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Abstract: The paper is concerned with the existence of weak
solutions to the Cahn-Hilliard-Gurtin system coupled with non-
stationary elasticity. The system describes phase separation pro-
cess in elastically stressed material. It generalizes the Cahn-
Hilliard equation by admitting a more general structure and by
coupling diffusive and elastic effects. The system is studied with
the help of a singularly perturbed problem which has the form
of a well-known phase field model coupled with elasticity. The
established existence results are restricted to the homogeneous
problem with gradient energy tensor and elasticity tensor inde-
pendent of the order parameter.
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1 Introduction

In this paper we study the existence of solutions to the Cahn-Hilliard system
coupled with elasticity which has been proposed by Gurtin (1996). Such
system generalizes the classical Cahn-Hilliard equation by admittiug a more
general structure and at the same time accounts for a deformation of the



material. The system describes phase separation process in a binary de-
formable alloy quenched below a certain critical temperature. From the ma-
terials science literature it is known that elastic effects strongly influence the
microstructure evolution in phase separation process, especially in its later
stages (coarsening), see reviews by Fratzl, Penrose and Lebowitz (1989),
Fried and Gurtin (1999), and numerical simulations in Garcke, Rumpf and
Weikard (2001), Leo, Lowengrub and Jou (1998), Dreyer and Miiller (2001).
The important factors are the elastic anisotropy and heterogeneity as well
as the impact of external body forces. In particular, the elastic fields can
be used to contro! and stabilize the coarsening process and thereby influence
the material properties, see Leo, Lowengrub and Jou (1998).

The Cahn-Hilliard models accounting for elastic effects have been firstly
derived on the basis of variational arguments by Larché and Cahn (1982,
1985, 1992) and Onuki (1989). Having in mind several objections to vari-
ational derivations Gurtin (1996) has proposed a thermodynamical theory
which relies on the fundamental balance laws in conjunction with an auxil-
iary balance law for the microforces and a mechanical version of the second
law. Gurtin’s theory generalizes the Cahn-Hilliard equation to the following
system

(1.1) xt— V- (MVw+hx) =0,

w—g-Vw=-V-(T'Vx)+¥(x) + Bx:

defined on a spatial domain Q@ C R™ n € IN, where x is the scalar order
parameter, w is the chemical potential, x; = 9x/8t, ¥(x) is a double-well
potential whose wells characterize the phases of the material, M is a positive
definite mobility matrix (special case M = mI, m > 0 constant), I is a
positive definite gradient matrix (special case I = I, v > 0 constant),
B > 0 is the viscosity coefficient, h and g are given vectors. The quantities
M, B,h,g can in general depend on x, Vx, x:, w, Vw, and are subjected to
the condition

X[Ig\./z{ E]XZO vV X:=(Vw,x) € R" xR.
Equation (1.1); represents the mass balance and (1.1), the microforce
balance. The system (1.1) differs from the Cahn-Hilliard equation by the

presence of the coupling terms with vectors h and g. The physical interpre-
tation of these terms in the framework of Gurtin’s theory is given in Section
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2. Incase h = 0, g = 0 and § = 0 the system reduces to the classical
Cahn-Hilliard equation while in case h = 0, g = 0 and 4 > 0 to the viscous
Cahn-Hilliard equation. Such equations have been extensively studied in the
mathematical literature (for recent survey see e.g. Miranville (2003)).

The elastic effects are taken into account by coupling (1.1) with the linear
momentum balance (see Gurtin (1996))

(1.2) e ~ V- (AQ)(e(w) — () = b

where u is the displacement vector, e(u) is the linearized strain tensor, &(x)
is the eigenstrain, and A(x) is the elasticity tensor. Since the mechanical
equilibrium is usually attained on a much faster time scale than diffusion a
quasi-stationary approximation of (1.2), i.e., neglecting the interial term uy
is often applied.

The equations (1.1), (1.2) constitute the Cahn-Hilliard-Gurtin system
coupled with elasticity which is the subject of our study. We mention that in
Pawlow (2004) it has been shown that it is possible to reconstruct Gurtin’s
theory by using the approach based on the fundamental balance laws and the
entropy inequality with multipliers. It turns out that the differential equation
for the multiplier of the mass balance can be identified with the microforce
balance of Gurtin’s theory. In addition the approach with multipliers allows
easily to incorporate heat conduction into the model.

In order to place our study in the present theory of Cahn-Hilliard systems
coupled with elasticity we review first the known results.

Recently Dreyer and Miiller (2000, 2001) have extensively studied the
modeling aspects of binary tin-lead solders. They proposed a specialized
system of equation which falls into Gurtin’s frame, and have examined it by
numerical computations for experimental data.

In Garcke (2000, 2003a) the Cahn-Hilliard system with a multicomponent
order parameter coupled with the quasi-stationary elasticity has been anal-
ysed mathematically. The existence result has been obtained in a general
case of heterogeneous elasticity, i.e., the order parameter-dependent elastic-
ity tensor A = A(x). The order parameter-dependence of the elasticity
tensor introduces the nonlinear coupling between the equations and makes
the analysis much more complicated. We underline that the existence re-
sult in Garcke (2000, 2003a) is based on the monotonicity argument for the
quasi-stationary elasticity equation. Such argument does not extend to the
nonstationary case.

An even more difficult, but physically more adequate, multicomponent
Cahn-Hilliard system with logarithmic free energy coupled with elasticity
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has been recently studied in Garcke (2003b). Also in this case, due to the
quasi-stationary elasticity equation, a higher integrability result for the strain
has been established what allowed to consider order parameter dependent
elasticity tensor.

In Bonetti, Colli, Dreyer, Giliardi, Schimperna and Sprekels (2002) the
physical model proposed by Dreyer and Miiller (2000, 2001) has been stud-
ied. For system with heterogeneous, quasi-stationary elasticity the existence
and uniqueness results have been obtained in case of one-space dimension
(1-D) and for homogeneous elasticity in case of 2-D. In contrast to the pre-
vious works the framework of Bonetti, Colli, Dreyer, Giliardi, Schimperna
and Sprekels (2002) refers to a nondifferentiable free energy involving the
indicator function of a closed interval within which the order parameter is
forced to attain its values. Besides, the order parameter-dependence of the
gradient coefficient v = y(x} is there taken into account, with certain struc-
tural simplifications suggested in Dreyer and Miiller (2000, Appendix). We
mention also the paper by Bonetti, Dreyer and Schimperna (2003) where un-
coupled, constrained Cahn-Hilliard equation with additional nonlinear terms
imitating the elastic effects has been examined.

Various variants of the Cahn-Hilliard-Gurtin system without and with
elasticity have been extensively studied by Miranville et al. (see Carrive,
Miranville and Piétrus (2000), Carrive, Miranville, Piétrus and Rakotoson
(1998, 1999), Miranville (1999, 2000, 2001a, 2001b, 2003)) from the point of
view of the existence, uniqueness and long time behaviour of the solutions.
In all these papers it has been assumed that the gradient matrix is isotropic
I' = I with constant v > 0, the mobility matrix M is constant, and in case
of a coupled system that the elasticity tensor A is constant.

In Miranville, Piétrus and Rakotoson (1998) the viscous Cahn-Hillard equa-
tion (g =h =0, f = const > 0) without elasticity has been studied, and in
Miranville (2001a) coupled with quasi-stationary or nonstationary elasticity.
In Carrive, Miranville, Piétrus and Rakotoson (1999) the classical Cahn-
Hilliard equation (g = h = 0, 8 = 0) coupled with stationary, isotropic
elasticity has been considered. The analysis in that paper is based on the
fact that in such a case the equation for the order parameter is independent
of the displacement u. More general case without isotropy assumption has
been investigated in Carrive, Miranville, Piétrus (2000).

The Cahn-Hilliard-Gurtin system (1.1) without elasticity in a special case
h = 0 and constant vector g # 0 has been studied in Miranville (1999),
and in case of constant vectors g # 0 and h # 0 under periodic boundary
conditions in Miranville (2003).

In Miranville (2000, 2001b} the Cahn-Hilliard-Gurtin system (g # 0, h # 0)
coupled with quasi-stationary elasticity has been analysed. The considera-
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tions in Miranville (2000) make use of the fact that in case of quasi-stationary
elasticity equations for the order parameter and the displacement can be un-
coupled.

In Miranville (2001b) the problem has been studied under geometry assump-
tions and a special structure of vectors g and h. Namely, the domain has
been assumed to be a two-dimensional (2-D) or a three-dimensional (3-D)
parallelepiped, and mixed periodic-Neumann boundary conditions have been
imposed. The vectors g and h have been assumed constant with vanishing
components in z,- direction in 2-D case and vanishing components in z3-
direction in 3-D case.

We point out that in the above mentioned papers by Miranville et al.
system (1.1) has been reformulated as a single equation for the order param-
eter x. This is in contrast to our approach in which we treat ¥ and w as
independent variables.

The goal of the present paper is to study the existence of solutions to the
Cahn-Hilliard-Gurtin system coupled with elasticity in the following cases
that not have been, or only partially, addressed in previous works:

(i) The presence of the coupling terms with vectors g and h;

(ii) The nonstationary elasticity equation. The vanishing-inertial term
analysis, i.e., examination of the time re-scaling limit to the quasi-
stationary problem;

(iii) The mobility tensor M(x) depending on the order parameter (anisotropic,
heterogeneous diffusion);

(iv) The gradient tensor I'(x) in free energy depending on the order param-
eter (anisotropic, heterogeneous interfacial structure);

(v} The elasticity tensor A(x) depending on the order parameter (anisotropic,
heterogeneous elasticity).

We add also that as a by-product of our analysis we obtain
(vi) the existence result for a phase-field model coupled with elasticity and

its convergence to the Cahn-Hilliard-Gurtin system with the elasticity.
We point out that our considerations are restricted to a scalar, unconstrained
order parameter. More advanced models should take into account the con-
straints on the order parameter like in Bonetti, Colli, Dreyer, Giliardi, Schim-
perna and Sprekels (2002).

We formulate now the initial-boundary-value problem (£} we are con-
cerned with:



(1.3) uy— V- -W(e(u),x) =b, in Q7 =0 x (0,T),

Uli=0 = Ug, )iz = Wy, in £,

u =0, on ST =8 x (0,T),
(1.4) x:— V- (M(x)Vw + hy,) =0, in Q7,

Xl=0 = Xao, in Q,

n- (M(x)Vw + hy,) = 0, on ST,

(15) w—g- Yo+ V- (V) - 39x T'(IVx

~W'(x) ~ Wyy(e(u),x) — Bxe =0, in Q7
n- (F(x)Vx) =0, on S7,

where W (e(u), x) is given by

(1.6) W(e(u),x) = %(E(U) —&(x)) - Alx)(e(u) —E(x)),
SO0
(1.7) Wie(e(u), x) = A(x)(e(w) - E00),

Wiy (e(u), x) = -E’(X)‘A(x)(6(11)—E(x))+%(6(11)—E(x))-A'(X)(E(U)—E(X))-

In quasi-stationary version of (P) the elasticity system (1.3) is replaced
by the elliptic problem

(1.8) —V -Wel(e(u),x)=b in Q7
u=_0, on ST.

Above Q C IR™, n =2 or 3, is a bounded domain with a smooth houndary
S, occupied by a solid body in a reference configuration, with constant mass
density p = 1; n denotes the outward unit normal to S; 7" > 0 is an arbitrary
fixed time.

The unknown variables are the fields of the displacement u : Q7 — R”,
the scalar order parameter x : 7 — IR, and the chemical potential difference
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between the components (shortly referred to as the chemical potential) w :
T = R. In case of a binary a-b alloy the order parameter is related to
the volumetric fraction of one of the two phases, characterized by different
crystalline structures of the components, for example ¥ = 0 corresponds to
phase a and x = 1 to phase b. The second order symmetric tensor

() = 5 (Vu+ (Vu)’)

denotes the linearized strain (for simplicity we write £ instead of e(u)),
b: QT — IR is the external body force.

The free energy density underlying system (1.3)-(1.5) has the Landau-
Ginzburg-Cahn-Hilliard form accounting for the elastic effects

(1.9) Flesx, Vix) = Wie, x) + ¥{x) + %VX T(x)Vx,

where W (e, x) is the homogeneous elastic energy, ¥(x) is the exchange en-
ergy, and the last term with positive definite tensor I'(x) = (I';;(x)) is the
order parameter gradient energy.

The standard form of the elastic energy W (e, x) is given by (1.6) where
A(x) = (Aijr(x)) is the fourth order elasticity tensor depending on the
order parameter, and £(x) = (;;(x)) is the symmetric stress free strain
(eigenstrain).

The exchange energy ¥(x) characterizes the energetic favorability of the
individual phases a and b. The standard form is a double-well potential with
equal minima at x =0 and y = 1:

1
(1.10) ¥(x) = 5x*(1-x)"
Furthermore, M(x) = (M;;(x)) is the mobility matrix, § > 0 is the
diffusional viscosity, and vectors g = (g;), h = (h;) represent the coupling

effects; for usual isotropic materials g =0 and h = 0.
By thermodynamical consistency the coefficients matrix

(1.11) B:[lgv% 2]

has to satisfy the condition



(1.12) X-BX >0 VX=(Vwyx)€R"xR.

If B is independent of X then (1.12) means the positive semi-definiteness of
B. In general, M, g, h, 8 can depend on Vw, x, €, x. Here we shall assume
that M = M(x) is positive definite, 8 > 0 is a constant, vectors g and h are
constant, and the coefficients matrix B is positive definite in the sense that
there exist constants ¢j; > 0 and ¢} > 0 such that

(1.13) X BX > cy|Vul* + gilxi)* ¥V X =(Vw,x:) € R* x R.

We point out that (1.13) represents one of the two main structural postulates
we impose in this paper. The second postulate requires the following lower
bound for the free energy

(1.14) fle,x V) 2 ellef* + IxIN) — ¢,

where r > 2 and ¢ > 0 are constants. Under assumptions formulated in
Section 3 the Landau-Ginzburg free energy (1.9) will satisfy condition (1.14).

Finally, we mention that the functions uy : @ - R", u, : Q —» R",
xo : 2 — IR denote the initial conditions for the displacement, velocity
and the order parameter. The boundary conditions in (1.3)-(1.5) represent
respectively the prescribed displacement, the mass isolation and the natural
boundary condition associated with Landau-Ginzburg energy (1.9).

To analyse problem (P) in a general case (with coupling terms g, h)
we introduce first a singularly perturbed problem (P)¥ with a parameter
v € (0,1] which we let to decrease to zero. In this case we have to assume
that viscosity coefficient is a positive constant § > 0. The special case with
vectors g = h = 0 and viscosity coefficient 8 = 0 (standard Cahn-Hilliard
case) can be analysed directly without the use of (P)¥.

We formulate now problem (P)”




(L.15)  u},— V- -W(e(w”),x") =b, in QT,

u”;=0 = g, uffi=o = uy, in §2,
u’ =0, on ST,
(1.16)  vw) +x{ — V- (M({x")Vu” + hy!) =0, in QF,
w”|e=0 = wo, X"i=0 = Xo, in 2,
n- (M(x")Vw” + hy}) =0, on ST,

1
(117)  w’—g-Vu'+ V- (D)) — §Vx" (VXY
~V'(x") = Wpel(e(u’),x") - Bxi =0, in 0T,
n-(L(x")Vy") = 0, on ST,

where the data are as in (P) and wy € Ly(£2) is given.

It should be pointed out that in case 8 > 0 problem (P)* has the structure
of the well-known phase field model of solidification coupled with elasticity.
In this context w can be identified with temperature and x with the phase
ratio. In view of such a correspondence the existence results for (P)* and
its singular limits for v — 0 are of an independent theoretical interest. We
mention that similar limits v,  — 0 for phase field systems without elasticity
have been studied by several authors, e.g., Laurengot (1994), Stoth (1995).

We consider also a time re-scaled problem (P)*, a € (0, 1], which has the
form of problem (P) with the term u, in elasticity equation (1.3) replaced
by auy. By letting the parameter a to decrease to zero we shall establish the
existence of solutions to the Cahn-Hilliard system (1.4), (1.5) coupled with
quasi-stationary elasticity (1.8).

The main results of the present paper concern the existence of weak so-
lutions to problems (P)¥ and (P) in the homogeneous case with constant
tensors I' and A. The problems are studied by means of the Faedo-Galerkin
approximation. We point out that the existence results for the approximate
problems refer to the heterogeneous case. The restriction to constant tensors
I' and A is needed only at the stage of passing to the limit in the approxi-
mate problems. The origin of the difficulties are the terms V- I”(x)Vx and
(e(u) —g(x)) - A'(x)(e(u) — &(x)) in the weak formulation of (1.5).

In a separate paper (Bartkowiak and Pawlow (2004)) we shall apply
the same Faedo-Galerkin approximations to prove the existence of measure-



valued solutions to problem (P) in heterogeneous case. The idea of such solu-
tions originates from the papers by Neustupa (1993), Kréner and Zajaczkowski
(1996) where it has been applied to the Euler and Navier-Stokes equations.

The paper is organized as follows. In Section 2 we present a thermo-
dynamical basis of problem (P). In particular we give a general scheme of
deriving energy estimates which later is used in the analysis of the Faedo-
Galerkin approximations. In Section 3 we formulate the assumptions and
state the main results on the existence of weak solutions for the following
problems in homogeneous case: (P)¥ (Theorem 3.1), (P) (Theorem 3.2), (P)
in the special case g = h = 0, 8 = 0 (Theorem 3.3), (P) in the quasi-
stationary case and g = h = 0, § = 0 (Theorem 3.4). In Section 4 we
study the Faedo-Galerkin approximations for (P)”. In Section 5 we study
the Faedo-Galerkin approximations for (P) in the special case g = h = 0,
= 0. Sections 6-9 contain the proofs of Theorems 3.1-3.4.

We use the following notations:

e x € R",n = 2 or n = 3, the material point, f; = %,ft = % the
material space and time derivatives,

® = (Eij)i,jzl,...,n, W/E(E,X) = (%ﬁ)i,jzu,m W/X(E,X) = '9—“;(3"—’,

o T'(%) = (P4(3))ijm,ms Tly(x) = 250,

For simplicity, whenever there is no danger of confusion, we omit the argu-
ments (g, x). Also the specification of tensor indices is omitted.
Vector and tensor-valued mappings are denoted by bold letters.
The summation convention over repeated indices is used, as well the notation:

e for vectors a = (g;),4 = (a;), and tensors B = (By;), B = (Bij),
A= (Aijkl) we write a-a = (li&i, B-B = B,']'Bij7 AB = (Aijlekl),
BA = (ByAiju),

o |a] = (a7, |B| = (By;By)7,

e V and V- denote the gradient and the divergence operators with respect
to the material point x € IR™. For divergence of a tensor field we use the
convention of the contraction over the last index V - e(x) = (g;5/(x)).

We use the standard Sobolev spaces notation H™(Q) = Wi*(Q2) for m € IN.
For simplicity we write

o Lo(S2) = (Lo()", Vo = HA(Q) = (HA(@Q))", n =2 or 3,

e (4, )o@, (s *)La(n) denote the scalar products in Ly(€2) and Ly ().

e We denote by V' the dual space of V = H(Q) and by < -, >y y the
duality pairing between V and V'.

e Similarly V§ denotes the dunal space of Vjy and < -,+ >v v, the duality
pairing between V, and Vj.

Throughout the paper ¢ denotes a generic positive constant different in var-
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ious instances.

2 The thermodynamical basis

We present briefly he thermodynamical basis of system (1.3)-(1.5) accord-
ing to the derivation in Pawlow (2004), and next compare it with Gurtin’s

framework.
Equations (1.3);, (1.4); express the balance of linear momentum and the

balance of mass for a component:

(21) utt’—V'S:b,
Xt+vj:0a

where S and j are the referential stress tensor and the mass flux. Equation
(1.5); defines the chemical potential w which is identified with the entropy
inequality multiplier conjugated with the mass balance (2.1),. This multiplier
is in addition to u and y treated as an independent variable.

For models governed by the first order gradient free energy density f =
f(e,x, Vx) the entropy inequality imposes the following constraints on S, w
and j:

(2.2) S~ frele, x, Vx) =0,

of _
(2.3) w—~ a(s, x Vx)+a=0,
where

)
3%(67 X VX) = f/X(€7 X VX) -V f/Vx(E»X7 VX)

denotes the first variation of f with respect to x, and a is a scalar field.
The vector J := (j,a) (thermodynamical flux) is subject to the dissipation
inequality

(24) -X- ‘](Xr“)) = —(Vw j +Xta) >0 v (Xvw)?
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where X := (Vw, x;) (thermodynamical force), and w denotes the vector of
state variables, for instance including € and x. According to Gurtin (1996,
Appendix B) a general solution of inequality (2.4) is given by

(2.5) JX,w) = -B(X,w)X
with the matrix B consistent with (1.11), (1.12). Hence

(2.6) j=—(MVw+ hyxy),
a=—(g - Vw+ Bxy).

Combining relations (2.1)-(2.3), (2.6) and assuming that f(e, x, Vx) is given
by (1.9), we arrive at the field equations in (1.3)-(1.5).

It is easy to check that system of balance laws (2.1) with constraints (2.2),
(2.3) and subjected to (2.4) satisfies the following free energy inequality which
assures its thermodynamical compatibility

d
(2.7) gt'(f(f, X, Vx) + %l“t|2) + V- (S + wj ~ froxxi)

+ Ay (0 —V-8)

+ M+ V-j)
+/\w(’w-f/X+V'f/vx+a)
-‘r-As-(S-—f/E)

=Vw-j+ xia <0 for all fields u, x,w

where
(2.8) Au 1= =Wy, Ay 1= —w, Ay =X, Ag = &y

are multipliers conjugated respectively with linear momentum balance, mass
balance, and the equations for the chemical potential and the stress.

As an immediate consequence of (2.7) it follows that solutions of balance
laws (2.1) with constraints (2.2), (2.3) satisfy the following energy identity
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d 1
(2.9) % | e V0 + Ju) dov
0
/[—(Sn) ‘U +wn-j-xn- f/Vx] ds
s
=/(Vw-j+x,a) dz+/b'ut dz.
Q Q

We point on two important consequences of the identity (2.9). The first
one is concerned with the general thermodynamical property known as the
Lyapunov relation. Namely, in view of the dissipation inequality (2.4), if the
external force b = 0, and if the boundary conditions on .S imply that

(2.10) (Sn)-u, =0, wn-j=0, xen- fro, =0,

then the Lyapunov relation follows from (2.9):

d
(2.11) = /n (F(e,x V) + lu?) do < 0.

It states that the total energy is non-increasing on solutions paths. We note
that the boundary conditions in the system (1.3)-(1.5) are consistent with
(2.10). The second consequence of (2.9) which is of key mathematical im-
portance are energy estimates. They result from (2.9) under the structural
assumption of the free energy lower bound (1.14), and the positive definite-
ness (1.13) of the matrix B. The presented above general scheme of deriving
energy estimates will be used in Section 4.

Finally we comment on the relations with Gurtin’s (1996) framework.
The system (2.1} with constraints (2.2), (2.3) and subjected to the inequal-
ity (2.4) coincides (up to neglecting the term uy in (2.1)) with equations
resulting from Gurtin’s theory (see Gurtin (1996), Sections 3, 4). We point
out that in Gurtin’s theory the underlying laws are the linear momentum
and the mass balance given by (2.1), and in additon the following microforce
balance

(2.12) Vé€+rm+9=0
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where £ is the microstress, 7 is the internal microforce and +y external micro-
force. By assuming as constitutive variables (e, x, Vx, x¢, w, Vw) (we use our
notation) and applying a mechanical version of the second law the following
relations have been obtained in Gurtin (1996):

f=fEex,Vx), S=fr, &= fve,
T =w— fry + Tais,
j=~(MVuw-+hy),

Tais = —(g - Vw + Bxy)

where the coefficients M, h, g, 8 comply with (1.11), (1.12). The above re-
lations show that equation (2.3) for w can be interpreted as a microforce
balance while the quantity a as a dissipative part of the internal microforce.

3 The assumptions and the main results

We list the assumptions under which the Faedo-Galerkin approximations of
problems (P)” and (P) are studied. These assumptions refer to the heteroge-
neous case involving tensors I'(x) and A(x) depending on x. The existence
results for the original problems (P)* and (£) will be proved only in case of
constant tensors I' and A.
(A1) @ C R", n =2 or 3, is a bounded domain with C! boundary S.

The following assumptions concern the components of the Landau-Ginzburg
free energy

fle, % Vx): 8 xRxR* > R

given by (1.9), where 82 denotes the set of symmetric second order tensors
in IR". We assume that
(A2) The elasticity tensor A(x) = (Ayu(x)) : 8 — &% is a linear
mapping such that
(i) is of class C' with respect to x : Ayu(-) € C'(IR) with Af;,,() Lips-
chitz continuous,
(ii) satisfies the symmetry conditions Ajjx(-) = Ajuni() = Aguiz(-),
(iii) is positive definite and bounded uniformly with respect to x : there
exist constants 0 < ¢, < €4 such that

calelP <e-A(x)e <tulel* VeeS*and x € R,
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(iv) the mapping A'(x) = (Au(x)) : 8 = §* is uniformly bounded with
respect to x: there exists a constant cs > 0 such that

|A'(x)e| < cale] VeecS?andyeR.

We mention that we do not require that A(x) is isotropic.
(A3) The eigenstrain E(x) = (€;;(x)) € S is
(i) of class C1! with respect to x : &;(-) € C'(IR) with &,(-) Lipschitz
continuous,
(ii) satisfies growth conditions: there exists a constant ¢ > 0 such that

EGIl <ellxI+1), [F¥I<e VxeR.

In view of the expressions (1.6), (1.7), assumptions (A2), (A3) imply
that Wi{e, x), Wye(e, x) and Wy, (e, x) are Lipschitz continuous functions
with respect to e, x, satisfying the growth conditions

(3.1) W (e, ) < cllef* +x* +1),

(32) IWye(e, x)f < elle] + |x] + 1),
Wile, ) <cleP+x*+1), Viex) eS8 xR
(A4) The double-well potential ¥(-) : R — IR satisfies
(i) is of class C!: ¥(-) € C'(IR) with ¥'(-) Lipschitz continuous,
(ii) the bound from below: there exist constants ¢; > 0, ¢; > 0 and a
number 7 > 2 such that

Y(x}zalx"—e Vxel,
(iii} the growth conditions: there exists a constant ¢ > 0 such that
V(x) < e+ 1),

V(x) <ellx]® +1), VxeR,

where g, is the Sobolev exponent for which the imbedding of H'(2) into
L, (82) is continuous, i.e., g, = ;2:"5 for n > 3 and g, is any finite number for
n = 2. We note that ¥(x) defined by (1.10) satisfies (A4)(ii):

X' -

Q=
DO =

U(x) >
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and obviously (A4)(iii). We remark that the growth condition (A4)(iii) on
U'(x) is needed in the proof of the convergence of the Faedo-Galerkin ap-
proximations (see Lemma 6.1).
(AB) The gradient energy tensor I'(x) = (I';;(x)) : R* = IR" is a linear
mapping such that
(1) is of class C1! with respect to x : I'y;(-) € C'(IR) with I'j;(-) Lipschitz
continuous,
(ii) is symmetric I';;(:) = Iy(-),
(iii) is positive definite and bounded uniformly with respect to y : there
exist constants 0 < ¢ < Zr such that

crléf <& T(x)E<el|é)> VE€R"and x € R,

(iv) the mapping I'(x) = (T;(x)) : R™ - IR™ is uniformly bounded with
respect to x: there exists a constant er > 0 such that

T'(x)¢] < cp|€] VEE€R"and x € R

We note that in view of (A2)(iii), (A4)(ii) and (A3)(ii), using Young’s in-
equality and the fact that r > 2,

1 = T
(3.3) Wie,x) + () 2 geale —E00F +alxl” ~
1
z 59,4'612 —c4e-E(x) +alxl” — ¢

1 _
> ZQA'EIZ —caEQ)P + alx] — e

1 ,
ZQA!EIZ —exP+alxl —c

>c(lef+xI")—c V(ex) €S xR

v

with some constant ¢ > 0. Consequently, taking into account (A5)(iii) we
can see that the free energy satisfies the following bound from below

(34) fle,x, Vx) = cllel* + |xI" +{Vx|) —¢ ¥ (e,x,Vx) e ST x R xR"

with some constant ¢ > 0. This is the first main structural postulate that
we use in derivation energy estimates (see Section 4).
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'The next two assumptions concern the mobility matrix and the coupling
terms.
(A6) The mobility matrix M(x) = (M;;(x)) : IR* — R" is a linear
mapping such that
(i) is of class C®! with respect to x : M;;(-) € C°(IR) are Lipschitz con-
tinuous,
(ii) is symmetric M;; = Mj;,
(iii) is positive definite and bounded uniformly with respect to x : there
exist constants 0 < ¢, < Tas such that

cnlél? <€ -M(x)E <tmlel? VE€R" and y € R

(AT) The coupling vectors g = (¢;), h = (h;) are constant, the viscosity
coefficient is a positive constant 4 > 0, and the coefficients matrix
M h
B =
(X) [ gT ﬁ ]

is positive definite in the sense that there exist constants ¢j, > 0 and ¢ > 0
such that

(3.5) X-B()X = Vw - M(x)Vw + x:(g + h) - Vaw + Bx?
>Vl +6x; VX =(Vw,x) € R* x R.

The condition (3.5) is the second main structural postulate used in derivation
of energy estimates.

In the standard Cahn-Hilliard case assumption (A7) is replaced by

(A7) The vectors g = h = 0, the coefficient 8 = 0, and the matrix M(x)
is positive definite uniformly with respect to x, i.e., satisfies (A6)(iii).

The last assumption concerns the data of the problem.

(A8) The initial data wo, u;, xo, and wy in case of problem (P)”, and
the force term b satisfy

U € ‘/07 u € LQ(Q),XO (S HI(Q),'UJO (S LQ(Q),b S Ll(O,T, Lz(Q))

We note that in view of growth conditions (3.1) on W(e,x), (A4)(iii) on
¥(x), and the uniform boundedness (A5)(iii) on I'(x), it follows that the
total free energy corresponding to the initial data is bounded
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(3.6) |/nf(5(‘10):X0,VX0)| < eflle(uo)liag + Ixollzny + 1) < .

We formulate now the main results of the paper which are restricted to
the homogeneous problem with constant tensors A and I'. The first result
states the existence of weak solutions to problem (P)".

THEOREM 3.1. Let the assumptions (A1)+(A6), (A7), (A8) be satisfied,
and in addition tensors T' and A are constant. Then there exist functions
(0¥, x", w") such that

(i) u” € Lo(0,T; Vi), uf € Loo(0,T; Lo(Q)), uy € Lo(0,T; V),

u”(0) =g, u7(0) = uy,

(i) X € Loo(0, T; HY (), x¥ € Lo(Q7), x*(0) = X0,

(iii) V2w’ € Loo(0,T; Ly(R)), w” € Ly(0, T; HY(R)),
which satisfy (P)* in the following weak sense:

(3.7) /0 < ugy, N >y, dt + /QT Ae(n”) - &(u”)) - e(n) dzdt

= b-ndzdt ¥ ne Ly0,T;Vy),
[oL8

(3.8) - / vw'é; drdt +/ e+ (M(x")Vw” + hyy) - VE] dzdt
or or

= u/wgf(O) dr ¥ &€ CY([0,T); H'(Q)) with £(T) = 0,

(3.9) / (w” — g Vw")( dzdt — / TUx” - V( dzdt
QT T
- [0 - R0 - Alelut) ~20)) + AIC dade =0
V ¢ € Ly(0,T; H'(%).

Moreover, (0", x*,w") satisfy a priori estimates

(3.10) 07| so,mvo) + 07 Nl 2eotoriLa())
il za0vey + IX7 N Legomim@) + X a0

+ U8 [ (o zizae) + 107 | ooy < € # c(v)
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with constant ¢ depending only on the data.
The solutions to problem (P) arise as limits of solutions to problems (P)*.

THEOREM 3.2. Let the assumptions of Theorem 8.1 be satisfied. Then there
erists a triple (u, x, w) with

(i) ue LOO(()!T’ VU)’ u S LOO(OaTv LZ(‘Q))r Uy S LZ(OvT) V:J);

u(0) = ug, w(0) = uy,

(li) X € Loo(07 T: Hl(Q)), Xt € LZ(QT): X(O) = Xo,
(iii) w € L2(0,T; HY(SY)),
which for a subsequence v — 0 is a limit of solutions (u”, x*, w") to problem
(P)¥, and (u, x,w) satisfy (P) in the following weak sense:

T
1) [ <wnnvvedt [ Alela) ~2(0) -e(n) das
0 nT
= b-n dzdt ¥V ne Ly(0,T;Vy),
QT
(3.12) [t + (MO0 ¥ + o) - V] e =0
nT

V & € Ly(0,T; H(S2)),

(3.13) /m (w—g - Vw){ dzdt — /nT I'Vy - V¢ dzdt
N /m [¥'(x) =& (x) - Ale(u) ~ E(x)) + BxsJ¢ dzdt = 0
V ¢ € Ly(0,T; H'(S2)).

Moreover, a priort estimates hold

(3.14) (1ull2ooto,rive) + Ut l|LootoriLa(2)
+ el oo, vy + Xl Lootomsmty + IIxellLo(ar)

+wlla @y ¢

with constant ¢ depending only on the data.
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The next result concerns the special case of problem (P) withg =h =10
and 8 = 0 which corresponds to the standard Cahn-Hilliard system coupled
with elasticity.

THEOREM 3.3. Let the assumptions (A1)+(A6), (ATY, (A8) be satisfied,
and in addition tensors I' and A are constant. Then there ezist functions
(u, x,w) such that

(i) uec LOO(O,T, Vo), u; € LOO(O,T, LQ(Q)), uy € LQ(O,T, Vé))!

u(0) = ug, 0, (0) = uy,

(i) X € Loo(0, T3 HH()), X0 € La(0, T3 V"), x(0) = X,
(iii) w € Ly(0,T; H())),
which satisfy (P) in the sense of identities (3.11), (3.13) (with g = 0) and
(8.12) replaced by

(3.15)
T

/ <xo€>viy dt+/ M(x)Vw - V€ dodt =0 Y € € Ly(0,T; H'()).
0 T

Moreover, (u, x,w) satisfy a priori estimates

(3.16) lullzaorive) + 1ell oo, miLa()) + el zao,rivy)
F Xl oz @) + IxellLaorivry + lwllzgco,msm )y < €

with constant ¢ depending only on the data.

REMARK 3.1. As common, we can introduce also modified weak formula-
ttons of problems (P)¥ and (P) with the identity (3.7) corresponding to the
elasticity system replaced by

(3.17)

— / u} - n; dzdt + Ale(n”) —E(x")) - e(n) dzdt
or QT

= b - n dzdt + / u, -n(0) dz V¥ n € C'([0,T); Vo) with n(T) =0,
or Q

and the analogous modification of (3.11).
By virtue of the identity
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T T
/ <@y, >yy dt = —/ (6, M) La(0) @t ~ (B0, 1(0)) L)
0 0

V ¢ € Ly(0,T; V) N HY0,T; V') with $(0) = ¢y, and
1 € Ly(0,T; V) N H' (0, T; Lo(?)) with n(T) = 0,

the existence results of Theorems 3.1-8.3 hold true for the above mentioned
modified formulations.

The last result concerns the existence of weak solutions to the quasi-
stationary version of problem (P). We consider a time re-scaled problem
(P)*, o € (0,1] with the term uy replaced by aug. For simplicity we confine
ourselves to the situation of Theorem 3.3, i.e., g = h = 0,8 = 0 and constant

tensors I', A.
Let (u®, x*, w*} denotes a weak solution to (P)* in the sense of Theorem

3.3 with the modification in Remark 3.1, which satisfies the identities
(3.18)
- a/ uf - n, dzdt +/ A(e(u®) — &(x%)) - e(n) dzdt
ar ar

= / b .71 dzdt + a/ u, -n(0) dz V¥V n € C*{[0,T]; Vo) with n(T) =0,
ar Q

T
(3.19) / <X E>py dt +/ M(x*)Vw® - V€ dzdt =0
0 ar

Ve L0, T, HY(Q),

(3.20) /QT w¢ dxdt — /QT L'Vx® - V¢ dzdt
- [ )~ F ) - Ale(?) - 20D dat =0
Y ¢ € Ly(0,T; H'(Q)).
An inspection of the proof of Theorem 3.3 shows that the following uni-

form in « estimate holds true
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1
(8.21) N 2oo,mve) + 02 [0S [l 2oy 0,702
+ alluillorvy + X womm@y) + IxElaomyvn
+ Wl za0m 10y £ € # )

with constant ¢ depending only on the data. Due to this estimate we can
pass to the limit with & — 0 in (3.18) + (3.20) to conclude
THEOREM 3.4. Let the assumptions of Theorem 8.8 be satisfied. Then there
ezists a triple (u, x, w) with

(i) u € Lo(0,T;Vy),

(i) x € Loo(0, T3 H' (), x: € L2(0, T; V'), x(0) = xo,
(iii) w € Ly(0,T; HY(S2)),
which for a subsequence o — 0 is a limit of solutions (u*, x®, w®) to problem
(P)?, and (u, x, w) satisfy the quasi-stationary version of (P) in the sense
of identities

(3.22)
Ale(w) ~500) - e(n) dode = [ b dadt Ve LOTIV),
ar

0T

together with (3.15) and (8.13) (with g = 0, 8 = 0). Moreover, (u,x,w)
satisfy estimates

(8.23) Jullrworive) + Xl oo i)y + XM 2aomivry + 0l o iz () < €

with constant ¢ depending only on the data.

The above result coincides with that obtained in Garcke (2000, 2003a)
where more general problem with multicomponent order parameter has been
considered.

4 The Faedo-Galerkin approximation (P)"™

4.1 Approximate problems

Let {v;},ew be an orthonormal basis of Vi, and {z;};ew be an orthonormal
basis of H!(2). Without loss of generality we assume that z; = 1. Further,
for m € IN, we set

22




Vo = span{vy, .., v}, Vi = span{z, ..., 2m},

First we introduce the Faedo-Galerkin approximation of (P):
Problem (P)™. For any m € IN find a triple of functions (u™, x™, w™) of
the form

(4.1) ut(x, ) = ) el (Hvilx),

i=1

X"t =y Mt z(x),
i=1

w™(x,t) =Y dr(t)z(x)

i=1

satisfying for a.e. t € [0,T}:

(4.2) (U, 1™y + (Wye(e(@™), X™), €(n7)) Lo
= (b,'r]m)Lz(Q) v 'r]’” € Vo,

(4.3) (X;n, fm)Lz(Q) =+ (M(x"')Vw’" —+ hXE", V{m)Lz(m =0 Vv fm € Vi,

(4.4) (W™ — g Vu™, (M) — CMVX™, VL@
1 ! m m ’ m
— GV TMVXT + V() )
+ W/X(E(um)l Xm) + /BX;"vcm)Lz(ﬂ) =0V Cm € Vm,

(4.5) u™(0) = ug', u(0) =uy, X™(0) = x¢'

where ul', u* € V,,, xi* € Vi satisfy for m — oo
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(4.6) ug* — uy strongly in Vy,
u?* — u; strongly in Ly(€2),
X5 — Xo strongly in H(£).

Similarly we introduce the Faedo-Galerkin approximation of (P).
Problem (P)»™. For any v € (0,1], m € NN, find a triple of functions
(u”™, x»™, w*™) of the form

(47) W, ) = ile?'m(t)""(")
X 1) = zmj (1)),
whm(x,) = i ™ (0)2(%)
satisfying for a.e. t € [0, T): ”
(18 (™ m + el ™), (™

=(b,nM)r, iy Y N" €V,

(4.9) v(w™, €™M ey + (™ €™ ooy
+ (M(x"™)Vuw"”™ + hy,™, VE™ )Lz(n) =0 VEEV,,

(4.10) (W™ — g - V™, (™)) — (COE™)VX™, V)0
1 ! v, m v, m vm
= GV DT VX ' (x"™)
+ Wy (e(u”™), x"™) + Bx;™, (™ Loy =0V (™ € Vi,

vm v,m

(4.11) u?™(0) =uf, u™0)=ul’, X" =xg, W =wy

where ul*, u € V,,,, xi* € V,, satisfy (4.6), and wj* € V;, are such that
(4.12) wi* — wy strongly in Ly () as m — 0.
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