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ABSTRACT 

In recent years two new concepts have been introduced and developed as a tool for decision 

making in a class of uncertain systems (in particular, control systerns) described by a relational 

knowledge representation: uncertain variables characterized by an expert and a learning process 

consisting in step by step knowledge validation and updating. The purpose of this paper is to 

show how these two approaches may be combined and used for decision making in a class of 

complex systems with a distributed knowledge. 

In the first part of the paper the decision problem based on the uncertain variables and the 

learning process are shortly described. Then the combination ofthese approaches in one learning 

system in which the expert's knowledge is modified according to current results of the learning is 

described and the algorithm of the decision making in the learning system is presented. In the 
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second part it is shown how to apply these concepts in two cases of complex systems: two-level 

system with the distributed knowledge and a complex of parallel operations. A simple example 

and a result of simulations illustrate the presented approach. 
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1. In troduction 

The paper is concerned with a class of uncertain systems described by a set of relations between 

the variables characterizing the decisions and their effects (a relational knowledge 

representation). There exists a great variety of definitions and format descriptions of uncertainties 

and uncertain systems (see e.g. [I, 2, 31). In recent years two new concepts have been introduced 

and developed for the decision making in uncertain relational systems with unknown parameters 

(4, 5, 6] : 

1. Uncertain variables described by certainty distributions given by an expert. 

2. Learning processes consisting in step by step knowledge validation and updating. 

It has been shown how these two approaches may be applied in a class of complex knowledge 

systerns (7, 8, 9]. The purpose ofthis paper is to present a new idea based on the combination of 

the learning process and the uncertain variables for the same class of systems. In the system 

under consideration, at each step of the learning process an expert's knowledge is modified 

according to the current result of the learning. 

Short descriptions of the uncertain variables and the learning process without the additional 
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expert's knowledge are presented in Secs 2 and 3. The details may be found in (5, 6]. The concept 

of the learning system based on the current expert's knowledge is described in Sections 4 and 5. 

Sections 6 and 7 present the application of this concept in two cases of a complex uncertain 

system with the distributed knowledge: a two-level system and a group of parallel processors (7, 

8, l OJ. In the second case, the application of the uncertain varia bies may be compared with the 

application of probabilistic descriptions of allocation and scheduling problems in the systems 

with uncertain execution times (see e.g. (11]). 

2. Uncertain Variables 

In the defin ition of the uncertain variable x we consider two soft properties ( i. e. such properties 

q,(x) that for the fixed x the logic value v[q,(x)] e [0,1] ): "x;;; x" which means "x is approximately 

equal to x" or "x is the approximate value of x ", and "x e Dx" which means "x approximately 

belongs to the set Dx" or "the approximate value of x belongs to Dx ". The uncertain variable x 

is defined by a set of values X (real number vector space), the function h(x) = v(x;;; x) (i. e. the 

certainty index that x;;; x, given by an expert) and the following definitions for Dx,D1,D2 \;X: 

v(xe Dx) = max h(x), 
xeDx 

The function h(x) is called a certainty distribution. 
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Let us consider a static plant with the input vector u e U and the output vector y e Y , described 

by a relation R(u,y;x) c U x Y where the vector of unknown parameters x e X is assumed to be a 

value of an uncertain variable described by the certainty distribution h(x) given by an expert. If 

the relation R is not a function then the value u determines a set of possible outputs 

Dy(u;x) = {y e Y: (u ,y) e R(u,y;x)}. 

For the requirement y e Dy c Y given by a user, we can formulate the following decision 

problem: For the given R(u,y;x), h(x) and Dy one should find the decision u• maximizing the 

certainty index that the set of possible outputs approxirnately belongs to Dy (i.e. belongs to Dy 

for an approxirnate value of x). Then 

u•= argmaxv[Dy(u;x) i;; Dyl= arg max max h(x) (1) 
ueU ueU xeD,:(u) 

where Dx(u)={xeX:Dy(u;x),;;;Dy}. Itiseasytoseethat u' maximizes v[ueDu(x)] where Du(x) 

is a set of all u such that the implication u e Du (x) • y e Dy is satisfied. 

3. Learning Process 

Assume now that the parameter x in the relation R has the value x = a and a is unknown. Then, 

for the fixed value u it is not known if u is a correct decision, i.e. if u e D,, (a) and consequently 

y e Dy. Our problem may be considered as a classification problem with two classes. The point u 

should be classified to class}= I if u e Du(a) and to class}= 2 if u i! D,,(a). Assume that we can 

use the learning sequence (u1,J1), (u 2 ,h), ... , (u.,J.)~S. where }; e {I, 2} are the results of the 
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correct classification given by an external trainer. 

Let us denote by ii1 the subsequence for which }; =I, i.e. ii1 e Du (a) and by u1 the subsequence 

for which J; = 2, and introduce the following sets in X: 

D,(n)={xeX·ii1 eD.(x) forevery ii; in Sn}, (2) 

D,(n)={xeX:u, eU-D.(x) for every li; in Sn}· (3) 

The set 

- ' A 
D,(n) nD,(n)=!J.,(n) 

may be proposed as the estimation of a . The determination of Ll,(n) may be presented in the 

form of the following recursive algorithm: 

1. Knowledge validation for "n. Prove if 

I\ 

If yes then D,(n)=D,(n-l). If not then one should determine the new D,(n), i.e. update the 

knowledge. 

2. Knowledge updating for iin 

D,(n) = {re D,(n-l): une D.(x)). 

Put D,(n) = D,(n-1). 
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3. Knowledge validation for "•. Prove if 

I\ _ [un eU-Du(x)] . 
.reD_x-<n-1) 

If yes then Dx(n)=l\(n-1). If not then one should determine the new D,(n), 1.e. update the 

knowledge. 

4. Knowledge updating for u" 

. . 
D,(n) ={x eDx(n-1): Une U -Du(x)). 

Put D,(n) = Dx(n-1) and /',.x(n) =D,(n)r.D,(n). 

The successive estimation of a may be performed in a closed-loop learning system where u; is 

the sequence of the decisions. The decision making algorithm is as follows: 

1. Put un at the input of the plant and introduce Yn. 

2. Determine 6.,(n) using the estimation algorithm with knowledge validation and updating. 

3. Choose randomly Xn from /',.,(n), put Xn into Du(x) and choose randomly un+l from Du(x"). 

4. Learning System Based on Current Expert's Knowledge 

At the n-th step, the result of the learning process in the form of a set 6.x(n) may be used to 

present an expert's knowledge in the form of a certainty distribution h.(x) such that h.(x) =0 for 

every x i" t,.x(n). Thus, the expert formulates his/ her current knowledge, using his/ her 

experience and the current result of the learning process based on the knowledge of the external 

trainer. In particular, h.(x)=h(x,bn), i.e. the form of the certainty distribution is fixed, but the 
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parameter bn (in generał, bn is a vector of parameters) is currently adjusted. For example, if in 

one-dimensional case l'>..(n) = [xrnin,n• xmax,n) and h.(x) = h(x, x:,d.) has a triangular form presented 

in Fig. 1, then bn = (x:,dn) and 

d = Xmax.n - Xmin,n 
n 2 (4) 

h,,(x) 

X 

Figure 1. Example of certainty distribution. 

For h.(x) the next decision "•+I rnay be determined in the way presented in Sec. 2, i.e. 

where 

un+I =argmaxv"(u) 

vn(u)=v[ueDu(x)J=v[xeD,(u)J= max hn(x), (5) 
xeD;r:(u) 

and D,(u) = {x e X: u e Du (x)}. In generał, as a result of the rnaximization of vn(u) one may obtain 

a set of decisions Du,n+I · For h(x,b.) we obtain the fixed form of the function v(u,bn): 

vn(u) = max h(x,bn)~v(u,bn) 
xeD,(u) 
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and consequently, the fixed form of the finał result, i.e. one decision un+I = u(b.) or the set of 

decisions Du,n+I = Du (bn) . 

The błock scheme of the learning decision making system under consideration is presented in 

Fig. 2 where G is a generator of random varia bies for the random choosing of un+I from Du,n+I · 

The blocks in the figure illustrate parts of the computer decision system or parts of the program 

which may be used for the computer simulations. 

5. Example 

Knowledge 
representation 

R(u,v,.x) 

Figure 2. Błock scheme of the knowledge-based decision system. 

Consider a decision plant with the input vector 'ii, one-dimensional output y and one-

dimensional unknown parameter x, described by the relation 
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The components u<IJ of u may denote some features of a raw materia) in a manufacturing 

process, which may be chosen as decisions, and y may denote a cost of the process. For the 

requirement y ,,;ji2 we obtain the set Du(x) described by inequality 

where u<I) = ;;-<1) • {ji)-1 . In this case, according to (2) and (3) 

Dx(n) = [xmin,n,oo), 

where 

The estimation algorithm with the knowledge validation and updating is then as follows: 

1. Put "n at the input and intro duce in. 

2. For in =I (un =iin), prove if 

uJu„ S" Xmin.n-1 · 

If yes then xmin,n = xmin,n-I . If not, 

Put Xmax.n = Xmax,n-1 · 

3. For in = 2 (un = un), prove if 

uJu,, ~ Xmax,n-l. 
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Ifyes then Xmax.n =x.nax.n-1 · Ifnot, Xmax.n =uJun. 

Let us assume that hn(x) has a triangular form presented in Fig. 1 where x: and dn are 

determined by (4). Using (5) it is easy to obtain the certainty index that u "approximately" 

belongs to the set Du (x) : 

where a=uTu. Then 

. 
a5.xn 

x: 5. a 5. x: +dn 

a~x:+dn 

and for every un+l from this set vn(un+tl =I. Consequently, the decision making algorithm in the 

learning system is the following: 

1. Put un at the input and introduce Jn. 

2. Determine xmin,n and Xmax.n using the estimation algorithm with the knowledge validation and 

updating. 

3. Choose randomly un+l from the set (6). 

Assume that in u Tu< x x =a, i. e. a is the unknown value of x. From (6) it is easy to note that 

x: may be considered as an estimation of a. Under some conditions, in the same way as in [6), it 

may be proved that x: converges to a with probability 1. Figure 3 presents the result of 

simulations for the following data: a= 5, a 0 = uJ u0 = 20, an+l = uJ+iun+l is chosen randomly from 

the interval [O,x:] with the rectangular probability density. 

• 



6. Two-Level System 
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Figure 3. Results ofsimulation. 

Let us consider a distributed system with a structure presented in Fig. 4 where u i, xi, y are real 

number vectors. The upper and tower level subsysterns are described by relations R(w,y ;c), 

R(u1,y1;x1), j = l, ... ,k where w= (w1, ... , wk) . This set of relations forrns a distributed knowledge 

representation. The unknown parameters c and x1 are assumed to be values of uncertain 

variables described by the certainty distributions hc(c) and h<J(x1), respectively. The decision 

problem consists in finding the decisions u which maximize the certainty index that the set of all 

possible y approximately belongs to the set Dy given by a user. The problem may be 

decomposed into two levels (6, 7, 8). On the upper level one should find w maximizing the 

certainty index that the set of possible y approximately belongs to Dy, and on the tower level 

one should find u1 U= l,k) maximizing the certainty index that the set of possible w1 
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approximately belongs to the set obtained as a result of the upper level. Then to each level one 

can apply the approach presented in Sec. 4. 

In [7] it has been shown how the learning process may be decomposed into two levels. At the n­

th step we obtain Ll.c(n) as the estimation of c on the upper level and the sets Ll.x1 (n) as the 

estimations of x1 on the !ower level. Consequently, we can determine wn+I for Ll.c(n) and uJ,n+I 

for Ll.xJ(n) in the same way as un for Ll.x(n) in Sec. 4. 

Figure 4. Two-level system 

7. Task Allocation in the Complex of Parallel Operations 

The uncertain variables may be applied to allocation problems consisting in the proper task or 

resource distribution in a complex of operations described by a relational knowledge 

representation with unknown parameters [6]. The parts of the complex may denote manufacturing 

operations [ I OJ, computational operations in a computer system [7] or operations in a project to 

be managed. Let us consider a complex of k parali el operations described by a set of inequalities 

T;~rp;(U;,X;), i=l,2, ... ,k (7) 
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where 1'; is the execution time of the i-th operation, u1 is the size of a task in the problem of task 

allocation or the amount of a resource in the problem of resource allocation, an unknown 

parameter x1 eR1 is a value of an uncertain varia ble x1 described by a certainty distribution \(x;) 

given by an expert, and x1, ... , xk are independent varia bies. The complex may be considered as a 

decision plant described in Sec. 2 where y is the execution time of the whole complex 

T =max{Ji, ... , Tk}, x=(x1, ... , xk), u =(u1, ... , uk)eU. The set U cRk is determined by the constraints: 

u1 ;,, O for each i and u1 + ... + uk = U where U is the total size of the task or the total amount of the 

resource to be distributed among the operations (Fig. 5). 

Plant 

u 
Allocation o y=T 

Figure 5. Complex ofparallel operations as a decision plant. 

According to the generał formulation of the decision problem presented in Sec. 2, the allocation 

problem may be formulated as an optimization problem consisting in finding the optima! 

allocation u• that maximizes the certainty index of the soft property: "the set ofpossible values T 

approximately belongs to [O, a]" (i.e. belongs to [O, a) for an approximate value of x). Optimal 

allocation problem: For the given rp1 , h1 (ie l,k), U and a find 

where 

u•= arg ma~v(u) 
ueU 

v(u) =v{0 (u;x) i;; [O,a]}=v(T(u,x);; a). 
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The soft property "Dr(u;x)i;;[O,a]" is denoted here by "T(u,x)s;a", and Dr(u;x) denotes the set 

of possible values T for the fixed u, determined by the inequality 

According to (7) 

Then 

where 

Finally 

and 

T S maxq,;(u;,x;). 
I 

u•= arg max min v;(u1) 
ue'ii i 

(8) 

~ ~ 
v1(u1) =v[T;(u1,x1) s a)]=v[q,;(u1,x1) S a)] 

=v[x1 eD1(u1)], 

D;(u1) = {x1 e R1 : q,1(u1,x1) S a) . 

v1(u 1) = max h1(x1) 
x;eD;(u;) 

u• =argmaxmin max h;(x;). 
ueiJ i x;eD;(u;) 

(9) 

In [7] it has been shown that the learning algorithm described in Sec.3 may be executed 

separately for the executors I, 2, ... , k . As a result one obtains the sets óxJ (n) as the estimations of 

x1 in the j-th operation. Consequently, one can determine u J,n+I for óxJ(n) in the same way as 
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8. Conclusions 

The uncertain variables have been proved to be a convenient tool for the analysis and design of 

the distributed knowledge systems under consideration. For the class of distributed systems 

considered in the paper, at each step of the learning process it is possible to use the current 

expert's knowledge based on the uncertain variables. The computer system illustrated in Fig. 2 

has been implemented and used for simulations, for two cases of the distributed plant described 

in Sections 6 and 7. The simulations showed that the using of the expert's knowledge during the 

learning process may improve the quality of the decisions. The presented approach may be 

applied to computer supported manufacturing systems with the distributed knowledge [IO], to 

control of a transportation system based on uncertain variables description (12, 13] and to 

systerns with uncertain and random parameters (14]. 
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