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Abstract: In this paper we analyze the Hopfield neural network model of 

associative memory that uses evolutionary approach as a learning method. 

Severa! types of genetic algorithms will be investigated. In resulting networks 

quality measures (such as storage capacity, error correcting capabilities and 

the usage of additional knowledge) will be carefully examined. 

The basie criterion for algorithm's evaluation is the storage capacity. The 

well-known Hebbian rule provides the capacity to be 15% of the number of · 

the neurons. We show that genetic algorithms allow us to improve this result. 
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1 Introduction 

Genetic Algorithms and Neural Networks represent two technologies that 

enjoy an interest among computer scientists and engineers [20]. These tech­

nologies can be used to salve same very challenging problems. A natura! 

question arises as to whether a combination of these two techniques might 

provide a synergy with mare powerful problem solving than either of them 

alone. Recent years various schemes for combining genetic algorithms and 

neural networks have been proposed and tested (eg. [3, 16, 18, 21, 24, 25]). 

Generally speaking, two main approaches have been proposed: support­

ive combinations and. collaborative ones. Supportive combinations typically 

involve one of these methods to prepare data for the other. In collaborative 

combinations . usually a genetic algorithm is used to determine the neural 

network's weight or its topology or both [17, 19]. 

Back propagation is one of the most popular methods to train neural net­

works. This method calculates the gradient of the error of the network with 

respect to the network's modifiable weights. This gradient is almost always 

then used to find weights that minimize the error. Therefore, using a ge­

netic algorithm instead of, for example, back propagation learning methods 

does not seem to be successful enough. However, when the gradient infor­

mation is hard to obtain or not available, genetic algorithms may appear to 

be promising methods [17]. 

Inspired by the results from Imada and Araki [6, 7, 8, 9], severa! exper­

iments will be made. Since Hopfield's model is the basie representative of 
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associative memories, it is chosen to be investigated. Hopfield's model will be 

trained with several types of genetic algorithms, to check the computational 

power of genetic algorithms. 

The paper is structured as follows. In Section 2 generał idea of neural 

networks and genetic algorithms will be presented. In Section 3 it is presented 

how evolutionary algorithms may be used to teach neural networks. Results 

are discussed in Section 5. The paper is completed by the concluding remarks. 

2 Neural Networks and Genetic Algorithms 

2.1 Neural Networks 

Neural network is an information-processing device that consists of a large 

number of simple non-linear processing modules, connected by elements that 

have information storage and programming functions. In generał, the mod­

ules involve four functions: input/output, processing memory, and connec­

tions between different modules providing for information flow and control 

[22]. 

Neural network is also defined as a network of neurons that are connected 

through synapses or weights. Each neuron performs a simple calculation 

that is a function of the activations of the neurons that are connected to 

it. Through feedback mechanisms and/or the nonlinear output response of 

neurons, the network as a whole is capable to perform extremely complicated 

tasks, including universal computation and universal approximation. Three 
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different classes of neural networks are feedforward, feedback, and recursive 

neural networks, which differ in the degree and type of connectivity that they 

possess [11]. 

Neural network can be understood as a network where the nodes cor­

respond to neurons and the arcs correspond to synaptic connections in the 

biological metaphor - a mathematical model of the brain's neurons. It is 

also referred to · as an artificial neural system, natural intelligence, and neu­

rocomputer [26]. 

Associative memory is one of the models of neural networks. The goal of 

associative memory is to learn certain set of patterns and to retrieve a pat­

tern, w hen a damaged or noised one is given. The cells of associative memory 

are addressed by their content, not by the physical address [14]. 

In order to be effectively applied the associative memory should have great 

capacity, associative retrievability of patterns, especially damaged or noised 

and speedy learning and retrieving process. With the increasing number of 

the patterns, the network should deteriorate gradually, not rapidly. It should 

be flexible in remembering new patterns and association and should have the 

ability of forgetting the unrequired patterns or unlearn them. 

Hopfield Model is one of the basie representatives of recursive networks. 

It is also called "associative memory", because of its function. 

Discrete Hopfield's Network was built basing on two-state McCulloch­

Pitt's neurons. The network consists of N mutually connected neurons. The 

outputs of neurons are connected back to the inputs of every other processing 

element except itself. (Figure 1) 
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Figure 1: Scheme of the Hopfield Network. 

Each neuron computes its input potentia! as a weighted sum of inputs: 

ui(t + 1) = I:,f=1WijvAt) + Ii, i= l, ... , N 

The output potentia! is a nonlinear transformation of the input potentia!: 

vi(t + 1) = g(ui(t + 1)), i= 1, ... , N 

where ui(t) is the input potentia! of the ith neuron at time t, and vi(t) is 

the output potentia! of the ith neuron at the same time. Wij is the weight 

of the connection among the output of neuron j and input neuron i. Ii is an 

external potentia!; it is usually assumed Ii = O. 

The network can work either synchronously or asynchronously. In the 

synchronous mode all the neurons (or only some of them) are updated si-
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multaneously. In the latter case neurons are updated consecutively in some 

random order [10]. 

The Hopfield network employs Hebbian learning rule. During the training 

process a fixed set of selected patterns { sr} is learned. i is the neuron 

index i E {1, ... ,N},µ is the pattern indexµ E {1, ... ,p} and st E {-1, 1} is 

the value of a particular pattern. It is assumed that there is a fixed number of 

p patterns that are to be trained. The weights are then calculated according 

to the following formula called the Hebbian rule: 

{ ·fB:= 1 st s'J Jor i =I j 
Wij= 

O for i= j 

The factor tJ is a choice of normalization of the weights. It is of ten convenient 

to take this factor into account, but essentially it does not affect any results. 

The Hebbian rule was based on the idea, how the brain represents the 

concepts. Hebb postulated that some concepts can be represented by si­

multaneous stimulation groups of neurons. These groups are constructed 

during the learning process through the strengthening interplay, in other 

words weights, between all simultaneously stimulated neurons. The concept 

can be retrieved if sufficient number of neurons is contemporary stimulated 

[14]. 

If the network is updated asynchronously, then the network converges 

to a fixed point from any initial state vector when the weights matrix is 

symmetric and the main diagonal is equal to zero. If the model is updated 

synchronously, then the network eventually converges to either a fixed point 

6 



or to an oscillation between two states. The maximal number of updating 

the neurons is equal to 42p-i, where p is the number of the patterns. 

Hopfield demonstrated that maximum number of patterns that can be 

stored in the Hopfield model of N nodes before the error in the retrieved 

pattern becomes serve is around O, 15N. This number was later evaluated 

theoretically and is equal to O, 138N [4]. 

2.2 Genetic Algorithms 

The basie ideas of Genetic Algorithm (GA) were originally proposed by Hol­

land [5]. GA is inspired by the mechanism of natura! selection where stronger 

individuals are more likely to win in a competing environment. 

Genetic algorithms are probabilistic algorithms in which a population of 

individuals is generated. GA presumes that the potentia! solution of any 

problem is an individual and can be represented by a set of parameters. 

These parameters are regarded as the genes of a chromosome and can be 

structured by a string of values in binary form. 

Every genetic algorithm aims to find the best solution, so every individual 

needs to be evaluated. For this purpose, so called fitness function are used. 

A positive value, generally known as fitness value, is used to reflect the 

degree of "goodness" of the chromosome for the problem which would be 

highly related with its objective value [13]. 

New population is created by transforming the best-evaluated individuals 

and the new solutions are obtained [15]. Using a genetic evolution, the fitter 
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chromosome has a tendency to yield offspring of better quality, which means 

a better solution of any problem. 

Genetic algorithms involve continuous adaptation of population for the 

environment. Unfortunately, there is no guarantee that the process of adap­

tation terminates with providing the most desirable individual. However 

under some conditions, it is possible to prove that the probability of success 

increases and aims asymptotically to 1 [2]. 

Artificial evolution is occasionally named as "method of the last chance". 

If the knowledge about the problem suffices to shape an effective solution 

than this solution, it is more effident than the usage of any evolutionary 

algorithm. Otherwise, the evolutionary approach may be used [2]. 

3 Using evolutionary approach to train neural 

networks 

The existence of unequivocal attractors, towards which converges the net­

work's state, allows us to use the net as an associative memory. The shape 

of the surface of the energy function, inter alia position of attractors and the 

shape of basin of attraction, depends on values of the weights between the 

neurons. Therefore it is sufficient to value the weights so that every pat­

tern becomes an attractor point and the applicable trough is deep and wide 

enough to ensure the proper error correcting capabilities. 

During evolution one can distinguish four main operations: initialization, 
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fitness evaluation for every individual, checking if the termination condition 

is fulfilled and generating a new population (Figure 2). 

selection 
of chromosomes 

usage of genetic 

operat01·s 

new population 

of chromosomes 

YES 

inicjalization 

initial population 

of chromosom.es 

evaluation of 

fitness Junction 

value of fitness Junction 

for every being 

NO 

1 , the best" 

set of weights 

Figure 2: Scheme of the evolution's process. 

Initialization is a method of creating the first population of individuals. 

Generally, a random initialization is used, but we can use an initial solution 

(if such exists). For example, in Hopfield Model sucha solution is determined 

by Hebbian rule. The population is created by adding small perturbations 

to this solution. 

Fitness is a real function, which is usually maximized. It features ver­

ifying, and therefore determines the algorithm. Improperly defined fitness 
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function may lead to a domination of a solution ( or a group of similar so­

lutions) too early, eliminating the role of operators that might. lead out the 

process from local minima. Nevertheless, if the function selects the popu­

lation indifferently, the algorithm may loose the convergence to the optimal 

solution. In case of bipolar activation function of a neuron in output layer, 

fitness function may quantify the number of output signals coherent to ex­

pected ones. 

Important part of generating new population is a selection process. It 

decides about the selecting the individuals, which form a new population or 

which children do it. New individuals are created by means of mutation and 

recombination operator. Recombination from selected two parent chromo­

somes creates a new chromosome, which has some features of each parent. 

Mutation modifies randomly genes in chromosome. 

The termination condition depends on the particular application. Rela­

tively easiest case is the situation, in which the optimal fitness value is known. 

For example, while training the neural network, it is the zero value of the 

error. We often limit the number of generations to avoid the infinite loop. 

There are several reasons suggesting that it may be advantageous to ap­

ply genetic algorithms to the neural network weight optimization problem. 

Genetic algorithms have the potential to produce a global search and thereby 

to avoid local minima. Also, it may be advantageous to apply genetic algo­

rithms to problems where gradient information is difficult or costly to obtain 

[20] . 

Genetic algorithms may be used to many different classes of neural net-
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works. They are efficient with Feed Forward Neural Networks and with 

Recursive Neural Networks in supervised as well as in unsupervised learning. 

The essence of this independence from the topology of Neural Networks re­

sults from adequate defining the fitness function and coding the information 

for the specified application [10]. 

4 Algorithms 

The lack of strict rules in genetic algorithms enable to created many sorts of 

these algorithms. 

Since different_ algorithms leads to different results, it seems natura! to 

state some quality criterions: We will consider the following: 

• Storage capacity - the maxima! number of patterns, that are remem­

bered as fixed points by the network. 

• Velocity of learning - number of generation, in which the solution was 

found. 

• Degree of symmetry - a parameter of the form: 

This rate was introduced by Krauth [12]. Many researchers belief that 

the maxima! number of connections and 100% symmetry of the weight 

matrix disable to achieve its maxima! storage capacity. Other claims 
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that doe to asymmetry of the weights matrix, the number of false at­

tractors increases. Many genetic algorithms used for training neural 

network increases the storage capacity of the network. The higher 

storage capacity may result from reduction of the condition of full sym­

metry and pruning of the connection. 

• O rate - the number of pruned connections. This indicator is defined 

as quotient of number of O weights to the number of all connections. 

• Basin of attraction - the aim of the associative memory is to retrieve 

correct patterns and correcting of the errors of noised patterns. There­

fore the basin of attraction is; worth considering. 

The basin of attraction is the region around · a memory in which all 

states are attracted to the memory within a prescribed time [l]. There 

is no analytical way to study basin of attraction except drawing a graph 

which shows the number of successes out of many trials against the 

number of input errors. 

• If the optima! solution was not found, it may be worth checking which 

of the patterns were remembered correctly and how big is the error for 

the others. 

• Parameters of genetic algorithms - numbers of individuals, number of 

parents and probability of mutation. These parameters are defined by 

the user. 
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In all algorithms presented below, we will use the same fitness function 

in order to facilitate comparison. Various methods of evaluating networks in 

algorithms could support various individuals. 

Firstly, for each pattern µ its fixed point sµ is calculated. The neurons are 

updated asynchronously to avoid problems with the oscillation. The fitness 

function is calculated according to the formula: 

f l _,p _.N µ µ 
= NpL,µ=lL,i=lxisi 

where Xj is a value of j th element of the µ th pattern. 

(1) 

The maximum value of this function is 1.0. This means that all patterns 

were remembered as fixed points. Value smaller than 1.0 informs that not 

all patterns became attractors. 

4.1 Genetic Algorithm 

Genetic Algorithm uses the solution found by Hebbian rule and modifies it. 

The scheme of the algorithm is presented on Figure 3. 

At the beginning a constant matrix W0 is created, W0 E wf1, 

i = 1, ... , N and j = 1, ... , N. The values of the elements w?i are defined by 

Hebbian rule in two different ways. Its values can be either integers or they 

can be limited to the set {-1, O, 1} by the signum function. 

Then the first population of individuals is created. Every being is described 

by a vector C of length N. The elements of the vector ck can accept values 

{-1, O, l}. The weight matrix for every individual is computed as a product 

of corresponding elements of matrix Wo and the vector C: w;1 = w?ic( iN + j). 
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Figure 3: Scheme of the Genetic Algorithm. 

Furthermore each network obtained in such a way, is evaluated with fitness 

function described by (1). 

New individuals are created by uniform crossover and following mutation: 

(-1) - (O), (O) - (1), (1) - (-1). 

New generations are created until the optimal solution is found or number 

of generations exceeds the previously defined value. 

If the values of matrix W0 were integers, then the storage capacity is 

27% of neurons' number. The matrix had poor error correcting capabilities. 

A mistake at one bite is corrected in 90% of the cases. The weight matrix 

has a high symmetry degree and only few connections are pruned. 

In the other case, when values of the matrix W0 are limited, the storage 

capacity is only 18%. The basin of attraction is smaller then for a network 

trained only with Hebbian rule, even if the weights of connections are limited 

in the same way. As in the previous experiment the weight matrix has a high 
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degree of symmetry and the value of O rate is small. 

4.2 Baldwin Effect Algorithm 

In biology, the ''Baldwin effect" is the result of the interaction of evolution 

with learning by individual animals over their lifetime. It turns out that 

individual learning tends to enhance evolutionary learning at the species 

level. The effect is named after J. Mark Baldwin, an American naturalist 

who described it in 1896 [23). 

In machine learning the Baldwin effect means that it is possible to improve 

the results of an evolutionary algorithm by applying it to systems that learn 

by themselves. 

Matrix W0 is created randomly, w?j E {-1, 1}. It remains unchanged dur-
s.:. 

ing the evolution. Every chromosome consists of N 2 values from {-1, O, 1}. 

The weights are calculated as 

k k( 'N ') o . . o N 1 wij = e i + J wij i, J = , ... , -

Every matrix is taught with Hebbian rule: 

Then every trained network is evaluated with fitness function described by 

(1 ). 

New individuals are created through uniform crossover of the chromosomes 

and cycle mutation: (-1) -t (O), (O) -t (1), (1) -t (-1). 

Same as in previous algorithm new generations are created until the optima! 
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solution is found or number of generations exceeds the previously defined 

value. 

The scheme of the algorithm is presented in Figure 4. 
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Figure 4: Scheme of the Baldwin Effect Algorithm. 

The obtained storage capacity is 16% of neurons' number. The network 

is not resistant on errors. The degree of symmetry range from 0.3 till 0.6, so 

the matrix is asymmetric. There are not many connections with O weight. 

4.3 Algorithm with Diploid Chromosome 

In genetic algorithms a possible solution is usually represented as a one­

dimensional array. However, an alternative way of representing solution can 

be used. 
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A genotype consists of two chromosomes, each of Iength N(~-l). One 

of them represents the weights from upper right matrix's triangle while the 

other form lower left triangle. The elements on the main diagonal are always 

O, therefore there is no use to represent them in genotype. 

The scheme of the information representation is presented in Figure 5. 

111 

111 

Figure 5: Scheme of the information representation in Algorithm with Diploid 

Chromosome. 

At the beginning a constant matrix Wo is created, Wo E w?j, 

i= 1, ... , N and j = 1, ... , N. The values of the elements w?i are integers and 

are defined by Hebbian rule. 

The weight matrix is computed as: 

Wij= w?jcl for i= 1, ... ,N, j =i+ 1, ... ,N 

Wji = wJic% for j = 1, ... , N - l, i= j + 1, ... , N 

k = (2N - l)(i + 1) _ 2N + j 
2 

The obtained network is then evaluated with fitness function (1). 

Different form of representation of the solution requires different crossover 

operator. First, uniform crossover is operated on the pair of chromosomes of 
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each parent and so a gamete is created. Two gametes from different parents 

form a single offspring. 

Additionally a gen can be mutated: 

(-1) ----t (O), (O) ----t (1), (1) - (-1) 

The algorithm will stop creating new generations if the optima! solution is 

found or number of generation exceeds previously defined value. 

The storage capacity of the network trained with this algorithm is 24% 

of neurons' number. The network can cope with maximum with 2 errors on 

satisfactory level. The weight matrix is almost symmetrical and has a few 

pruned connections. 

5 Comparison of obtained results 

When the algorithms are initialized with zero matrixes or randomly, basins of 

attraction of the networks are definitely smaller, then the basin of the network 

learned only by Hebbian rule. However, there is a method that allows us to 

improve correcting abilities of the network so that they are comparable with 

ones obtained from Hebbian rule. This method requires same modification of 

fitness function. Its value is no longer a number that informs if all patterns 

became fixed points, but also it consists information about the correcting 

abilities of the network. 

If the initial population uses Hebbian rule to define the values of the 
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weights, the ba.sin of attraction improves itself while evolution processes. 

The degree of symmetry depends on the way of initialization. The value 

of this parameter has a higher value if initial weight's matrix is computed 

according to the Hebbian rule. If first population is generated randomly, or 

all weights are O, then obtained solutions are asymmetric. 

The number of pruned connections remains usually at a very low level, 

only few percent of all connections. Only when the weights of all connection 

are O in the first generation, the O rate has a higher value. 

Apart from rare cases for Genetic Algorithm, complements of all patterns 

are remembered as fixed points. 

The influence of p~rameters, which affect the evolution and are defined by 

the user, is also investigated. They are numbers of the population, probability 

of mutation and the number of parents in population. 

The numbers of individuals in population affect most velocity of finding 

the optima! solution. The bigger is the population the more points of the 

space is checked in every generation. Therefore it is more likely to find 

solution in generation with smaller ordinal number. In most tests no influence 

of the values of this parameter on the quality of solution is observed. 

Another important parameter is the number of parents in the population, 

or better, the rate between numbers of parents and all population. It has 

significance not only for the velocity of learning, but also for its quality. 

When the number of parents is too small, the children may be not enough 

di verse. However, if there are too many parents, the improvement may be too 

slow. From the observations it appears that the optimal results are obtained 
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if 40% of all individuals are parents. 

A parameter that causes most problems is the mutation probability. Its 

value should be defined very carefully and the optimal value may be different 

for each algorithm. Mutation causes random changes to the population. If 

the value of this parameter is too small, the evolution may never leave out a 

local minimum. On the other side, too big value prevents from convergence. 

6 Con cl usions 

In this paper a few genetic algorithms used to train neural networks, were 

presented and discussed. Tests that were carried out showed that genetic 

algorithms may be used to train the neural networks. 

Obviously, there is no guarantee that the optimal solution will be found . 

However, the user does not obtain only one possible solution, but a whole 

set. In popular hybrid applications solutions found by the genetic algorithms 

are further trained with different methods if they are not optimal. 

In presented algorithms a Hebbian rule was used. It is said that the 

storage capacity of the network learned by this rule is equal to 15% of num­

bers of neurons. However, there are many other learning rules for Hopfield's 

network. For example, a network learned with pseudo-inverse rule can re­

member N line-depended patterns, where N is total number of neurons. 

There is a possibility that if a different rule would be used instead of the 

Hebbian rule, the network could remember mare patterns as fixed points. 

Finally, we are thinking of using the evolutionary algorithms to train 
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Hopfield model of associative memory. A usage of different learning rules is 

also considered. 
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