





APPLICATION OF UNCERTAIN VARIABLES AND LEARNING PROCESS TO

DECISION MAKING IN A CLASS OF COMPLEX SYSTEMS

Z. Bubnicki'?

Dinstitute of Control and Systems Engineering, Wroclaw University of Technology
Wyb. Wyspianskiego 27, 50-370 Wroclaw, POLAND,

e-mail: zdzislaw. bubnicki@pwr.wroc.pl tel: +48 71 320 33 28, fax: +48 71 320 38 84

ISystems Research Institute of Polish Academy of Sciences, Laboratory of Knowledge Systems

and Artificial Intelligence, Podwale St. 75, 50-449 Wroclaw, POLAND

ABSTRACT

In recent years two new concepts have been introduced and developed as a tool for decision
making in a class of uncertain systems (in particular, control systems) described by a relational
knowledge representation: uncertain variables characterized by an expert and a learning process
consisting in step by step knowledge validation and updating. The purpose of this paper is to
show how these two approaches may be combined and used for decision making in a class of

complex systems with a distributed knowledge.

In the first part of the paper the decision problem based on the uncertain variables and the
learning process are shortly described. Then the combination of these approaches in one learning
system in which the expert’s knowledge is modified according to current results of the learning is

described and the algorithm of the decision making in the learning system is presented. In the



second part it is shown how to apply these concepts in two cases of complex systems: two-level
system with the distributed knowledge and a complex of parallel operations. A simple example

and a result of simulations illustrate the presented approach.
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1. Introduction

The paper is concerned with a class of uncertain systems described by a set of relations between
the wvariables characterizing the decisions and their effects (a relational knowledge
representation). There exists a great variety of definitions and formal descriptions of uncertainties
and uncertain systems (see e.g. {1, 2, 3]). In recent years two new concepts have been introduced
and developed for the decision making in uncertain relational systems with unknown parameters
[4, 5, 6]:

1. Uncertain variables described by certainty distributions given by an expert.

2. Learning processes consisting in step by step knowledge validation and updating.

It has been shown how these two approaches may be applied in a class of complex knowledge
systems [7, 8, 9]. The purpose of this paper is to present a new idea based on the combination of
the learning process and the uncertain variables for the same class of systems. In the system
under consideration, at each step of the learning process an expert's knowledge is modified

according to the current result of the learning.

Short descriptions of the uncertain variables and the learning process without the additional



expert's knowledge are presented in Secs 2 and 3. The details may be found in [$, 6]. The concept
of the Jearning system based on the current expert's knowledge is described in Sections 4 and 5.
Sections 6 and 7 present the application of this concept in two cases of a complex uncertain
system with the distributed knowledge: a two-level system and a group of parallel processors [7,
8, 10]. In the second case, the application of the uncertain variables may be compared with the
application of probabilistic descriptions of allocation and scheduling problems in the systems

with uncertain execution times (see e.g. {11]).

2. Uncertain Variables

In the definition of the uncertain variable x we consider two soft properties (i.e. such properties
@(x) that for the fixed x the logic value v{p(x)]€{0,1]): “¥ =x” which means “x is approximately
equal to x” or “x Is the approximate value of x”, and “¥ € D,” which means “x approximately
belongs to the set D,” or “the approximate value of x belongs to D, . The uncertain variable x
is defined by a set of values X (real number vector space), the function h(x)=v(x==x) (i.e. the

certainty index that x = x, given by an expert) and the following definitions for D, D, D, c X :

vz eD,)= mmax h(x),
vEgD)=1-wWxED,),
V(X € Dy v x € Dy) = max{y(¥ € D}),v(x € Dy)},
v(x € Dy AX € Dy) =min{v(x € Dy), W(X € D;)}.

The function 4(x) is called a certainty distribution.



Let us consider a static plant with the input vector v e U/ and the output vector ye¥, described
by a relation R(u,y;x)cUx¥ where the vector of unknown parameters xe.¥ is assumed to be a
value of an uncertain variable described by the certainty distribution s(x) given by an expert. If
the relation R is not a function then the value u determines a set of possible outputs
D,(ux)={yeY:(u,y) € R(u,y;x)}.

For the requirement yeD, cY given by a user, we can formulate the following decision
problem: For the given R(u,y;x), #(x) and D, one should find the decision #" maximizing the
certainty index that the set of possible outputs approximately belongs to D, (i.e. belongs to D,

for an approximate value of ¥). Then

» -~
u =argmaxv{D (;x)c D, ]=arg max max h(x 1
BmaxvIDy (%) & Dy)=arg max max h(x) )

where D,()={xeX:D,(;x)c D,}. It is easy to see that v’ maximizes v[u € D, (¥)] where D, (x)

is a set of all u such that the implication u € D, (x) > y € D, is satisfied.

3. Leaming Process

Assume now that the parameter x in the relation R has the value x =4 and o is unknown. Then,
for the fixed value « it is not known if # is a correct decision, ie. if »eD,(a) and consequently

yeD,. Our problem may be considered as a classification problem with two classes. The point u

should be classified to class j =1 if we D, (e) and to class j =2 if ug D,(a). Assume that we can

use the learning sequence (uy, /), (2. /2)s - (u,,,j,,)gS,, where j; €{1,2} are the results of the



correct classification given by an external trainer.
Let us denote by u; the subsequence for which j; =1, i.e. u; € D,(a) and by u, the subsequence
for which j; =2, and introduce the following sets in X:
D,(m={xeX i, eD,(x) forevery 7 in S,}, 2)
D (i) ={xeX i, eU-D, () forevery 4 inS,}. (3)
The set
D) A De(=0,,(n)

may be proposed as the estimation of a. The determination of A (n) may be presented in the

form of the following recursive algorithm:

If j, =1 (u,=u,).

1. Knowledge validation for «,. Prove if

/\ u,eD,(x) .

xeDy (n-1)

If yes then 5,(n)=5,(n—1). If not then one should determine the new D,(n), ie. update the

knowledge.

2. Knowledge updating for u,
Bx(n)=(xeﬁx(n—-l):u,, €D, (x)}.
Put D,(my=D,(n-1).

If j,=2 (u,=u,).



3. Knowledge validation for a,. Prove if

/\ lu,eU~-D,)].

xsﬁx(n-l)

If yes then Bx(n)=131(n—l). If not then one should determine the new ﬁ,(n), i.e. update the

knowledge.

4. Knowledge updating for =z,
Dy(my={xeD,(n~1):u, eU—-D,(x)}.

Put D,(n)=D,(n~1) and A, (n)=D,(n)n D,(n).

The successive estimation of @ may be performed in a closed-loop learning system where u; is
the sequence of the decisions. The decision making algorithm is as follows:

1. Put u, at the input of the plant and introduce y,, .

2. Determine A,(n) using the estimation algorithm with knowledge validation and updating.

3. Choose randomly x, from A,(n), put x, into D,(x) and choose randomly u,,; from D,(x,).

4. Learning System Based on Current Expert’s Knowledge

At the n-th step, the result of the learning process in the form of a set A, (n) may be used to
present an expert's knowledge in the form of a certainty distribution 4,(x) such that #,(x)=0 for
every xeA,(n). Thus, the expert formulates his/her current knowledge, using his/ her
experience and the current result of the learning process based on the knowledge of the external

trainer, In particular, h,(x)=h(x,b,), ie. the form of the certainty distribution is fixed, but the



parameter b, (in general, b, is a vector of parameters) is currently adjusted. For example, if in
one-dimensional case A,(n) = [Xminn, Xmax,n) a0d A, (x) = h(x,x,,d,) has a triangular form presented

in Fig. 1, then b, = (x),,d,) and

x:, - Xmin,n + Xmax,n , d,= Xmax,n ~ *min,n ) (4)
2 2
T ()
1 [
x:, -d, x:, x:, +d, *

Figure 1. Example of certainty distribution.

For h,(x) the next decision u,,; may be determined in the way presented in Sec. 2, i.e.
Uyyq =aIg max v, u)

where

v, () =viu € D, ()] = v[¥ € D, (w)]= nga)z )Iln(x), (5)

and D, (u)={reX :ueD,(x)}. In general, as a result of the maximization of v,(x) one may obtain

a set of decisions D, ,.1. For h(x,b,) we obtain the fixed form of the function v(x,5,):

vp(u) = xenl;z:)((u) h(x,b,) 4 v(u,b,)



and consequently, the fixed form of the final result, ie. one decision u,,, =u(b,) or the set of
decisions D, 41 =D, (5,) .

The block scheme of the learning decision making system under consideration is presented in
Fig. 2 where G is a generator of random variables for the random choosing of u,,; from D, ,,;.

The blocks in the figure illustrate parts of the computer decision system or parts of the program

which may be used for the computer simulations.
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Figure 2. Block scheme of the knowledge-based decision system.

5. Example

Consider a decision plant with the input vector u, one-dimensional output » and one-

dimensional unknown parameter x, described by the relation



yS(;Tﬁ)x"l, x>0.

The components #) of v may denote some features of a raw material in a manufacturing

process, which may be chosen as decisions, and y may denote a cost of the process. For the
requirement y < 3% we obtain the set D,(x) described by inequality
uTusx
where v® =3 .57, In this case, according to (2) and (3)
D) =[min )5 Delm)=[0, %a )

A 07 = [xmin n Xmax,n)

where
o

= aTy = mi
Ximinn = MAXU; Uj, Xmayn = MiDU; ;.
i i

The estimation algorithm with the knowledge validation and updating is then as follows:
1. Put u,, at the input and introduce j,.
2. For j,=1 (u,=u,), prove if

T
Uty < Xmin, n-1 -

If yes then x4 = X p1. I 008, xi =ulu,.
Put Xmax,n = Xmaxn~1 -

3. For j,=2 (u, =u,), prove if

T
Uplly 2 Xeax n] -



If yes then Xpay s = Xmax ot~ JENO Xpur , =Untt,.
Put Xminn = ¥min,n-1> Bx (M) =X ps¥maxn) -
Let us assume that h,(x) has a triangular form presented in Fig. 1 where x, and d, are

determined by (4). Using (5) it is easy to obtain the certainty index that » "approximately"

belongs to the set D, (x):

1 for as x::,
vy(@)={~dd, —x)+1 for x,<a<x,+d,
0 for azx,+d,
where a =u"u. Then
T .
Dy pa= {upe €U uppyuny S5} (6)

and for every u,,; from this set v,(u,,;)=1. Consequently, the decision making algorithm in the

learning system is the following:

1. Put u, at the input and introduce j,.

2. Determine X, ,» and xp,,, using the estimation algorithm with the knowledge validation and
updating,

3. Choose randomly u,,; from the set (6).

Assumethatin  u"w<x x=a,ie a is the unknown value of x. From (6) it is easy to note that
x, may be considered as an estimation of a. Under some conditions, in the same way as in [6], it
may be proved that x, converges to a with probability 1. Figure 3 presents the result of
simulations for the following data: a=5, ay =ujug =20, @, =ulyu,,, is chosen randomly from

the interval [0,x,] with the rectangular probability density.







































