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1 Abstract

This paper deals with the numerical solution of wheel - rail rolling contact problems. The
unilateral contact problem between a elastic body and a rigid foundation is considered. The
contact with Coulomb friction law occurs at a portion of the boundary of the body. The con-
tact condition is described in displacements. The friction coefficient is assumed to be bounded
and suitable small. A frictional heat generation and heat transfer across the contact surface is
assumed. The equlibrium state of this contact problem is described by the coupled hyperbolic

variational inequality of the second order and a parabolic equation. This problem is solved
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numerically using a quasistatic approach. The proposed method is compared with Green func-
tion approach and the method implemented in Fastsim algorithm. Numerical examples are

provided and discussed.

Keywords: rolling contact, heat flow, numerical method

2 Introduction

The paper is concerned with the numerical solution of a contact problem for an elastic body.
The contact with Coulomb friction occurs at a portion of the boundary of the body. The non-
penetration condition governing the contact phenomenon is formulated in displacements. The
friction coefficient is assumed to be bounded. The equilibrium state of this contact problem
is described by the coupled system consisting of the hyperbolic variational inequality of the
second order governing the displacement field and the parabolic equation governing the heat
transfer.

The elastic rolling contact problem was considered by many authors (see literature in [8, 13]).
The existence of solutions to the elastic static contact problem was shown in [8]. The non-
penetration condition in {8] was formulated in displacements. One of the first rolling contact
problem model was described in [16] where the Hertz model is used assuming that the con-
tact zone and the normal contact stress are known. This model was developed and employed
to calculate numerical solution of the wheel - rail wear problem in {16]. Since the contact

phenomenon with friction is associated with the movement of bodies the dynamic contact




problems has been formulated.

The dynamic contact problems for the elastic bodies with nonpenetration condition formulated
in displacement and the given friction have no solutions. Therefore to reflect the dynamic
nature of the contact phenomenon either the quasistaic elastic contact problems have been
considered or the contact problems for viscoelastic bodies with the nonpenetration condition
formulated in velocities has been considered. The existence results and numerical methods for
solving quasistaic elastic contact problems are provided in [13].

The effects of heat generation and heat transfer involving contact has been analysed in lit-
erature for many years (see [18]). Finite element formulations including thermomechanical
coupling for contact problems has been presented in (see [1, 2, 4, 13]).

In [18] the Green function approach has been used used to solve the thermoelastic contact
problems numerically. Papers were wear is included in the rolling contact model are less
numerous. Reviewing paper [6] contains bibliography of papers dealing with contact and wear.
In [16] Hertz contact model with Archard law of wear were employed to solve numerically
wheel - rail contact problem. Models of contact with friction, heat generation and wear are
introduced and discussed in [17].

In our previous paper, following {0] we used a quasistatic approach to solve this contact prob-
lem. This approach is based on assumption that for the observer moving with the rolling wheel
the displacement of the rail is independent of time. Moreover we shall assume that the length

of the rail is much bigger than the diameter of the wheel. We shall confine ourselves to the




case of small velocities of the wheel, i.e. we do not consider the vibration of the wheel. Under
this assumption the rolling contact problem is described by an elliptic variational inequality
instead of hyperbolic variational inequality. The thermal field is described by the parabolic
equation.

The occurence of sliding between wheel and rail results in the frictional heating of both bodies.
High contact temperatures have to be taken into account to consider microstructural alterna-
tions as well as the decreasing the creep force curves. The first approach to calculate the
contact temperature was based on the theory of heat conduction with moving heat sources (see
papers of Blok and Jaeger). Tanvir provided an approximate solution of the rolling contact.
Knothe et al., in a series of papers, presented a numerical method for solving rolling con-
tact problem for arbitrarily distributed heat sources. All these works are confined to smooth
surfaces and are based on the theory of Hertz for the mechanical contact problem.

The relation among wear, friction, fatigue and heat flow is also investigated in [19]. The wear,
measured by the volume of the material removed, is a function of the entropy. Based on the
Second and the Third Law of Thermodynamics, the wear is characterized as proportional to
absolute temperature and entropy function and inverse proportional fo a friction coefficient
and a hardness pressure. The proposed law generalize the Archard’s or Holm’s wear law. The
normalized wear coefficient has been determined experimentally.

In [13] the process of the dissipation of energy during sliding contact is investigated. Obtained

experimental results indicate, that dissipated energy strongly depends on thermal properties of



the contacting bodies. On the other hand external loading and sliding velocity have almost no
influence on energy dissipation. The wear apperance is an internal mechanism of the energy
dissipation.

Temperature changes and phase transitions in sliding wheel - rail contact are calculated in
[1] using the finite element method. Phase tranistions occur due to frictional heat generation.
Obtained results indicate that the phase is uniformly distributed in the wheel. The influence of
the rail roughness on the wear of the wheel is investigated in [9]. Plastic zone occurs near the

rail surface. This plastic zone depends on the friction coefficient as well as the creepage.

2.1 The goal of the present research

This paper extends results presented in (2, 3, 4, 5, 6]. After brief introduction of the ther-
moelastic model of the rolling contact problem in the framework of two-dimensional linear
elasticity theory [2] the general coupled parabolic - hyperbolic system describing this phys-
ical problem is formulated. To solve numerically the discretized system we will decouple it
into mechanical and thermal parts (see [2]). First, for a given temperature field we solve the
mechanical part. In order to solve the mechanical part of this system we introduce a regular-
ization of the friction conditions. Moreover, we replace the solving the hyperbolic inequality
by solving an auxiliary optimization problem to calculate the displacement and stress fields in
the whole domain. Newton method is employed to calculate tangent contact stress from reg-
ularized friction conditions. In the second step for the calculated displacement field we solve

the thermal part of the system using the Newton method. The applications are for wheel - rail




systems. The numerical results are discussed. The obtained results are compared with results

obtained using Green function approach and modified Fastsim algorithm.

3 Rolling Contact Problem

Consider deformations of an elastic strip lying on a rigid foundation (see Fig. 1). The strip has
constant height h and occupies domain 2 € R? with the boundary T. A wheel rolls along the
upper surface I'¢ of the strip. The wheel has radius 7y, rotating speed w and linear velocity V.
The axis of the wheel is moving along a straight line at a constant altitude hg where Ag < h-+7g,
i.e., the wheel is pressed in the viscoelastic strip. It is assumed, that the head and tail ends of
the strip are clamped, i.e., we assume that the lenght of the strip is much bigger than the radius
of the wheel. Moreover it is assumed, that there is no mass forces in the strip. The body is
clamped along a portion I'g of the boundary I' of the domain 2. The contact conditions are
prescribed on a portion I'c of the boundary I". Moreover, [y N'c = 0, T = T UT'c. We
denote by v = (uy, u2), u = u(x,t), z € Q,t € [0,T], T > 0 a displacement of the strip and
by 6 = 6(z, ¢) the absolute temperature of the strip.

In an equlibrium state the displacement u and the temperature § of the strip satisfiy the system

o

Figure 1: The wheel rolling over the strip.



of equations [1, 2,7, 8, 17, 25]:

%u
Poe

= A"DAu — a3+ 2v)VE8 inQx(0,T)
pcp@- =gA§ inQx(0,T),
ot
with initial and boundary conditions:

u=0 onTyx(0,7),

B*DAu=F onl¢x(0,7),

a0
%(r, t)=gq(t) onT,

where ©(0) = u(r,0), v = du/dt, Uy, iy, 9, g(t) are given functions, p
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s a mass density of the

strip material, ¢ is a coefficient of thermal expansion, & is a thermal conductivity coefficient,

¢p 18 a heat capacity coefficient, I’ = " \ ['¢, the operators A, B and D

(5]
= 0 n 0 A+ 2y
A= 0 2t B=|0 n|, D= A
ain ain Tig My 0

are defined as follows

A0
A2y 0 ®)
0 v

where 1 = (ng, ny) is outward normal versor to the boundary T of the domain €2, X and ~y are

Lame coefficients [8, 13], A* denotes a transpose of A. By o = (011, 022

the stress tensor in domain §2 and surface traction vector on the bounda

,012) and F we denote

ry I respectively. The

surface traction vector F' = (Fy, Fy) on the boundary I'c is a priori unknown and is given by



conditions of contact and friction. Under the assumptions that the strip displacement is small

the contact conditions take a form [8, 17]:

up+ g+ <0, F <0, (ue+g)fy=0 onlex(0,T), ®
gr =T — Ty,
du1 d'LLl .
IF]‘SNIFQ ,, FI—Et—SU, (, F1|~u|F2 [)Ft———o onFCx(O,T), (10)

where p is a friction coefficient and r is the distance between the center of the wheel and a
point z € T'c lying on the boundary T'¢ of the strip {2. Under suitable assumptions g, =
h — hg + m. Conditions (9) - (10) describe the contact conditions. (9) is the
nonpenetration condition. The wheel either has partly a common boundary with the rail, i.e.
there is no normal displacement and appears nonzero reaction force or has no such boumdary
and the reaction force is equal to zero. (10) is Coulomb law of friction. If tangential force
F is less than the friction force 1% the wheel rolls without sliding. If the tangential force is
equal to the friction force the sliding of the whee! over the rail accurs.

The original dynamic contact problem (1) - (10 is formulated in displacements. It is well
known that, in general, this problem has no solutions. Therefore there are difficulties to solve
it numerically. There are two approaches to deal with this difficulty. Taking into account
the special features of this problem one can formulate it in the framework of the quasistatic
approach. The second approach is based on adding the viscosity term and formulation of
nonpenetration condition in velocities. In this paper we confine to the first approach only. The

second approach is considered in (7].



4 Quasistatic Formulation

Let us recall from [4, 7] the the quasistatic formulation of the contact problem (1) - (6). Let be

given an observer moving with the wheel with the constant linear velocity V. We shall assume:

(i) the lenght of the strip is much bigger than the radius of the wheel,
(ii) for the observer moving with a wheel the displacement of the strip

does not depend on time,
(iii) the velocity of the wheel is small enough, i.e. vibrations of wheel

can not appear.

If the running velocity is constant the temperature very soon approach steady-state values.

We assume in the contact area the heat is generated due to friction and the heat flow rate is

transformed completely into heat.

Let us introduce the new cartesian coordinate system (’z{z} hooked in the middle of the

wheel. The systems O’z z}, and Oz, are related by:

=z - Vi,

5
R3S
Il

Zq.

Since by assumptions (i)-(iit) u(z, =3} does not depend on time we obtain:

du du

E(I’l,z;) = a—z(xl ~ Vi, z9,t) = 0.
It implies

du v du d*u _ 2d2u

dt ~ dxm dt2 = dx?

an

(12)

(13)



Using the same argument we obtain:

dé dé dw v dw (14)

dt T dey dtdmy
Let € denotes now the moving part of the strip seen by the observer. Taking into account (11)

quasistatic approximation of the problem (1) — (3) takes the form:

Find v and § satisfying

A*DAu — pV?upy — a(3X+27)V8 =0 inQ, (15)
o8 5%
Ve = ki 16
Oz, Kaz% in &, (16)
u=0 onTy, 17
B*DAu=F onTlg, (18)
uy+ g, +w <0, <0, (ug+¢-+w)Fy=0 onlg
| Fy | | Fol Firuin <0, (| Fi|—=p| Fa)yya =0 onlg, (19)
a6 4 kpc,0
g = G[ZFy(x) + (1 — ")V Fy()] on T, (20
Oxs r %
where Ui = g—;;—, U ik = —E%g:lc;;’ i,j, k= 1, 2, Uiy = (um,ij)m=l‘2: ’L,] = 1, 2, K= R/pc,, is

the thermal diffusivity coefficient, & represents the fraction of frictional heat flow rate entering
the rail, r is thermal resistance constant. There are also given initial conditions (5) - (6). We

assume in (19) the heat flows through the contact surface only, therefore § = 0 on I's.
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4.1 Numerical Realization

Problem (15) - (20) is a coupled thermoviscoelastic problem since the contact traction will de-
pend on the thermal distortion of the bodies. On the other hand, the amount of heat generated
due to friction will depend on the contact traction. The main solution strategics for coupled
problems are global solution algorithms where the differential systems for the different vari-
ables are solved together or operator splitting methods. In this paper we employ operator split
algorithm.

The conceptual algorithm for solving (15) - (20) is as follows [2]:

Step 1 : Choose 6 = §°. Choose 1y € (0,1). Set k = 0.

Step 2 : For given % find u* and o, satisfying system
(15) and boundary conditions (17) - (19).

Step 3 : For given u* and 0% find §**! satisfying
equations (16) and (20) respectively.

Step 4 : If || 6%+ — 6% ||< 5, Stop. Otherwise : set k = k + 1, go to Step 2.

For the convergence of the operator split algorithm using Fixed Point Theorem see literature

in [2]. Let us present in details the algorithms for solving disrete mechanical and thermal

subproblems.
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4.2 Numerical Results

Problem (15)-(20) was solved numerically using the described in the previous section aigo-

rithms. Polygonal domain Q given by
0 = {(z,,29) € R* : 11 € (=2,2), 7 € (0,1)} 1)

was divided into 192 triangles. The contact boundary [’c is modeled by 13 nodes. The Lame
constants were A = 11.66 - 10!° [N/m?], v = 8.2 - 10'° [N/m?], the density p = 7.8 - 10°
[kg/m®], the velocity V' = 10 [m/s], radius of the wheel 7 = 0.46 (m]. The penetration
of the wheel was taken as § = 0.1 - 107% [m]. The heat capacity ¢ = 460 J/kgK, thermal
diffusitivy coefficient K = 1,4410~° m?/s, thermal expansion coefficient v = 121076, The
friction coefficient 1 = 0.4, the thermal resistance coefficient 7 = 1000 KNs/J. ¢ = 0.001. @

and 4, in (5) as well as 8 in (6) are equal to 0. The results are showed on Fig. 2 and Fig. 3.

Figure 3: Final mperalu® permat dsuibuton al & coniacl point
T 4 T

] o8 [ 15 2 25 3

Figure 2: Temperature normal distribution at a contact point.
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Figure 3: Temperature tangential distribution at a contact point.

5 Green Function Approach

Similar problem was solved in [16] where the solutions to system (15) - (20) were calculated

analytically using Green functions.
In [10], assuming the static wheel load, the area of contact and the pressure distribution may

be calculated with the Hertz’s theory. The area of contact is assumed to be elliptical and the

normal pressure distribution is given by

2 2
p(z,y) =poy/1— PrAREYE (22)
with the maximal pressure py
3N
= —, 23
Po= 5 (23)

for the normal load N and the semi - axes a in rolling direction and b of contact ellipse.

The existence of the tangential force T" transmitted between the wheel and the rail implies the
occurence of a mean relative velocity in the contact point. High contact temperatures are to
be expected only with the transmission of tractive or braking forces at high relative velocities,
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In this case sliding is assumed to occur within the whole contact area and the tangential force
T = pN, 1 denotes a constant friction coefficient.

From the point of view of an observer fixed to the wheel, the contact patch moves with respect
to the wheel surface and the frictional heating within the contact patch is a time - dependent

heat source. The thermal penetration depth, during the contact of wheel and rail, is equal to

§= -1 (24

and is very small compared to the size of the contact patch. It depends on the non - dimensional
Péclet number
av
L=— (25)
where a is the length of the contact semi axis, v denotes the speed of the moving heat source

and the thermal diffusitivity

K= —)\~ (26)

combining the material properties A ( thermal conductivity), p (mass density) and ¢ (specific
heat). Note, that L may be interpreted as the ratio of the surface speed to the rate of the
diffusion of the heat into the solid. If L > 10 heat conduction appears only perpendicular to
the contact plane, i.e., in z - direction. In wheel - rail systems typical value is L = 5300.

5.0.1 Analytical Solution

The heat flow in z direction is governed by:

8% o6

Kl—a;i = 5?, (27)
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with the initial condition

0(z,0) =0, (28)
and the boundary condition
a0
N Yl =g 29
A5-(0.) = d(t), (29)
The solution to (27) - 29) is given by
0(z t) / (¢ — ') exp{ - }dt' 30)
CO=57 ), ARV
with the thermal penetration coefficient
A
= 31
B N €2))

The temperature of the wheel is equal to

1 [a [¢, ¢? d¢’
0,(6,¢) = —4/— w xXp(—————— ———s, 32
€0 ﬁwvm/_lq Ol =gy Ve—e ¢
for the wheel with v,, = vg9 + v, and
¢ 3
- 33
&< ﬁr\/wvr/ (€ )exp(= 26— 5’))\/5 &’ G

for the rail with v, = vo. The analutical solution (32) is simple to calculate if we assume a

constant heat flow rate ¢,, at the wheel surface within the contact path. For —1 < £ < 1, we

get

G f2a, 264D & o S
TGS TR wry) e
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where the complement of the error function is equal to
erfec(s) =1 —erf(s) =1— ——/ % dw. 35)

Outside the contact area there is now frictional heating. Neglecting convection, the heat flow

rate is zero and the analytical solution for £ > 1 is equal to

(36)

5'1'1 £ ¢
0u(€,¢) = ﬁw\/ o {\/ exp(— (£+1)) Cerfc(—z_(é:u_f)-)]
¢
— =}
V2(6-1)

| 2(5; Dexp- srgrs) - contel

5.0.2  Analytical solution for constant heat flow rate

Assuming the constant values of the coefficient of friction i and the sliding velocity v, the

frictional power dissipation rate in the contact patch is equal to:

=pvsppy/1-€% £=1-— (37

The all frictional power dissipation is transformed into heat flowing into the material of wheel

and rail. Therefore

g =¢qy+ (1 - 5)41‘7 (38)
where € is a heat partitioning factor. The maximum temperature of wheel has been calculated

as:

O = 1253512510 [ 2 39)
B Vyy

This maximum temperature occurs at the trailing edge of the contact patch.
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Low speed High speed
Instantaneous contact temperature

Maximal Temperature 149,7 86,4
Average contact temperature 81,7 47,1
Steady - state temperature
without convection 182,6 1054
173,7 100,3
a = 10W/Km? 153,5 95,0
159,0 95,1
a = 30W/Km? 116,4 79,4
140,3 87,2
a = 100W/Km? 63 50,3
1134 72,5
« = 1000W/Km? 9,1 8,8
86,3 51,6

Table 1 gives results of computations for two different vehicle speeds. Low speed means
vehicle speed equal to 30 m/s, while high speed 90 m/s. Longitudinal sliding velocity is equal
to 1 m/s for low speed case and 3 m/s for high speed case. In both cases normal load is equal
to 100 kN, and frictional power dissipation is equal to 30 Kw. Coefficient of friction is equal
to 0,3 for low speed case and 0,1 for high speed case.

The results show that the temperature decreases with increasing vehile speed. The steady
state temperature depends mainly on heat conduction from wheel into rail. It is even lower if
convection is also taken into account. If the heat transfer coefficient « is in the range of 50
- 100 W/ Km?, the heat flow into an ambient air is nearly equal to the heat conduction from
from wheel into air. Thus 8, is only half as high as without convection. For o overestimated,
the average wheel temperature woul be nearly equal to ambient temperature.

Obtained maximum contact temperatures are not high enough to explain thermally induced
phase transformations. This may only be the case with extreme conditione, i.e. blocking
wheels where the sliding velocityis equal to the vehicle speed. On the other hand contact
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creepages
T., = Ep, Nivyy, T, = By Ni(vy, + ;)

where E, and F,, are coefficients, ¢; is an equivalent radius of the contact zone. Longitudinal

creepages Vg, Iy,, and spin creepage ®; are defined by

To—T1 Ty Ti 1+ﬁ~
= 2T )il =
Va: 2r +(=1) r o M 1’acos(7i)’

140
d; = sin(y;),

r; are wheel radii, r = 0.5(r; + 7»), a denotes yaw angle, -y; denote the angle between hori-
zontal and tangential lines, 6 is a small unknown number. Using the normalized creep forces

fz, and f,, as well as frictions coefficients y; the tangential forces are equal to
Too = piNifoi, Ty = NSy,

Comparing the above expressions for tangential forces the unknown coefficients can be deter-
mined. Assuming that the inertia of the wheel is neglected, and transforming the system of

equilibrium equations, the normal force N = {N;} is calculated from the system
AN = Q, (55)

where 4 = {a;;}7,_, denotes the matrix of coefficients dependent on E;, , E,, and creepages.
For a calculated normal force N, the number @ is calculated. Fixed point method is applied to

solve the equation (55).
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where N denotes a normal force and a, b are semi - axes of contact ellipse. s is a slip velocity

equal to

S=w+u.

6.3 Calculation of Temperature

For the sake of simplicity, a rail is considered as a parallelepiped occupying domain
Q=1[0a]x[0 b x[0 ¢,

where a, b, ¢ > 0, are given constants. This parallelpiped is divided into the small cells having
dimensions dz, dy and dz. The heat source is assumed to move over the contact area C' C R?
lying on the outer surface of the rail z = 0 with velocity V. The contact area C is assumed
to be elliptical. By 8 = 0(z,v, 2,t), (z,y, 2) € Q, ¢ € {0, 7], we denote a temperature of the
wheel.

The transient heat conduction in the frame of three dimensional model of the rail is described
by the Fourier partial differentiat equation, i.e.,

ggzaAHin Qx (0,7, (56)

where o = C—’\—p denotes a temperature compensation coefficient, A is a conductivity coefficient,
P

¢p is a characteristic heat and p denotes a mass density. The following boundary conditions are
prescribed
08
—~=0o0n y=0,0b, (57)
dy

0=0o0nz=0,z=a,2=b z=c (58)
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On the outer surface of the rail z = 0 the following boundary condition is assumed

? =Py on z=0and (z,y) € C, 59)

4

a8

3= k(0 —0,) on z=0 and(z,y) ¢ C (60)
(61)

Moreover the initial condition have the form

6(z,y,2,0) =0 in z € 1,

i)
%(z,y,z,O) =0 on z=0.

The computations have been performed using the finite difference method with the explicit
Euler discretization. The discrete rail model has been build in the Excel spreadsheet. Each
cell of a spreadsheet is equivalent each cell of a rail. The dimensions of a cell are equal to
d = dz = dy = dz. To calculate the value of temperature & in time ¢ in each cell, the values
of temperatures in six adjacent cells in time ¢ — 1 are used. The difference scheme stability

condition has the form

6.4 Numerical Results

The computations has been performed for p = 7680kg/m3, A = 54W/(mK), ¢, = 460
J/(kgK),dr = dy = dz = 0,001m. Contact heat source is assumed to move with the velocity
V = 1m/s. Fig. 4 and Fig. 5 display the temperature distribution for the circular contact

area and the constant density heat source ¢. For ¢ = 1W/mm? the temperature increase is
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5,5 K. For the density heat source ¢ = 10W/mm? the temperature increase is 55 K. The
temperature within the contact patch sharply increases. After the particle leave the contact
zone, the temperature falls. The temperature also rapidly decreases inside the rail to 1,5K and
15,5K respectively.

Fig. 6 and Fig. 7 show the temperature distribution for the elliptic contact area and the constant
density heat sources: ¢ = 1W/mm? and ¢ = 10W/mm?. Although the maximal temperatures
are similar in this case the thermal trace on the surface of the rail is much bigger than in the
circular contact area.

[22] reports also the temperature distribution obtained for irregular density heat source with
two maximal values gmor = 2,4W/mm? moving with velocity V = lm/s. The reported
maximal temperature increase in the contact zone is equal to 2,4 K. The thermal trace on the

surface of the rail is much wider and much longer than in previous cases.
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Figure 4: Temperature tangential distribution. Circular contact. g = 1.
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Figure 5. Temperature tangential distribution. Circular contact. ¢ = 10.
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Figure 6: Temperature tangential distribution. Elliptic contact. ¢ = L.

7 Conclusions

The obtained results indicate that mechanical factors give rise to thermal effects which should
be observable as the surface temperature field. The results obtained due to the quasistatic
method and the Fastsim method are very similar. The increase of the temperature and its
distribution have the same character and magnitutde. These results differs significantly from
the results reported in [10], where much larger temperature increase is reported. Moreover as

follows from Table 1, the higher the speed, the lower the temperature increase. The dependence
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Figure 7: Temperature tangential distribution. Elliptic contact. ¢ = 1. Final time.
of the contact temperature on sliding velocity and on the friction coefficient dependent on

sliding velocity is subject of further research.
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