S (is(z) =0ifz € S, 0 if z ¢ S5).

Our method generates a sequence of trial points {y*}2, C S for evaluating the ap-
proximate values f!f == fyr, subgradients g = gyt and linearizations fx := fu» such
that

RO = I (g ) S O v with Sl =210 ~e (22)
as stipulated in (1.2). Iteration k uses the polyhedral cutting-plane model of f

filt) = né%i(fj() with ke J*c {l,...,k} (2.3)

j
for finding
vt := arg min { &) = ful) +is() + 5| -~ }» (24)

where t; > 0 is a stepsize that controls the size of |y*t! —z*| and the proz center z* := y*®
has the value f¥ := f¥©) for some k(l) < k (usually ff = min%_, f7). Note that, by (2.2),

f(z*) —€r < i < £(3¥) + e (2:5)
However, we may have f¥ < fi(z*) = ¢¢(z*) in (2.4), in which case the predicted descent
ve = f5 = fuly*h) (2.6)

may be nonpositive; then t, is increased and y**! is recomputed to decrease fi(y**!) until
v > 0 (specific tests on vy for increasing i are discussed below and in §4.3). A descent
step to zFt1 := yF*1 with fH! = fEH occurs if fiH < fF — kuy for a fixed & € (0,1).
Otherwise, a null step z*+! ;= £* improves the next model fry; with fiiq (cf. (2.3)).

For choosing J*¥*!, note that by the optimality condition 0 € 8¢, (y*+!) for (2.4),

Ipk € 8fi(y**") such that pf 1= —(y** — 2*)/t, — pf € Bis(y**) (2.7
and there are multipliers uf, j € J*, also known as conver weights, such that
=2 g, Yoy =1 v 20 AW - L0 =0, et (@28)
jeJk jeJk



Let J* = {j € J*: UJ’.”" # 0}. To save storage without impairing convergence, it suffices to
choose J*1 o J* U {k+ 1} (i.e., we may drop inactive linearizations f; with Vf = 0 that

do not contribute to the trial point y**1).
The subgradient relations in (2.7) enable us to derive an optimality estimate from the

following aggregate linearizations of fi and f, is, f& := fi + ig and fs, respectively:

Fil)i= fily ’”“) +{ph -~ ") < i) S FC) +ey, (2.9)

%) = (b, — o) <is(), (210)

F50) = A) ‘Hs(') < FH) = fl) +is() < fs0) + 4 (211)

where the final inequalities follow from (2.1)~(2.3). Adding (2.9)-(2.10) and using (2.11)

and the linearity of

F5C) = fe ) + (o + b, — "), (2.12)

we get
FE+ (ot~ 2t — e = F5() < F5C) < fs() + & (2.13)

where
b= pl; +ph = (z* — v/t and oy = fF — fE(2*) (2.14)

are the aggregate subgradient (cf. (2.7)) and the aggregate linearization error, respectively.
The aggregate subgradient inequality (2.13) yields the optimality estimate

<) +e+ptllz -2+ forallzes. (2.15)

Combined with f(zF) — ey < f# (cf. (2.5)), the optimality estimate (2.15) says that the
point z* is e-optimal (i.e., f(z*) — f. < e:=¢; +¢,) if the optimality measure

Vi 1= max { "1, ak} (2.16)

is zero; z* is approximately e-optimal if V4 is small.

Thus we would like V; to vanish asymptotically. Hence it is crucial to bound V; via
the predicted descent vy, since normally bundling and descent steps drive v, to 0. To this
end, we first highlight some elementary properties of o and v; see Fig. 2.1.

In words, (2.13) and (2.5) mean that the model f& and its linearization f§ may over-
shoot the objective fs by at most ¢,, whereas f* may underestimate f(z*) by at most €;.
Hence the linearization error oy of (2.14) may drop below 0 by no more than € := ¢; + ¢,

a2 ff = f5(z") 2 i~ Fa¥) — e 2 —ep — e = —. (2.17)
The predicted descent v, (cf. (2.6)) may be expressed in terms of p* and «y as
vp = P + ap = | Yt + o with  dF =g oF = gy pF (2.18)
being the search direction. Indeed, [y**! — zk|2/tk = 1;|p*|? by (2.14), whereas by (2.12)
St = FEY) = FEER) + (o F 1 = 2b) = Féeh) = [ - oY,
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Figure 2.1: Predicted descent domination: vy > —ay < %tklp"IQ > -y v > %tklp"IQ.

50 v 1= f¥ — fy*Y) = on + ti[p¥|? by (2.14). Note that vy > .
Since Vi := max{|p*}, ax }, vk = tx[p*|> + . and —ax < € {cf. (2.16)-(2.18)), we have

Vk = max { [(’U)c — ak)/tkll/z y Ok } s (219)
Vi < max { (2vk/tk)1/2,vk} if vk > —ag, (2.20)
Vi < (200 /t)"? < (2¢/t)Y? i g < —au. (2.21)

The bound (2.21) will imply that if z* isn't e-optimal (so that Vi can't vanish as #

increases), then vy > —ax and the bound (2.20) hold for ¢; large enough; on the other

hand, the bound (2.20) suggests that tx shouldn’t decrease unless Vj is small enough.
We now have the necessary ingredients to state our method in detail.

Algorithm 2.1.
Step 0 (Initiation). Select ! € S, a descent parameter k € (0, 1), a stepsize bound T} > 0

and a stepsize t) € (0,73]. Set y' ==z, f1:= f} (cf. (2.2)), g} := g, J' = {1}, i} :=0,
k:=k(0):=1,1:=0 (k(!) ~ 1 will denote the iteration of the {th descent step).

Step 1 (Trial point finding). Find y**! and multipliers uj’-‘ such that (2.7)-(2.8) hold.
Step 2 (Stopping criterion). If Vi = 0 (cf. (2.15)-(2.16)), stop (f* < f. +¢,).

Step 3 (Stepsize correction). If vy < —au, set ty, 1= 10ty, Ty := max{Ty, %}, ¥ := k and
loop back to Step 1; else set Ty411 := T

Step 4 (Descent test). Evaluate ff*! and g**! (cf. (2.2)). If the descent test holds:
o< - R, (2.22)

set TR+ = gt phtl = phtl gL o 0 k(14 1) == & + 1 and increase { by 1 (descent

step); else set zF+1 = gk, fR+l.= £k and ¥ = 4 (null step).

Step 5 (Bundle selection). Choose J5*! 5 J& U {k + 1}, where J* := {j € J*: vk # 0}.



Step 6 (Stepsize updating). If k(I) = k + 1 (i.e., after a descent step), select fx41 €
[tr; Tes1]; otherwise, either set tpyy := fy, or choose tyy; € [0.1¢y, 2] if 4! = 0 and

J2 = fenne®) 2 Vi = max { p*], n }. (2.23)

Step 7 (Loop). Increase k& by 1 and go to Step 1.
A few comments on the method are in order.

Remarks 2.2. (i) When the feasible set S is polyhedral, Step 1 may use the QP method
of [Kiw94], which can solve efficiently sequences of related subproblems (2.4).

(ii) Step 2 may also use the test f* < inf f& (cf. Lem. 2.3(i)); more practicable stopping
criteria are discussed in §4.2.

(iit) In the case of exact evaluations (¢ = 0), we have vy > oy > 0 (cf. (2.17)-(2.18)),
Step 3 is redundant and Algorithm 2.1 becomes essentially that of [Kiw90].

(iv) To see the need for increasing tx at Step 3, suppose n = 1, f(z) = —z, S = R,
=0t =¢=1, fl = ¢! = ~1, folz) = —z. If Step 3 were omitted and null steps
were taken when vy < 0, the method would jam with ¢*+* = 1 for k¥ > 1. Also note
that decreasing ¢, would not help. In fact decreasing t; at Step 6 aims at collecting more
local information about f at null steps, whereas in such cases ¢, must be increased to
produce descent or confirm that z* is e-optimal (let /(=) = max{—=, 2 —2} above). Hence
whenever t;, is increased at Step 3, the stepsize indicator i¥ # 0 prevents Step 6 from
decreasing ¢, after null steps until the next descent step occurs (cf. Step 4).

(v) At Step 5, one may let J**! := J*U {k +1} and then, if necessary, drop from J*+!
an index j € J*\ J* with the smallest f;(z*) to keep |J**| < M for some M > n + 2.

(vi) Step 6 may use the procedure of [Kiw90, §2] for updating the proximity weight

ug 1= 1/ty, with obvious modifications.

We now show that the loop between Steps 1 and 3 is infinite iff f* < inf f5 < fi(z*),
in which case the current iterate z* is already e-optimal.

Lemma 2.3. (i) If f§ <inf /%, then f(z*) —e; < f¥ < fu + g and f(2*) < fote

(ii) Step 2 terminates, i.e., Vi := max{|p*|, cx} = 0, iff f¥ < min f§ = fi(z*).

(i) If the loop between Steps 1 and 3 is infinite, then f* <inf f& (< fE(z*); of (i1)).
Moreover, in this case we have f&(y**1) | inf f% as ) 1 co.

(iv) If f* <inf f& at Step 1 and Step 2 does not terminate (i.e., inf f& < f&(z*); of.
(it)), then an infinite loop between Steps 3 and 1 occurs.

Proof. (i) Combine f, = inf fs (cf. (1.1), (2.1)) with inf /& < inf fs + ¢, (cf. (2.13)) and
F(z*) —€; < F% (cf. (2.5)), and use € 1= €; + ¢, for the second inequality.

(i) “=”: Since |p*| = 0 > ay, (2.13)-(2.14) yield fi(z*) < fA(), v**' = 2* and
f5 < f5(a), whereas by (2.12), f&(a*) = fiy**') = fé(z*). “&: Since fi(a*) =
min f%, using ¢p(2%) = min f§ < g (vF) < dr(z*) in (2.4) gives y*+! = z*) s0 again
FE(@*) = Fh(=%) by (2.12), and (2.14) yields p* = 0 and oy = f* ~ f5(z*) < 0.

(i) At Step 3 during the loop the facts Vi < (2¢/tx)/? (cf. (2.21)) and #x T co give
max{|p*|, ax} =: Vi — 0, so (2.13) yields f* < inf f5. The fact that fE(y**1) | inf /% as
tx T oo in {2.4) is well known; see, e.g., [Kiw95b, Lem. 2.1].
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(v) By (211), fuly™) = FE**) > inf /& Thus (cf. (26)) v < f* — inf /€ < 0
and (cf. (2.18)) ve = txp** + ay yield ) < —tx|p*|® at Step 3 with p* # 0 (since
max{[p*|, ax} =: Vi > 0 at Step 2). Hence oy < —%|p*{*, so (cf. (2.18)) vy < —ay and
Step 3 loops back to Step 1, after which Step 2 can’t terminate due to (ii). 0

Remark 2.4. By Lemma 2.3, the algorithm may terminate if f* < inf f&. When S is
polyhedral, then either inf f§ = —oo0, or there is #, such that fE(y*+!) = min f§ whenever
ty > {k; either case may be discovered by a parametric QP method [Kiw95b], and the
algorithm may stop if f* < min fg, thus forestalling an infinite loop in Steps 1 through 3.

3 Convergence

In view of Lemma 2.3, we may suppose that the algorithin neither terminates nor loops
infinitely between Steps 1 and 3 (otherwise z* is e-optimal). At Step 4, ¥**' € S and
ve > 0 (by (2.20), since Vi > 0 at Step 2), so 2**1 € § and f*¥*1 < f* for all k.

Let f° := lim; f¥. We shall show that f> < f, + ¢, Because the proof is quite
complex, it is broken into a series of lemmas, starting with the following two simple
results. To handle loops, let V] denote the minimum value of V at each iteration k.

Lemma 3.1. If lim, V{ =0 (e.g., lim, V4 = 0) and {z*} is bounded, then f° < f, +¢,.

Proof. Pick K C {1,2,...} such that V{ =5 0. Fix z € S. Letting ¥ € K tend to infinity
in (2.15)-(2.16) with Vi, = ¥} ylelds f° < f(z) +¢€,, 80 f <infsf+e; = fu+e, O

Lemma 3.2. Let T = lim, T}, at Step 4. If T = 00, then lun, V) = 0.

Proof. Let K C {1,2,...} index iterations & that increase T} at Step 3. For k € K, at
Step 3 on the last loop to Step 1 we have Vi < (2¢/tx)"/? (cf. (2.21)) with ¢ such that
10t becomes the final Tk, so the facts 0 < V) < Vi and 7 0 give V K00

In view of Lemmas 3.1-3.2, we may assume that T, < oo when {z*} is bounded, e.g.,
only finitely many descent steps occur. This case is analyzed below.

Lemma 3.3. Suppose there exists k such that for all k > k, Step 3 doesn't increase ty
and only null steps occur with tyyy < tx determined by Step 6. Then vy — 0.

Proof. Fix k > k. We first show that fE*! > f& Let for= max;e s f;. Since J = {je
JE vk 7é 0} and ¢/ = ij, f:k < max;e gk fjA=: fkvand (A2.8) yield fk(yk’fl) = f,f(y"“) aud
p§ € 0fi(y**). Thus fi < fi by (29), so fi < fura (J* C J*H) gives fi < fiya. Hence

(2.10)~(2.11) yield f& = fi +7& < foyy +i5 = fETL.
Next, consider the following partial linearization of the objective ¢y of (2.4):

$() = f5() + g} o (3.1)



We have V(y*+1) = 0 from V& = p* = (2 =5/t (cf. (2.13)-(2.14)), and Jh(z+)) =
Fe+Y) by (2.12), so ¢ (y*+!) = ¢ (y**1) (cf. (2.4)) and by Taylor’s expansion

$() = uly™) + 5l -~ (3.2)

Ztk

By (3.1) and (2.11), we have ¢ (z*) = Fh(z*) < f(z*) +¢, (using z* € S); hence by (3.2),

G (") + Ryt — 2t = du(at) < F(a) + ey (33)
Now, using zF+! = 2F, .y <t and fE¥! > Fkin (2.4) and (3.1) gives ¢ry1 > @i, S0
¢k<yk+1) + 2tk]yk+2 _ yk+1|2 < ¢k+1(yk+2) (3.4)

by (3.2). Since &* = zF and t; < ¢z for k > k, by (3.3)-(3.4) there exists ¢oo < f(zF) + €g
such that

e N e U (35)
and {y**!} is bounded. Then {g*} is bounded as well, since g* € 8, f(y*) with € := e5 +¢,

by (2.2), whereas &, f is locally bounded [HUL93, §XI.4.1].
We now show that the approzimation error & = fy+! — fi(y**!) vanishes. Using the

form (2.2) of le, the bound fry1 < fiyr (cf. (2.3)), the Cauchy-Schwarz inequality and
(2.4) with o* = 2% and tyyy < t, for & > k, we estimate

= [ = R = fen @) — A + (80 - )
< fk+1(yk+2) ~ fuly®t) + g Iy =
= Gpr1 (™) — d @) + 0" - o

_ e ,yk+2 _ Ikl2 + ﬁiyk+l . Ik|2
< G (W) — d(@) + g I - F T+ A (3.6)
where
A= gy (I = aFP = e - o)
< m (lyk+1 _ yk+2|2 + 2ka+2 _ yk+1Hyk+2 . Ik,)
1okl k2|2 K41 k422 1 g k+2 k212
< sl = g (R - —af)

We have limy Ay < 0, since 5-|y** — y**2|? — 0 by (3.4)~(3.5), whereas tk—l—lyk” ks
is bounded by (3.3). Hence using (3.5) and the boundedness of {g**'} in (3.6) yields
limy & < 0. On the other hand, the null step condition ff*! > f¥ — kuy for k > k gives

=[5 = fE) [ S = AW ] > Rt o= (1 - R)ue > 0,

where k < 1 by Step 0; thus & — 0 and v — 0. O



Using (2.18) we may relate the descent vy := f* — fi(y**1) predicted by fi with the
descent predicted by the augmented model ¢, in subproblem (2.4):

wi = 5 — o) = ve — Stulp* (3.7a)
= el + o = Yd* |t + o (3.7b)
The above relations are convenient in showing that |d¥| = O(t,lc/ %) during a series of mull
steps that decrease fx; this will be useful when lim, ¢, = 0.
Lemma 3.4. If Step 4 is entered with i¥ = 0, then |d*|® < (tk(l)lg"(l)lz + 25) te
Proof. First, suppose k = k(l). Then (cf. Steps 0 and 4) z* = y* and ff = f¥, so using
the bound fi > fi (cf. (2.3)) in subproblem (2.4) and the form (2.2) of f, gives
$e(*) 2 min { fu() + 51| - 2 } = £ - g

Thus wypy < t"—;1|gk(”[2 by (3.7a). Next, suppose k > k(I). Then (cf. Steps 3, 4, 6)
o+l = 250 and t;,, < ¢; for j = k(1): k — 1 due to i¥ = 0, and hence w;,; < w; by (3.4)
and (3.7a). Thus wi < weyy, and by (3.7b) and (2.17), it‘—kldkl2 = wp — o < wggy +€ 0

We now use the safeguard (2.23) for analyzing the case of diminishing stepsizes.
Lemma 3.5. Suppose lim,t, = 0 at Step 6 and either only finitely many descent steps
occur, or sup, tyqy < 0o and {z*} is bounded. Then lim, Vi = 0 at Step 6.

Proof. Let C be the supremum of #|g*?|? + 2¢ over the generated values of I. Note
that C < oo, since if [ is unbounded then {g*®} is bounded because for k = k(I) we have
o¥ = y* and g* € 8. f(v*) with € := ¢; + ¢, by (2.2), whereas &, f is locally bounded.

Since lim, tx = 0, there is K C {1,2,...} such that 51 5 0at Step 6 with txy1 < i
vk € K, thus t X, 0, since t; < 10ty at Step 6. For k € K, at Step 6 we have (2.23),
f;“ > f* — kv, and i¥ = 0 at Step 4. Using i* = 0, the definition of C and #; X0
Lemma 3.4 yields |d*|2 < Cty i 0, ie., d 0. Thus, since {z*} is bounded, so are
{v*" = zF + d*}rex and {g* € 8. F(y**") }kex because O, f is locally bounded.

Let k € K at Step 6. Since f5*! > f¥ — kvy and ¢** = z* + d*, using (2.2) gives

FE = fon(¥) = fo— R (gL ) < gL (38)
Now, (2.23), (3.8) and the fact vy = |d*{|p*| + ax (cf. (2.18)) imply
Vi i= max { [, on } < fE = frnn(2%) < e (JdM1IP"] + an) + [g* |1
< AL+ [d¥) max { 1Y), an | + 194 1d¥) = w1+ [V + [g*P|ldH. (3.9)
Therefore, since x < 1, d* 2, 0and {g** }xex is bounded, for large £ € K
0< Vi < [g* ¥/ [t = w(1+1d¥))] <5 0.

Thus limgeg Vi = 0. O



We may now finish the case of infinitely many consecutive null steps.

Lemma 3.6. Suppose there exists k such that only null steps occur for all k > k. Then
esther To, = 00 and lim V) =0, or T < 00 and lim,, Vi = 0 at Step 4.

Proof. If im,tx = 0 at Step 6 then lim; Vi = 0 by Lemma 3.5, so assume lim, #; > 0.
Next, if Tow, = oo then lim, V{ = 0 by Lemma 3.2, so assume T < 00.

If Step 3 increases t; for some k = k' > k, then t; > 10t;_; and if # 0, whereas
for k > k' Step 4 keeps if™' = i¥ # 0 and Step 6 sets tx4; = ti, so the number of such
increases must be finite (otherwise ¢, — 00 and T, = 00, a contradiction). Hence we may
assume that Step 3 doesn’t increase t; for & > k. Then Lemma 3.3 gives v, — 0. Since
(cf. (2.20)) Vi < max{(2ve/tx)V? v} and limy ¢ > 0, we get Vi — 0.

For analyzing the remaining case of infinitely many descent steps, we shall use the
descent indicator iy defined by i, := 1 if (2.22) holds, # := 0 otherwise.

Lemma 3.7. (i) If f* > —oo, then irvr — O at Step 4.
(i) If £ > f. +e,, then {z*} is bounded.

Proof. (i) At Step 4, 0 < wigvy, < 5 — f51 50 Spdrvp < (FL = f20) /6 < 0.
(ii) Pick z € S and 7 > 0 such that f* > f(z) + €, + v for all k. Since <p",z - 9:"> <
oy — v by (2.13), 2% — 2F = —iut,p* and v, = £]p*]? + a. by (2.18), we deduce that

|5+ — 2f? = |ab — 7| 42 <zk+1 — gk z* — 9:> + |z* — 2F)?
< Jz* — x)? + Ziptlon ~ ) + 26pt2|pt[?
= ,.’ltk - .’EI2 + 2igti(ve — ).
Since i,vr — 0 by (i), there is k, such that for all k > k,, 4x(vx — ) < 0 above and hence
|z5+! — 2| < |2* — 2|, Thus {z*} is bounded. O
Lemma 3.8. If infinitely many descent steps occur, then fi° < f, + €.

Proof. Suppose for contradiction f° > f, + ¢, By Lemma 3.7(ii), {z*} is bounded.
Further, T, < o0, since otherwise Lemmas 3.2 and 3.1 would yield f* < f. + ¢, a
contradiction. Similarly, lim, tx > 0, since otherwise Lemmas 3.5 and 3.1 would yield a

contradiction. Let K := {k: 14, = 1}. Using lim, tx > 0 and v X0 (cf. Lem. 3.7(i)) in
the bound Vi < max{(2ux/t:)"2, v} (cf. (2.20)) yields Vi 5 0. Hence lim, Vi = 0 and
again Lemma 3.1 gives a contradiction. (1

We may now prove our principal result. Note that f* | f> > f, —¢; by (2.5).

Theorem 3.9. We have f5 | f&° < f.+¢,. Moreover, limy f(2*) < fo+e¢ for € = €;+¢,,
so that each cluster point =* of {x*} (if any) satisfies z* € S and f(z*) < f, +¢.

Proof. To get f° < f. + ¢, invoke Lemmas 3.6 and 3.1 in the case of finitely many
descent steps, and Lemma 3.8 otherwise. By (2.5), limy f(z*) < limg f¥4+¢; < futes+e,.
The final assertion follows from the fact {z*} C .5 and the closedness of S and f. [
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Proof. We have (cf. (2.8)) e vf = 1 with v¥ > 0. Hence #* € cof{zl}jep C Z,
Yo(Z*) > &, vhe(2?), p(F*) > T vi(27) by convex1ty of Z and concavity of v, ¥.

Since (cf. (2.7)) Pk € 6i5(y’“+1) with S := IR}, we have p} < 0 and <p’§,y’°“> =0, 50
(cf. (2.14)) Pk = p —~ p¥ > p*. Next, using (2.8) and (5.4) with ¥(z7) =: ¢’, we get
vf(2) = £, vf¢) = pf and

R =30 v ) = 30 [wo(z”) + (4", 0 (%)) = >, () + (v*".0f).
Rearranging and using <p§,yk“> =0, p* :=p} + p} (cf. (2.14)), (2.12) and (2.13) gives
>, vo(2) = fuly™) ~ (P} + 08 v**1) = F5(0) = f¥ — o — (9, 2*).

Combining the preceding relations yields the conclusion. [
The bounds of Lemma 5.1 are expressed in terms of the primal-dual optimality measure
V,, := max {;l':l?-z(l[‘p?]]‘, ap + <pk7 Ik> } (5.6)

as Wo(zF) > fr - Vi, minJ V() = —V,. Hence we may generate record measures V'

and prlmal solutlons #* as follows. At Step 0, set V1 = 00. At Step 1, jf W < f/k‘, set
Ve =W, ¥ 1= 35 At Step 4 set V7, := V¢, 35+ .= 35 In effect, V;* (the current

minimum of VJ for j < k) measures the quality of the primal iterate

Bez with Go(#)> -V, w(E) = -V, j=ln (5.7)
We now show that {Z*} converges to the set of €-optimal primal solutions of (5.1)
Ze={z€Z o(2) 2 Y5™ —€,(2) >0}. (5.8)

Theorem 5.2. (i) {*} is bounded and all its cluster points lie in Z.
(il) ling f¥ =: f° > f. — € and lim, V* < 0.
(iti) Let 2 be a cluster point of {#*}. Then 3= ¢ Z..
(iv) dz.(2¥) i= infez, |2* — 2| = 0 as k — oo.

Proof. (i) By (5.7), {2¥} lies in the set Z, which is compact by our assumption
(il) By (2.5), f¥ > f(z*) — €5 with ¢/ := € gives f= > f. — . Next, since pf > p* (cf.
Lem. 5.1) implies max;[-— pf]] < |p¥|, using (5.6) and (2.16) yields

Ve < max { |pF(, o + <pk,$k> } < max { 0¥, o } + [pHll¥) < Vi (1 + |mk[) i (5.9)

hence by construction Vk < mmJ V(1 + [z7]). Recall that under our assumptions on
(5.1), lim, ¥ = 0 and {z*} is bounded. Therefore, lim, V;* < 0 by monotonicity.

(iif} By (i), 22° € Z. Using (ii) in (5.7) gives ¥o(3®°) > f&, ¥(Z>) > 0 by closedness of
o, 1. Since f° > f. — e by (ii), where f. > ¥ by weak duality (cf. (1.1), (5.1), (5.2)),
we have 19(2%°) > 9i*®* — e. Thus 2° € Z, by the definition (5.8).

(iv) This follows from (i,iii) and the continuity of the distance function dz,. 0
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where M := n+ 1. Both (5.1) and (5.10) have the same dual (1.1) with f, = ¢ > P
see [FeK00, LeR01, MSW76]. Similarly to (5.8), let Z, denote the set of e-optimal solutions
of (5.10). Such solutions may be estimated hy (v¥, 27), 5 with J* := {j € J* : vf # 0}
as follows. Since the QP routine of {Kiw94] dellvers [J¥| < M, whereas any (v¥, 27) can
be split into two elements (vf/2, 27), we may assume |.J*| = M. Denoting (v}, 27), .« as

(D, 2%)M || the proof of Lemma 5.1 yields

M M
2o n(#) = S -~ (phaf) and o ofu(z) = pf 2 o (5.11)
j=1 7=l

Now, the record solutions (77, zJ")JM1 are generated just like ZF by setting (5, #7%)), .=

(5, 5)M | at Step 1if Vi < V7, and (), 294411 = (8, #7*)M, at Step 4. We now
show that (7F, 275)M | converges to Ze, thus extendmg [FeK00, Thm 6.2].

Theorem 5.6. (i) {(7F, #%)}1,} lies in a compact set.
(i) limy f* =: £ > f, — € and lim, V¥ <0.

(iii) Let (;, % ~')J be a cluster point of {(0¥, #*)1L,}. Then (b;, )M, € Z..
(iv) dzg((D]’?,z]‘L)J: ) — 0 as k— oo.

Proof. (i) By construction (cf. (2.8)), X, ¥ =1, & > 0, #* € Z, a compact set.

(ii) The proofs of Theorems 5.2(ii) and 5 4 remam valid.

(iii) By (i), ¥;0 = 1, 7, > 0, ¥ € Z, j = 1: M. Next, using (i) with U = V; (cf.
(5.6)) for k such that (0}, zJ") (u #*) in (5.11) and the upper semicontinuity of o, ¥
gives

Mx
k_t

M
Ppe(#7) > [ > fu—e and > 5Y(3) >0
1 j=1
Since (7;, zJ)J 1, is feasible in (5.10) and f, > ¥ by weak duality (cf. (1.1), (5.2), (5.10)),
we have S0, Djho(#) = ¢ — ¢, ie., (7, ¥)M, is an e-optimal solution of (5.10).
(iv) This follows from (i,iii} and the continuity of dz . O

.
I

Extensions to separable problems are easily developed as in [FelC00, §6].
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