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This paper deals with the numerical solution of wheel - raił rolling contact problems. The 

unilateral contact problem between a elastic body and a rigid foundation is considered. The 

contact with Coulomb friction law occurs at a portion of the boundary of the body. The con-

tact condition is described in displacements. The friction coefficient is assumed to be bounded 

and suitable small. A frictional heat generation and heat transfer across the contact surface is 

assumed. The equlibrium state of this contact problem is described by the coupled hyperbolic 

variational inequality of the second order and a parabolic equation. This problem is solved 



numerically using a quasistatic approach. The proposed method is compared with Green func-

tion approach and the method implemented in Fastsim algorithm. Numerical examples are 

provided and discussed. 

Keywords: rolling contact, heat flow, numerical method 

2 Introduction 

The paper is concerned with the numerical solution of a contact problem for an elastic body. 

The contact with Coulomb friction occurs at a portion of the boundary of the body. The non-

penetration condition governing the contact phenomenon is formulated in displacements. The 

friction coefficient is assumed to be bounded. The equilibrium state of this contact problem 

is described by the coupled system consisting of the hyperbolic variational inequality of the 

second order governing the displacement field and the parabolic equation goveming the heat 

transfer. 

The elastic rolling contact problem was considered by many authors (see literature in [8, 13]). 

The existence of solutions to the elastic static contact problem was shown in (8). The non-

penetration condition in [8] was formulated in displacements. One of the first rolling contact 

problem model was described in [16) where the Hertz model is used assuming that the con-

tact zone and the norma! contact stress are known. This model was developed and employed 

to calculate numerical solution of the wheel - raił wear problem in [16). Since the contact 

phenomenon with friction is associated with the movement of bodies the dynamie contact 
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problems has been formulated. 

The dynamie contact problems for the elastic bodies with nonpenetration condition formulated 

in displacement and the given friction have no solutions. Therefore to reflect the dynamie 

nature of the contact phenomenon either the quasistaic elastic contact problems have been 

considered or the contact problems for viscoelastic bodies with the nonpenetration condition 

formulated in velocities has been considered. The existence results and numerical methods for 

solving quasistaic elastic contact problems are provided in (13]. 

The effects of heat generation and heat transfer involving contact has been analysed in lit­

erature for many years (see (18]). Finite element formulations including thermomechanical 

coupling for contact problems has been presented in (see (1, 2, 4, 13]). 

In [ 18] the Green function approach has been used used to sol ve the thermoelastic contact 

problems numerically. Papers were wear is included in the rolling contact model are less 

numerous. Reviewing paper [6] contains bibliography of papers dealing with contact and wear. 

In [16] Hertz contact model with Archard law of wear were employed to solve numerically 

wheel - raił contact problem. Models of contact with friction, heat generation and wear are 

introduced and discussed in [17]. 

In our previous paper, following [6] we used a quasistatic approach to solve this contact prob­

lem. This approach is based on assumption that for the observer moving with the rolling wheel 

the displacement of the raił is independent of time. Moreover we shall assume that the length 

of the raił is much bigger than the diameter of the wheel. We shall confine ourselves to the 
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case of small velocities of the wheel, i.e. we do not consider the vibration of the wheel. Under 

this assumption the rolling contact problem is described by an elliptic variational inequality 

instead of hyperbolic variational inequality. The thermal field is described by the parabolic 

equation. 

The occurence of sliding between wheel and raił results in the frictional heating of both bodies. 

High contact temperatures have to be taken into account to consider microstructural altema-

tions as well as the decreasing the creep force curves. The first approach to calculate the 

contact temperature was based on the theory of heat conduction with moving heat sources (see 

papers of Blok and Jaeger). Tanvir provided an approximate solution of the rolling contact. 

Knothe et al., in a series of papers, presented a numerical method for solving rolling con-

tact problem for arbitrarily distributed heat sources. All these works are confined to smooth 

surfaces and are based on the theory of Hertz for the mechanical contact problem. 

The relation among wear, friction, fatigue and heat flow is also investigated in [19]. The wear, 

measured by the volume of the materiał removed, is a function of the entropy. Based on the 

Second and the Third Law of Thermodynamics, the wear is characterized as proportional to 

absolute temperature and entropy function and inverse proportional to a friction coefficient 

and a hardness pressure. The proposed law generalize the Archard's or Holm's wear law. The 

normalized wear coefficient has been determined experimentally. 

In [13] the process of the dissipation of energy during sliding contact is investigated. Obtained 

experimental results indicate, that dissipated energy strongly depends on thermal properties of 
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the contacting bodies. On the other hand extemal loading and sliding velocity have almost no 

influence on energy dissipation. The wear apperance is an interna! mechanism of the energy 

dissipation. 

Temperature changes and phase transitions in sliding wheel - raił contact are calculated in 

[l] using the finite element method. Phase tranistions occur due to frictional heat generation. 

Obtained results indicate that the phase is uniformly distributed in the wheel. The influence of 

the raił roughness on the wear of the wheel is investigated in [9]. Plastic zone occurs near the 

raił surface. This plastic zone depends on the friction coefficient as well as the creepage. 

2.1 The goal of the present research 

This paper extends results presented in [2, 3, 4, 5, 6]. After brief introduction of the ther-

moelastic model of the rolling contact problem in the framework of two-dimensional linear 

elasticity theory [2] the generał coupled parabolic - hyperbolic system describing this phys-

ical problem is formulated. To salve numerically the discretized system we will decouple it 

into mechanical and thermal parts (see [2]). First, for a given temperature field we salve the 

mechanical part. In order to salve the mechanical part of this system we introduce a regular-

ization of the friction conditions. Moreover, we replace the solving the hyperbolic inequality 

by solving an auxiliary optimization problem to calculate the displacement and stress fields in 

the whole domain. Newton method is employed to calculate tangent contact stress from reg-

ularized friction conditions. In the second step for the calculated displacement field we salve 

the thermal part of the system using the Newton method. The applications are for wheel - raił 
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systems. The numerical results are discussed. The obtained results are compared with results 

obtained using Green function approach and modified Fastsim algorithm. 

3 Rolling Contact Problem 

Consider deformations of an elastic strip lying on a rigid foundation (see Fig. 1). The strip has 

constant height h and occupies domain n E R2 with the boundary r. A wheel rolls along the 

upper surface re of the strip. The wheel has radius r0 , rotating speed w and linear velocity V. 

The axis of the wheel is moving along a straight line at a constant altitude ho where ho < h+ro, 

i.e., the wheel is pressed in the viscoelastic strip. It is assumed, that the head and taił ends of 

the strip are clamped, i.e., we assume that the lenght of the strip is much bigger than the radius 

of the wheel. Moreover it is assumed, that there is no mass forces in the strip. The body is 

clamped along a portion r 0 of the boundary r of the domain n. The contact conditions are 

prescribed on a portion fe of the boundary r. Moreover, r 0 n fe = 0, r = r 0 u fe. We 

denote by u= (u1, u2 ), u= u(x, t), x E n, t E [O, TJ, T > O a displacement of the strip and 

by 0 = 0(x, t) the absolute temperature of the strip. 

In an equlibrium state the displacement u and the temperature 0 of the strip satisfiy the system 

G-v 

Figure 1: The wheel rolling over the strip. 
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of equations [l, 2, 7, 8, 17, 25]: 

a2u 
P ot2 = A*DAu - a(3>-. + 2,)"\10 in n x (O, T), 

80 
PCp at = r;,!:::,.0 in rl x (O, T) , 

with initial and boundary conditions: 

u= o on ro X (O, T), 

B*DAu=F onrcx(O,T), 

u(O) = uo u'(O) = u1 in D, 

0(0) = 0 in n, 

80 
on (x, t) = ą(t) on r, 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

where u(O) = u(x, O), u'= du/dt, u0 , u1 , 0, ą(t) are given functions, pis a mass density of the 

strip materiał, a is a coefficient of thermal expansion, R, is a thermal conductivity coefficient, 

Cp is a heat capacity coefficient, r 0 = r \ re, the operators A, Band D are defined as follows 

[5] 

[
).. + 2, 

D= >-. 
o 

).. 

>-.+2, 
o 

(8) 

where n= (n 1, n2) is outward norma! versor to the boundary r of the domain n,).. and I are 

Lame coefficients [8, 13], A* denotes a transpose of A. By u = (u 11 , u22 , u 12 ) and F we denote 

the stress tensor in domain n and surface traction vector on the boundary r respectively. The 

surface traction vector F = ( F1, F2) on the boundary r c is a priori unknown and is given by 
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conditions of contact and friction. Under the assumptions that the strip displacement is small 

the contact conditions take a form (8, 17): 

U2 +gr+ :=; O, F2 ::; O, (u2 + gr)F2 = Q on f e X (0,T), (9) 

gr= r - ro, 

on f e x (O, T), (10) 

where J.L is a friction coefficient and r is the distance between the center of the wheel and a 

point x E f e lying on the boundary f e of the strip n. Under sui table assumptions g,. = 

h - ho+ ✓r5 - (u 1 + x 1) 2. Conditions (9) - (10) describe the contact conditions . (9) is the 

nonpenetration condition . The wheel either has partly a common boundary with the raił, i.e. 

there is no norma! displacement and appears nonzero reaction force or has no such boumdary 

and the reaction force is equal to zero. (10) is Coulomb law of friction. lf tangential force 

F1 is less than the friction force µA the wheel rolls without sliding. If the tangential force is 

equal to the friction force the sliding of the wheel over the raił occurs. 

The original dynamie contact problem (1) - (10 is formulated in displacements. It is well 

known that, in generał , this problem has no solutions. Therefore there are difficulties to solve 

it numerically. There are two approaches to deal with this difficulty. Taking into account 

the special features of this problem one can formulate it in the framework of the quasistatic 

approach. The second approach is based on adding the viscosity term and formulation of 

nonpenetration condition in velocities. In this paper we confine to the first approach only. The 

second approach is considered in (7). 
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4 Quasistatic Formulation 

Let us recall from (4, 7] the the quasistatic formulation of the contact problem (1) - (6). Let be 

given an observer moving with the wheel with the constant linear velocity V. We shall assume: 

(i) the lenght of the strip is much bigger than the radius of the wheel, 

(ii) for the observer moving with a wheel the displacement of the strip 

does not depend on time, 

(iii) the velocity of the wheel is small enough, i.e. vibrations of wheel 

can not appear. 

If the running velocity is constant the temperature very soon approach steady-state values. 

We assume in the contact area the heat is generated due to friction and the heat flow rate is 

transformed completely inio heat. 

Let us introduce the new cartesian coordinate system O'x~x; hooked in the middle of the 

wheel. The systems O'x~x; and Ox 1x2 are related by: 

X~= Xi - Vt, 

(11) 

Since by assumptions (i)-(iii) u(x~, x;) does not depend on time we obtain: 

du( , , ) du( ) dt x1,x2 = dt x1 - Vt,x2 , t = O. (12) 

lt implies 

and (13) 
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Using the same argument we obtain: 

d0 = -V~ 
dt dx1' 

dw = -Vdw _ 
dt dx1 

(14) 

Let O denotes now the moving part of the strip seen by the observer. Taking into account (11) 

quasistatic approximation of the problem (1) - (3) takes the form: 

Find u and 0 satisfying 

A* DAu - pV2uu - a(3.,\ + 21 )'70 = O in O, (15) 

in O, (16) 

u=O onro, (17) 

B*DAu=F onrc, (18) 

U2 + 9r +W:::; 0, 

(19) 

_ 80 _ 0 kpcP0 
-K,-8 = a[-F2(x) + (1- --)µVF2(x)] on re, 

X2 r µ 
(20) 

h Ilu· IJ2u· . . k 1 2 ( ) . . 1 ? -; . 
W ere Ui,j = ~, Ui,jk = ~, 'l,J, = ' , Uij = Um,ij m=l,2, 'l,J = '...,, K, = K, pcp 1S 

the thermal diffusivity coefficient, a represents the fraction of frictional heat flow rate entering 

the raił, r is thermal resistance constant. There are also given initial conditions (5) - (6). We 

assume in (19) the heat flows through the contact surface only, therefore 0 = O on r 0 . 
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4.1 Numerical Realization 

Problem (15) - (20) is a coupled thermoviscoelastic problem since the contact traction will de-

pend on the thermal distortion of the bodies. On the other hand, the amount of heat generated 

due to friction will depend on the contact traction. The main solution strategies for coupled 

problems are global solution algorithms where the differential systems for the different vari-

ables are solved together or operator splitting methods. In this paper we employ operator split 

algorithm. 

The conceptual algorithm for solving (15) - (20) is as follows [2] : 

Step 1 : Choose 0 = 0°. Choose TJ E (O, 1). Set k = O. 

Step 2 : For given 0k find uk and Cl} satisfying system 

(15) and boundary conditions (17) - (19). 

Step 3 : For given uk and Cl} find 0k+1 satisfying 

equations (16) and (20) respectively. 

Step 4: If II Bk+I - 0k 11:S:: TJ, Stop. Otherwise: set k = k + l, go to Step 2. 

For the convergence of the operator split algorithm using Fixed Point Theorem see literature 

in [2]. Let us present in details the algorithms for solving disrete mechanical and thermal 

subproblems. 
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4.2 Numerical Results 

Problem (15)-(20) was solved numerically using the described in the previous section algo-

rithms. Polygonal domain fl given by 

fl={(x1,x2)ER2 x1E(-2,2),x2E(0,l)} (21) 

was divided into 192 triangles. The contact boundary r cis modeled by 13 nodes. The Lame 

constants were .,\ = 11.66 • 1010 [N/m2], 1 = 8.2 • 1010 [N/m2], the density p = 7.8 • 103 

[kg/m3], the velocity V = 10 [mis] , radius of the wheel r = 0.46 [m]. The penetration 

of the wheel was taken as ó = 0.1 • 10-3 [m]. The heat capacity c = 460 J/kgK, thermal 

diffusitivy coefficient K = 1, 4410-5 m 2 / s, thermal expansion coefficient 1 = 1210-6. The 

friction coefficient µ = 0.4, the thermal resistance coefficient r = 1000 KNs/J. t: = 0.001. ilo 

and il1 in (5) as well as 0 in (6) are equal to O. The results are showed on Fig. 2 and Fig. 3. 

Figure 2: Temperature norma! distribution at a contact point. 
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Figure 3: Temperature tangential distribution at a contact point. 

5 Green Function Approach 

Similar problem was solved in [16] where the solutions to system (15) - (20) were calculated 

analytically using Green functions. 

In [10], assuming the static wheel load, the area of contact and the pressure distribution may 

be calculated with the Hertz's theory. The area of contact is assumed to be elliptical and the 

norma! pressure distribution is given by 

✓ x 2 y2 
p(x,y)=pol- a2 - b2' 

with the maxima! pressure Po 

3N 
Po= 21rab' 

for the norma! load N and the semi - axes a in rolling direction and b of contact ellipse. 

(22) 

(23) 

The existence of the tangential force T transmitted between the wheel and the raił implies the 

occurence of a mean relative velocity in the contact point. High contact temperatures are to 

be expected only with the transmission of tractive or braking forces at high relative velocities; 
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In this case sliding is assumed to occur within the whole contact area and the tangential force 

T = µN, µ denotes a constant friction coefficient. 

From the point of view of an observer fixed to the wheel, the contact patch moves with respect 

to the wheel suńace and the frictional heating within the contact patch is a time - dependent 

heat source. The thermal penetration depth, during the contact of wheel and rai!, is equal to 

(24) 

and is very small compared to the size of the contact patch . It depends on the non - dimensional 

Peclet number 

(25) 

where a is the length of the contact semi axis, v denotes the speed of the moving heat source 

and the thermal diffusitivity 

,\ 
K,= - (26) 

pe 

combining the materiał properties ,\ ( thermal conductivity), p (mass density) and c (specific 

heat) . Note, that L may be interpreted as the ratio of the suńace speed to the rate of the 

diffusion of the heat inio the solid. If L > 10 heat conduction appears only perpendicular to 

the contact piane, i.e., in z - direction. In wheel - raił systems typical value is L = 5300. 

5.0.1 Analytical Solution 

The heat flow in z direction is govemed by: 

a20 a0 
K, 8z2 = at' (27) 
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with the initial condition 

0(z, O) = O, (28) 

and the boundary condition 

-,\::(O, t) = q(t), (29) 

The solution to (27) - 29) is given by 

1 f z2 dt' 
0(z, t) = /3.fi Jo q(t - t') exp{ - 4Kt'} ./t'' (30) 

with the thermal penetration coefficient 

(3 I) 

Let us introduce the dimensionless coordinates 

The temperature of the wheel is equal to 

1 ~1Ę (2 dĘ' 0w(Ę, () = f3w y ~ -I <Żw(()exp( 2 (Ę _ Ę')) ✓Ę _ Ę', (32) 

for the wheel with Vw = vo + v, and 

1 fI.jĘ (2 dĘ' 
0r(Ę , () = /3r y ~~ - I <Jr(Ę')exp( 2 (Ę _ Ę')) ✓Ę _ Ę', (33) 

for the raił with Vr = v0. The analutical solution (32) is simple to calculate if we assume a 

constant heat flow rate <iw at the wheel surface within the contact path. For -1 ś Ę ś 1, we 

get 

(34) 
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where the complement of the error function is equal to 

2 t 2 
erfc(s) = 1 - erf(s) = 1 - ft Jo e-w dw. (35) 

Outside the contact area there is now frictional heating. Neglecting convection, the heat flow 

rate is zero and the analytical solution for~ > 1 is equal to 

(36) 

5.0.2 Analytical solution for constant beat flow rate 

Assuming the constant values of the coefficient of friction µ and the sliding velocity v. the 

frictional power dissipation rate in the contact patch is equal to: 

x2 
ą(O = µv.po~, ( = 1 - 2 . 

a 
(37) 

The all frictional power dissipation is transformed into heat flowing into the materiał of wheel 

and raił. Therefore 

iJ. =€!Jw+ (1 - t:)iJ.r, (38) 

where E: is a heat partitioning factor. The maximum temperature of wheel has been calculated 

as: 

t:µv,po~ 
0max = 1.253-{J- -. 

w Vw 

This maximum temperature occurs at the trailing edge of the contact patch. 
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The temperature of wheeł is ałso dependent on the heat flow from the hot wheeł inio the cołd 

raił due to conduction through the contact patch as well as into ambient air by the convection 

at the free surfaces. 

5.1 Conduction 

Consider now the heat conduction from wheeł inio raił. The continuous f1ictionał heating on 

the wheeł surface resułts in wheeł temperature increase in time. When a point on the wheeł 

surface comes inio the contact area again the temperatures of wheeł and raił are different. 

Since after the one revołution of the wheeł the temperature gradient is small the next contact 

of a point on the surface of the wheeł and the raił can be treated as the contact between the 

two semi - infinite bodies with different intiał temperatures coming into contact at time t=O. 

Assuming thai the initiał temperatures of wheeł and raił are: 

0w(z, t = O) = 0wo , 0r( z , t = O) = O, (40) 

it can be shown the surface temperature attains a constant vałue 0m equał to: 

(41) 

The heat flow rate through the contact patch from the hot wheeł into the cołd raił is then 

(42) 

This heat flow rate impłies the following totał heat flow per unit width 

Qra;1/b* = a f I Qw(x)dx = -E/Mwo ~-
- 1 y--:;- (43) 
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Since outside the contact zone there is no heat flow from the wheel inio the raił, the surface 

temperature of the wheel is equal to 

0w(X, (=O) = Bwo{l - ~(1 - c:)arcsin ~}, for I X I> l. (44) 
7r V x+i 

5.2 Heat Convection 

Consider a heat flow due to convection outside the contact zone. The heat flows from the wheel 

into ambient air by convection at the free surfaces. This convection phenomenon is forced by 

the rotation of the wheel. The boundary condition outside the contact area has the form: 

>-w a;; (x, z= O) = a0w(x, z = O), (45) 

where x > a and a is the heat transfer coefficient. This coefficient is calculated using empirical 

formula. Typical values of a are in the range of 10 - lOOW/ Km 2. 

Another measure of the convection from a solid into a fluid is the Biot number 

B ._ ad 
i - Aw' (46) 

where d is the main characteristic Iength (here equal to 2a). For small Biot numbers, i.e., 

Bi < O, 1 the temperature gradient in the solid can be neglected for the calculation of the 

convective heat transfer. Assuming thai the average wheel temperature is constant at 0wo we 

obtain the heat flow rate as equal to 

C/convection = -O.Bw, (47) 

at the surface and the total heat flow per unit width is 

Oconvection/b* = -2rrroa0wo (48) 
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Comparing 

Q c"'.'vection = aro ~ 
Qrail €/Jr V ~ (49) 

we obtain this ratio is less than 1 %. Numeri cal experiments indicate that the convective heat 

transfer can be neglected except for very big, unrealistic, values of the heat transfer coefficient. 

5.3 Steady - state wheel temperature 

The heat loss due to conduction into the raił is proportional to the initial surface temperature 

of the wheel. This loss is equal to the frictional heating at a value of the initial temperature 

calculated from the energy balance 

€Pfriction + CJrail = O 
b* b* 

(50) 

where t:PJriction is a fraction of the frictional power dissipation 

PJriction = µv.N = iµpoab*v. (51) 

ftowing into the wheel. From ( 42) it follows that steady - state wheel temperature equals to 

(52) 

The value of this temperature depends on the thermal penetration coefficient of the raił only. 

Numerical experiments indicate that the surface temperature comes near a steady - state after 

30 - 120 min, depending on the operating conditions. Assuming the constant heat flow rate, 

we have 

000 1 R 
Bmean = 0.836(1 - €) V 32· (53) 
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The average contact temperature results from the current frictional heating and from the aver-

age wheel temperature in steady - state, i.e., 

(54) 

For€ = 0.5 the average contact temperature Bm,an.oo in steady - state is twice as high as the 

average contact temperature Bm,an for the first contact of the cold wheel. It means, that the 

body in continuous contact is an insulator. Thus all the frictional heating flows into the raił 

and doubles the contact temperature. 

The temperature field in the wheel, calculated with the initial value 000 , remains constant at 

this value. The average bulk temperature of the wheel does not change due to lack of the 

resulting heat flow. The oscilating surface temperature is due to the different distributions of 

the heat flow rates resulting from frictional heating and raił contact. Outside the contact zone, 

the gradient of temperature in perpedicular direction is disappearing and the temperature in the 

wheel will be constant again. 

5.4 Numerical Results 

Table 1. Summary of results for elliptical contact area (all temperatures in °C). 
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Low speed High speed 
Instantaneous contact temperature 
Maxima! Temperature 149,7 86,4 
Average contact temperature 81,7 47,1 
Steady - state temperature 
without convection 182,6 105,4 

173,7 100,3 
a= 10W/Km2 153,5 95,0 

159,0 95,1 
a= 30W/Km2 116,4 79,4 

140,3 87,2 
a= 100W/Km2 63 50,3 

113,4 72,5 
a= 1000W/Km2 9,1 8,8 

86,3 51,6 

Table 1 gives results of computations for two different vehicle speeds. Low speed means 

vehicle speed equal to 30 mis, while high speed 90 mis. Longitudinal sliding velocity is equal 

to 1 mis for low speed case and 3 mis for high speed case. In both cases norma! load is equal 

to 100 kN, and frictional power dissipation is equal to 30 Kw. Coefficient of friction is equal 

to 0,3 for low speed case and O, 1 for high speed case. 

The results show that the temperature decreases with increasing vehile speed. The steady 

state temperature depends mainly on heat conduction from wheel into raił. It is even !ower if 

convection is also taken inio account. If the heat transfer coefficient a is in the range of 50 

- 100 W/ Km 2, the heat flow into an ambient air is nearly equal to the heat conduction from 

from wheel into air. Thus 800 is only half as high as without convection. For a overestimated, 

the average wheel temperature woul be nearly equal to ambient temperature. 

Obtained maximum contact temperatures are not high enough to explain thermally induced 

phase transformations. This may only be the case with extreme conditione, i.e. blocking 

wheels where the sliding velocityis equal to the vehicle speed. On the other hand contact 
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temperatures increase thermal stresses. It has been shown, thermal stresses in railway wheels 

and rails can be in the same order of magnitude as the mechanical stresses. This may cause 

plastic deformations, residual stresses, work hardening at the surfaces of wheel and raił. Since 

the thermal penetration depth is small, thermally induced plastic deformations are restricted to 

a very thin surface layer. 

6 Modified Fastsim algorithm 

The problem (1) - (10) has been also solved in (21, 22] using the modified Fastsim algorithm 

combined with the finite difference method. The Fastsim algorith was used to calculate the 

frictional power density, i.e., a heat generated due to friction. The finite difference method was 

used to solve the heat governing equations. Let us describe details. 

6.1 Calculation of Nonnal Force 

The wheel is assumed to have conical rolling surfaces. There are two rails parallel to each 

other, so positioned vertically that rolling radii on conocal surfaces may be different. Since the 

rolling radii on concical surfaces of the wheel are different, the logitudinal creepages occur 

during rolling. Due to conical rolling surfaces of the wheel the spin creepage appear in both 

contact zones. The norma] and tangential forces in the contact zones depend on the wheel 

geometry, coefficients of friction as well as the vertical load Q of the wheel. The calculation 

of the norma! force N is based on Kal ker theory. The norma] and tangential components of the 

forces loading the wheel satisfy the system of three, nonlinear algebraic equations. To make 

the equations explicit tangential forces Tx, and Ty„ i = l, 2 by following linear functions of 
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creepages 

where Ex, and Ey, are coefficients, e; is an equivalent radius of the contact zone. Longitudinal 

creepages vx, , vy„ and spin creepage 4'; are defined by 

r ; 1 + 0 
v = -a---

y; r cos('y;) ' 

1+0 
4'; = -- sin('Y;), 

r 

r; are wheel radii, r = 0.5(r1 + r 2), a denotes yaw angle, "li denote the angle between hori-

zontal and tangential lines, 0 is a small unknown number. Using the normalized creep forces 

f x, and fy, as well as frictions coefficients µ; the tangential forces are equal to 

Comparing the above expressions for tangential forces the unknown coefficients can be deter-

mined. Assuming that the inertia of the wheel is neglected, and transforming the system of 

equilibrium equations, the norma! force N = { N;} is calculated from the system 

AN=Q, (55) 

where A = { a;i Hi=I denotes the matrix of coefficients dependent on Ex, , Ey, and creepages. 

For a calculated norma! force N, the number 0 is calculated. Fixed point method is applied to 

solve the equation (55). 
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6.2 Calculation of Frictional Power Density 

Since the Kalker table contains creep forces it can not be used for the calculation of frictional 

power density Pd. This density can be calculated using the modified Fastsim algorithm. Con-

sider a wheel rolling in a time interval [O, T], T > O, given . A wheel is assumed to be a 

discretized Winkler foundation. The modified Fastsim algorithm calculating frictional power 

density Pd reads : having calculated the tangential traction at time t' , the tangential traction Ph 

at time t > t' is calculated as 

t - t' 
Ph =p' - --w 

L 

Nextthe power density P - D is calculated according to formulae 

if I Pi. l:S µp, then p = p„ and Pd = O, s = O, 

Ph 3Nµ 2 pd 
else p = -

1
-

1
µp„ Pd= p •w+ V(-2 2b) Lx , s = --

~ ~ p 

where Lis an elasticity parameter, µ is a cofficient of friction, V constant rolling velocity, and 

w denotes rigid slip coressponding the unit velocity of rolling equal to 

Moreover 

p' = p(t') tangential traction at the instant of time t' < t 

p = p( t) tangential traction at the instant of time t , 

Norma! pressure p, is equal to 

3N ✓ x 2 y2 

P, = 21rabl - a2 - b2' 
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where N denotes a norma! force and a, b are semi - axes of contact ellipse. s is a slip velocity 

equal to 

s = w+u. 

6.3 Calculation of Temperature 

For the sake of simplicity, a raił is considered as a parallelepiped occupying domain 

!1 = [O a] x [O b] x [O c), 

where a, b, c > O, are given constants. This parallelpiped is divided into the small cells having 

dimensions dx, dy and dz . The heat source is assumed to move over the contact area C C R2 

lying on the outer surface of the raił z = O with velocity V . The contact area Cis assumed 

to be elliptical. By 0 = 0(x, y, z, t), (x, y, z) E !1, t E [O, T], we denote a temperature of the 

wheel. 

The transient heat conduction in the frame of three dimensional model of the raił is described 

by the Fourier partia! differentia! equation, i.e., 

:: = a 6. 0 in !1 x (O, T), (56) 

where a = ...L denotes a temperature compensation coefficient, A is a conductivity coefficient, 
CpP 

c,, is a characteristic heat and p denotes a mass density. The following boundary conditions are 

prescribed 

88 = O on y = O, b 
f)y ' 

0 = O on x = O, x = a, x = b, z = c. 
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On the outer surface of the raił z = O the following boundary condition is assumed 

88 =Pd on z=0and(x,y)EC, 
8z 

80 
Bz = K(0- 09 ) on z= O and(x, y) (/:. C 

Moreover the initial condition have the form 

0(x, y, z, 0) = 0 in x E 0, 

80 
Bn (x , y, z, O) = O on z= O. 

(59) 

(60) 

(61) 

The computations have been performed using the finite difference method with the explicit 

Euler discretization. The discrete raił model has been build in the Excel spreadsheet. Each 

cell of a spreadsheet is equivalent each cell of a raił. The dimensions of a cell are equal to 

d = dx = dy = dz. To calculate the value of temperature 0 in time t in each cell, the values 

of temperatures in six adjacent cells in time t - 1 are used. The difference scheme stability 

condition has the form 

6.4 Numerical Results 

The computations has been performed for p = 7680kg/m3 , .X = 54W/(mK), c;, = 460 

J /(kgK), dx =dy= dz = O, 00lm. Contact heat source is assumed to move with the velocity 

V = Im/ s. Fig. 4 and Fig. 5 display the temperature distribution for the circular contact 

area and the constant density heat source q. For q = lW/mm2 the temperature increase is 
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5, 5 K. For the density heat source ą = 10W/mm2 the temperature increase is 55 K. The 

temperature within the contact patch sharply increases. After the particie leave the contact 

zone, the temperature falls. The temperature also rapidly decreases inside the raił to 1,5K and 

15,5K respectively. 

Fig. 6 and Fig. 7 show the temperature distribution for the elliptic contact area and the constant 

density heat sources: ą = 1 W/mm2 and ą = 10W/mm2. Although the maxima! temperatures 

are similar in this case the thennal trace on the surface of the raił is much bigger than in the 

circular contact area. 

[22) reports also the temperature distribution obtained for irregular density heat source with 

two maxi mal values Qmax = 2, 4W/mm2 moving with velocity V = lm/ s. The reported 

maxima! temperature increase in the contact zone is equal to 2,4 K. The thennal trace on the 

surface of the raił is much wider and much longer than in previous cases. 

a) M,rllllKI i ii}J!i}fil 
,----,---,----.... """!i!!!!!!-1:=~0.6 
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X dShlql 
o ll)hlql 
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Figure 4: Temperature tangential distribution. Circular contact. ą = 1. 
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Figure 5: Temperature tangential distribution. Circular contact. q = 10. 
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Figure 6: Temperature tangential distribution. Elliptic contact. q = l. 

7 Conclusions 

The obtained results indicate that mechanical factors give rise to thermal effects which should 

be observable as the surface temperature field. The results obtained due to the quasistatic 

method and the Fastsim method are very similar. The increase of the temperature and its 

distribution have the same character and magnitutde. These results differs significantly from 

the results reported in [10], where much larger temperature increase is reported. Moreover as 

follows from Table 1, the higher the speed, the lower the temperature increase. The dependence 
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Figure 7: Temperature tangential distribution. Elliptic contact. ą = 1. Finał time. 

of the contact temperature on sliding velocity and on the friction coefficient dependent on 

sliding velocity is subject of further research. 
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