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Abstract

We give a proximal bundle method for minimizing a convex function f over a closed
convex set. It only requires evaluating f and its subgradients with an accuracy
e > 0, which is fixed but possibly unknown. It asymptotically finds points that are
e-optimal. When applied to Lagrangian relaxation, it allows for e-accurate solutions
of Lagrangian subproblems, and finds e-optimal solutions of convex programs.
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bundle methods, approximate subgradients, Lagrangian relaxation.

1 Introduction

We consider the convex constrained minimization problem

for=mf{f(z):z€ S}, (1.1)
where S is a nonempty closed convex set in the Euclidean space R™ with inner product
(-,-) and norm |- |, and f : R" — IR is a convex function. We assume that for fixed

accuracy tolerances ey > 0 and €, > 0, for each y € S we can find an approrimate value f,
and an approzimate subgradient g, of f that produce the approzimate linearization of f:

-fy() =fy+ {9y —9) < () + € with fy(y) =fy = fly) — ¢ (1.2)

Thus f, € [f(y) — €5, f(y) + ¢, estimates f(y), while g, € O f(y) for the total accuracy
tolerance € := €7 + ¢, 1.e., g, is a member of the e-subdifferential of f at y

OfW) ={g9: fO) 2 fly) —e+{g. —u)}.

The above assumption is realistic in many applications. For instance, if f is a max-type
function of the form

f)=sw{F(y):z€ 2}, (1.3)
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where each F, : R" — IR is convex and Z is an infinite set, then it may be impossible to
calculate f(y). However, we may still consider the following two cases. In the first case
of controllable accuracy, for each positive € onc can find an é&maximizer of (1.3), i.e., an
element z, € Z satisfying £, (y) > f(y) — & in the second case, this may be possible only
for some fixed (and possibly unknown) € < co. In both cases we may set f, := F} (y) and
take g, as any subgradient of F,, at y to satisfy (1.2) with e; := €, ¢, := 0; then e = &.

A special case of (1.3) arises in Lagrangian relazation [Ber99, §5.5.3], [HUL93, Chap.
XI1], where problem (1.1) with § := IR} is the Lagrangian dual of the primal problem

sup Yo(z) st. ¥;(2) >0, j=1n, z€ Z, (1.4)

with Fo(y) = vo(2) + (y,¥(2)) for ¥ := (¢1,...,¥). Then, for each multiplier y > 0,
we only need to find z, € Z such that f, := F, (y) > f(y) — € in (1.3) to use g, :=
1{z,). For instance, if (1.4) is a semidefinite program with each ; affine and Z being
the set of symmetric positive semidefinite matrices of order m with unit trace, then f(y)
is the maximum eigenvalue of a symmetric matrix M (y) depending affinely on y [Tod0l,
§6.3], and 2, can be found by computing an approximate eigenvector corresponding to the
maximum eigenvalue of M(y) via the Lanczos method [HeK01, HeR00].

This paper extends the proximal bundle method of [Kiw90] and its variants [Hin01,
Scz92], [HUL93, §XV.3] to the inexact setting of (1.2) with unknown e; and ¢, Our
extension is natural and simple: the original method is run as if the linearizations were
exact until a predicted descent test discovers their inaccuracy; then the method is restarted
with a decreased proximity weight. Since our descent test (or similar ones) is employed
as a stopping criterion by the existing implementations of proximal bundle methods, our
analysis also sheds light on their behavior in the inexact case (cf. §4.5).

We show that our method asymptotically estimates the optimal value f,. of (1.1) with
accuracy €, and finds e-optimal points. In Lagrangian relaxation, under standard convexity
and compactness assumptions on problem (1.4) (see §5), it finds e-optimal primal solutions
Dby combining partial Lagrangian solutions, even when Lagrange multipliers don’t exist.
This secrms to be the first such result on primal recovery in Lagrangian relaxation.

We now comment briefly on other relations with the literature.

The setting of (1.2) subsumes those in [Hin01, Kiw85, Kiw95a]. Indeed, suppose that
for some tolerances €, > 0, 6? > 0 and & > 0, for each y € S we can find some

foe[fW -, fw)+E] and g, €8, /(). (1.5)

Then (1.2) holds with ¢; := &7 and ¢, := & + &,. We add that & = & = &, in [Kiw85],
[Hin01] uses €, = ¢} = 0, i.e., exact values f, = f(y), whercas [Kiw95a] employs (1.2)
with €, = 0 (corresponding to & 1= &, :=¢; = ¢ and ¢} := 0 in (1.5)).

First, our method is more widely applicable than those in [Hin01, Kiw85, Kiw95a], since
(Kiw85, Kiw95a] assume that the é-tolerances in (1.5) are controllable and can be driven
to 0, whereas [Hin01] needs exact f-values. Thus only our method can handle Lagran-
glan rclaxation with subproblem solutions of unknown accuracy. Second, our convergence
results are stronger than those in [Hin01], since they handle constraints and practicable
stopping criteria (cf. §4.2). Third, our method is much simpler than that of [HinO1].
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The paper is organized as follows. In §2 we present our proximal bundle method. Its
convergence is analyzed in §3. Several modifications are given in §4. Applications to
Lagrangian relaxation of convex and nonconvex programs are studied in §5.

2 The inexact proximal bundle method
We may regard (1.1) as an unconstrained problem f, = min fs with the essential objective

fs .‘=f+15, (21)

where g is the indicator function of S (1g(z) =0ifz € S, 0 if z ¢ I).
Our method generates a sequence of trial points {y*}32, C S for evaluating the ap-

proximate values f;‘ = fy», subgradients g* = g+ and linearizations fi := fyk such
that
RO =fE4 (g5 =) < () e with fily®) =fE2 01 —¢,  (22)
as stipulated in (1.2)‘ Iteration k uses the polyhedral cutting-plane model of f
Fi%0 = max f;()  with keJ*c{1,....k} (2.3)
jeJ
for finding i}
Y= argmin{qbk(-) = fi() +es() + m zF)? } (2.4)

where t; > 0 is a stepsize that controls the size of |y**! —2*| and the proz center 2* := y*®

has the value f¥ := £ for some k(1) < k (usually f* = minf_, f7). Note that, by (2.2),

fa®) — e < f2 < f(5*) + ¢ (2.5)
However, we may have f* < fi(zF) = ¢x(z*) in (2.4), in which case the predicted descent
o= R ) (26)

may be nonpositive; then ¢ is increased and y**! is recomputed to decrease fi(y*+!) until

e > 0 (specific tests on vy for increasing ¢y, are discussed below and in §4.3). A descent

step to 5+ = yf with fEH = fEH occurs if fE < fF — Koy for a fixed & € (0,1).

Otherwise, a null step z+! ;= £* improves the next model fiy; with fry, (cf. (2.3)).
For choosing J**1, note that by the optimality condition 0 € d¢x(y**!) for (2.4),

Ik € Ofc(y*t!) such that pf = — (¥ — %)/t — ph € Bus(yF ) (2.7)
and there are multipliers v; vk j € J¥ also known as conver weights, such that
Pi= vk, v =1 v 20 [ - 6] =0, e b (28)
jeJk jedk
Let J* = {jeJk: u]’f' #* 0}. To save storage without impairing convergence, it suffices to

choose J**1 > J*U {k + 1} (i.e., we may drop inactive linearizations f; with v¥ = 0 that
do not contribute to the trial point y*+!).
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Figure 2.1: Predicted descent domination: vy > —ay, < %tklp"'|2 > —apg.

The subgradient relations in (2.7) enable us to derive an optimality estimate from the
following aggregate linearizations of fi, and f, 1s, f& := fi + 15 and fs, respectively:

Fil) = fely*™) + (P}, — yk+1> <Al < fO) +ep (2.9)
B) = (ph =y < (), (2.10)
F5=f+ < f§:=fitis < fo+e, (2.11)

where the final inequalities follow from (2.1)-(2.3). Adding (2.9)-(2.10) and using (2.11)
and the linearity of

FEC) = ™) + (B + 0k, - — o4, (2.12)

we get
P (o= ob) —an = Fo0) < FEC) < fsl) + ey (2.13)

where
pF = p’} + pg = (z* - v/t and = fF - f;(z’“) (2.14)

are the aggregate subgradient (cf. (2.7)) and the aggregate linearization error, respectively.
The aggregate subgradient inequality (2.13) yields the optimality estimate

E < flx) beg Pz — 2t + oy forallz e S. (2.15)

Combined with f(zF) —e; < f¥ (cf. (2.5)), the optimality estimate (2.15) says that the
point z¥ is e-optimal (i.e., f(z%) — f. < e:= ¢; + ¢,) if the optimality measure

Vi i= max{ 17", } (2.16)

is zero; % is approximately e-optimal if Vj is small.

Thus we would like Vi to vanish asymptotically. Hence it is crucial to bound Vi via
the predicted descent wy, since normally bundling and descent steps drive vy to 0. To this
end, we first highlight some elementary properties of oy, and vy; see Fig. 2.1.




In words, (2.13) and (2.5) mean that the model f§ and its linearization f& may over-
shoot the objective fg by at most ¢;, whereas f¥ may underestimate f(z*) by at most e i
Hence the linearization error oy of (2.14) may drop below 0 by no more than € := e; + €5

o> fi = fola) 2 i - f@h) e 2~ — g = —c. (2.17)
The predicted descent vy, (cf. (2.6)) nay be expressed in terms of p* and cy, as
v = GlD? = | Fag with @8 = R — F = gt (2.18)
being the scarch direction. Indeed, jy* ™ — z*¥/t;, = t,|p*|? by (2.14), whereas by (2.12)
Foly*) = FEH) = FEES) + (0,04 — 2b) = F() — oA - oF P,

50 v = fF — f(*1) = au + ti|pFf® by (2.14). Note that v > .
Since Vi := max{[p*|, aw}, v = ti|p*[* + a and —ay < € (cf. (2.16)—(2.18)), we have

Vi = max { [(ve — ak)/tk]l/2 , Ot } < max { (2 max[ug, —ak]/tk)l/z, ay } , (2.19)
Vi < max { (2vn/t)"/%, vk } i v > —ay, (2.20)
Vi < (=20, /0 Y% < (2e/t)V? i v < —one (2.21)

The bound (2.21) will imply that if z* isn’t e-optimal (so that Vi can’t vanish as t
increases), then vy > —oy and the bound (2.20) hold for t large enough; on the other
hand, the bound (2.20) suggests that ¢, shouldn’t decrease unless Vj is small enough.

We now have the necessary ingredients to state our method in detail.

Algorithm 2.1.

Step 0 (Initiation). Select 2! € S, a descent parameter x € (0, 1), a stepsize bound Ty > 0
and a stepsize ¢; € (0, T1]. Set y' :=a', fl:= f} (cf. (2.2)), ¢' 1= gy, J' = {1}, 4} =0,
k= k(0):=1,1:=0 (k(l) — 1 will denote the iteration of the lth descent step).

Step 1 (Trial point finding). Find y**! and multipliers v} such that (2.7)-(2.8) hold.
Step 2 (Stopping criterion). If Vi, = 0 (cf. (2.15)-(2.16}), stop (f¥ < f. + €,).

Step 3 (Stepsize correction). If v < —au, set tg := 10ty, Ty := max{Ty, tx}, i¥ := k and
loop back to Step 1; else set Tyyq 1= T

Step 4 (Descent test). Evaluate fi ™ and g**! (cf. (2.2)). If the descent test holds:

AR (2.22)

Y

set af+l = yhtl phAL o phEL G2 0 k(14 1) := k + 1 and increase [ by 1 (descent
step); clse set a¥+! = gk, fAHL = f5 and it = iF (nudl step).

Step 5 (Bundle selection). Choose J**' 5 J* U {k + 1}, where J* := {j € J*: vk £ 0}



Step 6 (Stepsize updating). If k(l) = k + 1 (i.c., after a descent step), select try1 €
{te, Tiy1); otherwise, either set try1 = tx, or choose tyyy € [0.1t, &) if =l = and

¥ = fan(2®) > Vi i= max { "], o } . (2.23)
Step 7 (Loop). Increase k by 1 and go to Step 1.
A few comments on the method are in order.

Remarks 2.2. (1) When the feasible set S is polyhedral, Step 1 may use the QP method
of [Kiw94], which can solve efficiently sequences of related subproblems (2.4).

(i) Step 2 may also use the test f* < inf f& (cf. Lem. 2.3(i)); more practicable stopping
criteria are discussed in §4.2.

(iii) In the case of exact evaluations (¢ = 0), we have v > ap > 0 (cf. (2.17)—(2.18)),
Step 3 is redundant and Algorithm 2.1 becomes essentially that of [Kiw90j.

(iv) To sce the need for increasing ¢ at Step 3, suppose n =1, f(z) = —z, S = R,
2l =0,t =1, e=1, fl = -1, g' = =1, fo(z) = —z. If Step 3 were omitted and null
steps were taken when v, < 0, the method would jam with y*t! = 1 for k > 1. Also
note that decreasing ¢, would not help. In fact decreasing t; at Step 6 aims at collecting
more local information about f at null steps, whereas in such cases £, must be increased
to produce descent or confirm that z* is e-optimal (let f(z) = max{ z,z ~ 2} above).
Hence whenever t; is increased at Step 3, the stepsize indicator i¥ # 0 prevents Step 6
from decreasing ¢x after null steps until the next descent step occurs (cf. Step 4).

(v) At Step 5, one may let J*+! := J¥U {k + 1} and then, if necessary, drop from J**!
an index j € JF\ J* with the smallest f;(z*) to keep |J*+1| < M for some M >n + 2.

(vi) Step 6 may use the procedure of [Kiw90, §2] for updating the proximity weight
uy, = 1/tx, with obvious modifications.

We now show that the loop between Steps 1 and 3 is infinite iff f* < inf f§ < fi(z*),
in which case the current iterate z* is already e-optimal.

Lemma 2.3. (i) If f* < inf f§, then f(z*) — < fE<fite and f(Z8) < fute

(i) Step 2 terminates, i.e., Vi := max{|p*|,ax} = 0, iff f¥ < min f§ = fE(z*).

(iii) If the loop between Steps 1 and 3 is infinite, then f* < inf f& (< f&5(z*); ¢f (D).
Moreover, in this case we have fE(y**') | inf f§ as t) 1 oo.

(iv) If f5 < inf f& at Step 1 and Step 2 does not terminate (i.e., inf f§ < fE(z*); of.
(i1))}, then an infinite loop between Steps 3 and 1 occurs.

Proof. (i) Combine f, = inf fg (cf. (1.1), (2.1)) with inf f& < inf fs + ¢, (cf. (2.13)) and
f(@*) — ¢ < 5 (cf. (2.5)), and use € := ¢/ + ¢, for the second inequality.

(ii) “=”: Since pf| = 0 > a, (2 13)~(2.14) yield f&(a*) < f&(), v**' = z* and
& < fE(x*), whereas by (2. 12), =y = f,c(y"+1 = fEh). e Slnce fs( Ky =
min fs: using ¢p(z*) = min f¥ < (vt < ¢e(zF) in (2.4) gives y**+' = 2¥, so again
FR®) = f5(2*) by (2.12), and (2.14) yields p* = 0 and oy = f* — fE(2%) < 0.

(111) At Step 3 during the loop the facts Vi < (2¢/t;)'/2 (cf. (2.21)) and #; T oo give
max{|p*|, ax} =: Vi — 0, s0 (2.13) yields f* < inf & The fact that fE(y**1) | inf f£ as
t. T oo in (2.4) is well known; see, e.g., [Kiw95b, Lem. 2.1].
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(1v) By (2.11), fu(y**') = FA(*) > inf 5. Thus (cf. (2.6)) v < £ — inf /& < 0
and (cf. (2.18)) ve = t|p*|* + au yield o) < —ti|p*|® at Step 3 with p* # 0 (since
max{|p*|,ar} =: Vi > 0 at Step 2). Hence o < —%[p*[%, so (cf. (2.18)) vy < —ay and
Step 3 loops back to Step 1, after which Step 2 can’t terminate due to (ii). 0

Remark 2.4. By Lemma 2.3, the algorithin may terminate if f* < inf f£. When S is
polyhedral, then either inf f& = —oo, or there is # such that f&(y**!) = min f& whenever
te > f); this may be discovered by a parametric QP method [Kiw95b], and the algorithm
may stop if f¥ < min f%, thus forestalling an infinite loop between Steps 1 and 3.

3 Convergence

In view of Lemma 2.3, we may suppose that the algorithm neither terminates nor loops
infinitely between Steps 1 and 3 (otherwise z* is c-optimal). At Step 4, ¢**! € S and
v > 0 (by (2 20), since Vi > 0 at Step 2), so z¥*! € S and f¥+! < f¥ for all k.

Let f° := lim; f*. We shall show that f& < f, + ¢, Because the proof is quite
complex, 1t is broken into a series of lemmas, starting with the following two simple
results. To handle loops, let V| denote the minimum value of Vi at each iteration .

Lemma 3.1. If lim, W} =0 (e.g., limy Vs = 0) and {z*} is bounded, then f& < f. +¢,.

Proof. Pick K € {1,2,...} such that V{ 5 0. Fix z € S. Letting k € K tend to infinity
n (2.15)-(2.16) with Vi = V{ yields f&° < f(z) + €5, s0 [ <infgs f + €5 = fu + ¢ [

Lemma 3.2. [f T, = lim; T = oo at Step 4, then lim, V! = 0.

Proof. Let K C {1,2,...} index iterations k that increase T} at Step 3. For k € K, at
Step 3 on the last loop to Step 1 we have Vi < (2¢/t))/? (cf (2.21)) with tk such that
10t) becomes the final Ty, so the facts 0 < V! < V; and T}, JELIRP give V/ K00

In view of Lemmas 3.1-3.2, we may assume that Ty, < co when {z*} is bounded, e.g.,
only finitely many descent steps occur. This case is analyzed below.

Lemma 3.3, Suppose there exists k such that for oll k > k, Step 3 doesn’t increase ty
and only null steps occur with txyy <ty determined by Step 6. Then v, — 0.

Proof Fix k > k. We first show that f&*' > 75 Let f := max, v fi. Since Jo={je
" #0} and g7 = Vf;, fk < maxgep fj = fi and (2.8) yield fi(y*'1) = fi(y**!) and
phe Ofk(y"+1). Thus fi < fi by (2.9), s0 fu < fupr (J¥ C T gives fi < fopr. Hence
(2.10)(2.11) yield f& = fi + & < fuy1 + 15 = fEFL
Next, consider the following partial linearization of the objective ¢y of (2.4):

o) == FS0) + gl - =2 (3.1)



We have Vg (y"*+!) = 0 from V f§ = p* = (2% —y*+1) /1 (cf. (2.13)~(2.14)), and fE(y*) =
Fe(*Y) by (2.12), 50 ¢u(y*+1) = ¢ (™) (cf. (2.4)) and by Taylor’s expansion

B() = Dy + 2& e (3.2)
By (3.1) and (2.11), we have ¢x(z*) = fi(2*) < f(2*) + ¢, (using =¥ € S); hence by (3.2),
Gy + gyt = 2P = du(h) < f(2h) e (3.3)

Now, using 25! = 2% ty41 <t and fET1 > f in (2.4) and (3.1) gives drr1 > @, 50
Bu(y™) + + o LAt R g () (3.4)

by (3.2). Since z* = oF and tx < t; for k > k, by (3.3)—(3.4) there exists ¢, < f(z ) +¢
such that
G T oor Y=y 0, (3.5)

and {yk“} is bounded. Then {g*} is bounded as well, since g* € 8, f(y*) with e 1= ¢ +¢,
by (2.2), whereas 9.f is locally bounded [HUL93, §X1.4.1].

We now show that the approximation error € := f‘“rl fe(y/*) vanishes. Using the
form (2.2) of fkﬂ, the bound fry1 < fk+1 (cf. (2.3)), the Cauchy-Schwarz inequality and
(2.4) with z* = 2* and ty4, < #; for k > k, we estimate

f/c+1 ﬂ(ka) — fk+1(yk+2) . fk(yk+1) + <gk+1’yk+1 _ yk+2>
< fk+1( L+2) flc( k+1)+ |_]k+1["/k+1 k+2|
= Gt (™) — () + |g’”+1||ychrl e
2tk+1|yk+2 _ klz - lyk+1 Tc|2

< G (V™17 = u(y™) + 1M Y = A (3.6)

— T

where

Ay =

IA

2_;; (lyk+1 _ IL‘E|2 . |yL:+2 _ :Lﬁl'.’)
2& (|yk+1 — yk+2"2 + 2|yk+2 _ yk+1l|yk+2 _ Ik|)
1

IA

k41 _yk+2|2+( lyk+1 k+2|2_1_'y

kv2 _ k 2)1/2
— " .
2]

v
We have limy, Ay < 0, since L[‘/k“ y* 22 — 0 by (3.4)-(3.5), whereas ——1+—|y’c+2 EIZ
is bounded by (3.3). Hence using (3.5) and the boundedness of {g**'} in (3.6) yields
Timy é; < 0. On the other hand, the null step condition f'nLl > f& — kuy for k > k gives

= [ = 2] [ = BP] > = o= (1= R)ue 20,

where & < 1 by Step 0; thus ¢ — 0 and v, — 0. 0




Using (2.18) we may relate the descent vy := f¥ — fi.(y*+") predicted by f, with the
descent predicted by the augmented model ¢, in subproblem (2.4):

wy = ¥~ o) = o — ~tk[p 2 (3.7a)
= L + o = LAt + . (3.7b)
The above relations are convenient in showing that |d*| = O(i,lc/ %) during a series of null
steps that decrease ty; this will be useful when lim, ¢, = 0.
Lemma 3.4. If Step 4 is entered with i¥ = 0, then |d**> < (Liy|g"P|® + 2¢)ts.
Proof. First, suppose k& = k(). Then (cf. Steps 0 and 4) 2F = y* and f* = f:, s0 using
the bound fi > fi, (cf. (2.3)) in subproblem (2.4) and the form (2.2) of fi gives
He(y*h) > 1mn{f;.( )+ 5 m . —‘1;"[2} = fF_ 52&|gk|2,

Thus weyy < t—’;m]g’“(')|2 by (3.7a). Next, suppose k > k(l). Then (cf. Steps 3, 4, 6)

It = 2" and ¢, < t; for 7 = k() k — 1 due to i = 0 and hence w;,1 < w; by (3.4)
and (3.7a). Thus wy < wyqy, and by (3.7b) and (2.17), 5~ ]d"|2 = w, — oy < wygy +e O
We now use the safeguard (2.23) for analyzing the case of diminishing stepsizes.

Lemma 3.5. Suppose lim, t, = 0 at Step 6 and either only finitely many descent steps
occur, or sup,; tyy < 0o and {T’"} is bounded. Then lim, Vi = 0 at Step 6.

Proof. Let C be the supremum of ty){g"* + 2¢ over the generated values of I. Note
that C < oo, since if [ is unbounded then {g*¥} is bounded because for k = k(I) we have
7% = y* and ¢* € 0. f(y*) with € := ¢/ + ¢, by (2.2), whereas 9, f is locally bounded.
Since limy, ¢ = 0, there is K C {1,2,...} such that ty4q 08t Step 6 with g1 <t
Vk € K; thus t; £ 0, since t; < 10t;4; at Step 6. For k € K, at Step 6 we have (2.23),
fi > fF — Ky and if = 0 at Step 4. Using i[ = 0, the definition of C' and t; =5 0 in

Lemma 3.4 yields |d*2 < Ctx =5 0, ie., d* = 0. Thus, since {1’"} is bounded, so are
{y** = 2% + d*} ek and {gFT € B f(y* 1) rer because 8. f is locally bounded.
Let k € K at Step 6. Since f¥*' > f¥ — nv;, and y*' = 2* + d*, using (2.2) gives

FE = Fun(a®) = 5= £ (g - ) <k kg (38)
Now, (2.23), (3.8) and the fact v, = |d*||p*] + cu (cf. (2.18)) imply
Vi i=max { [P, i } < S5 = finn (@) < o (0419 + cu) + 19"+
< AL+ |d]) max { R s [ B SRR P A Vs | A R X
Therefore, since £ < 1, d* 250 and {g"" Y ek is bounded, for large k € K
0 < Vi < e latl/ [1 = k(1 + [d¥])] = 0.

Thus limgey Ve = 0. [




We may now finish the case of infinitely many consecutive null steps.

Lenuna 3.6. Suppose there exists k such that only null steps occur for all k > k. Then
cither Ty, = 00 and lim, V] =0, or Ty, < 00 and liny, Vi, = 0 at Step 4.

Proof. If lim, £, = 0 at Step 6 then lim; Vi = 0 by Lemma 3.5, so assume Ly ¢, > 0.
Next, if Too = 0o then lim V)] = 0 by Lemma 3.2, so assume T, < 00.

If Step 3 increases t; for some k = k' > k, then t, > 10fx_; and ¥ # 0, whereas
for k > k' Step 4 keeps ittt = i¥ # 0 and Step 6 sets tx41 = tx, so the number of such
increases must be finite (otherwise t;, — oo and Ti, = 00, a contradiction). Hence we may
assuine that Step 3 doesn’t increase ¢, for k > k. Then Lemma 3.3 gives vy — 0. Since
(cf. (2.20)) Vi < max{(ka/tk)l/Q,vk} and limy t;, > 0, we get Vi — 0. 0

For analyzing the remaining case of infinitcly many descent steps, we shall use the
descent indicator 1, defined by 4, := 1 if (2.22) holds, ¢ :== 0 otherwise.
Lemma 3.7. (i) If f& > —oo, then ixvy — 0 at Step 4.

(i) If f* > f. +¢,, then {2*} is bounded.
Proof. (i) At Step 4, 0 < wipop < f¥ — 21 50 Spiwve < (FL = f20)/k < o0.

(ii) Pick = € S and «y > 0 such that f¥ > f(z) + e, +y for all k. Since <p’°, z— z"> <
ay, — 7 by (2.13), ¢! — 2F = —ixtip® and v, = tip*|? 4 o by (2.18), we deduce that

Izk+l _ 1.,2 - |$k _ mIQ +2 <$k+1 _ zk’wk - _7/.> + lzk+1 _ JEkl2
< aF — o) + 2igti(an — ) + 2ixtip"
= |:Ek — .’L‘l2 =+ Qiktk(’l}k - "}’).
Since 4oy, — 0 by (i), there is ky such that for all k > k,, ix(vx —y) < 0 above and hence
la**! — 2| < |z* — x|. Thus {z*} is bounded. O

Lemina 3.8. If infinitely many descent steps occur, then f2° < fo +¢€,.

Proof. Suppose for contradiction f& > f, + ¢, By Lemma 3.7(ii), {z*} is bounded.
Further, T < 00, since otherwise Lemmas 3.2 and 3.1 would yield f* < f. + ¢, a
contradiction. Similarly, lung ¢, > 0, since otherwise Lemmas 3.5 and 3.1 would yield a
contradiction. Let K := {k: 4, = 1}. Using lim, ¢, > 0 and v X0 (cf. Lem. 3.7(i}) in
the bound Vi < max{(2vx/tx)"?, v} (cf. (2.20)) yields Vi -5 0. Hence limy Vi = 0 and
again Leinma 3.1 gives a contradiction.

We may now prove our principal result. Note that f% | f > f, —e; by (2.5).

Theorem 3.9. We have ¥ | f < f,+¢,. Moreover, liny, f(2*) < f.+e for € 1= €;+e¢,,
so that each cluster point z* of {z*} (if any) satisfies z* € S and f(2*) < f. +e.

Proof. To get f5° < f. + ¢, invoke Lemmas 3.6 and 3.1 in the case of finitely many
descent steps, and Lema 3.8 otherwise. By (2.5), liny, f(2%) < limy, f¥+e; < futes+e,.
The final assertion follows from the fact {z*} C S and the closedness of S and f. O
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These bounds allow us to replace vy, by wy, in the descent test (2.22), thus bringing it closer
to those of [HUL93, Alg. XV.3.1.4] and [Kiw90, §5]. Again the preceding results extend
easily (in the proof of Lemma 3.3, ff*! > f¥ — suy implies f5' > f¥ — sy, whereas in

the proof of Lemma 3.7(1), > tsup < % Tk brwy < 00).
For k, = %, we have wy < v < 3wy, by (4.6), whereas the test x,vr > —ay is equivalent,

to wy > —ayg. Note that wy 2> 0 is equivalent to the original test v > —a.

4.4 Zigzag searches

Our analysis may accomodate zigzag searches (cf. [HUL93, §XV.3.3], [Hin01, Kiw96,
S¢Z92}), which amount to trying possibly more than one value of #; at each iteration.

We first consider stepsize expansion at descent steps. Suppose that the descent test
(2.22) holds, but t, < Ty and some other tests, e.g., fi*1 < f5~Rug or <g"'+1, d"> < —Kug
with & € (k,1), indicatc that larger descent might occur if ¢, were increased. Letting
t), := tx, we may choose a larger ¢ € (£, 73] and go back to Step 1. If (2.22) fails when
Step 4 is reentered, then a descent step must be made with ¢, reset to t,.. Otherwise, either
a descent step with the current ¢, is accepted, or a larger stepsize may be tested as above.

One may use simple safeguards, such as 1.1¢, < Ty and #; > 1.1f, to ensure finiteness
of the loop between Steps 4 and 1. Indeed, these safeguards eventually break the loop,
unless Step 3 drives ¢, and T to oo, but in this case the conclusions of Lemma 2.3(iii)
hold (by its proof), so in fact a cycle between Steps 1 and 3 occurs by Lemma 2.3(iv). In
effect, the preceding results are not affected by such modifications.

To enable zigzag searches at null steps, it suffices to redefine fk+1 after Step 6 as

foer = fie i tes <00k (4.7)

Then “try1 < " in Lemma 3.3 must be replaced by “0.9¢, < ter) < 7, but_this is

enough for the proof of Lemina 3.6, since if lim, ¢, > 0 and £z, < # for k > k, then
tryr > 0.9¢; for all large k. The remaining results are not affected.

4.5 Ad hoc modification

Our analysis also sheds light on the behavior of the original proximal bundle method
[Kiw90], (HUL93, §XV.3] in the inexact case.

Cousider the following crippled version of Algorithm 2.1 with the safeguard (2.23)
replaced by (4.5). Suppose Step 2 emnploys any of the stopping criteria of §4.2 with a
positive optimality tolerance e, whereas Step 3 is replaced by

Step 3’ (Inaccuracy detection). If wy < 0, then stop; else set Ty = Tk

This version is an ad hoc modification of the method of [Kiw90] that only employs
the additional stopping criterion wy < 0; in fact most existing immplementations use this
criterion anyway (to detect QP inaccuracy or erroneous subgradients).

As for convergence of this modification, there are three cases. First, if no termination
oceurs then the results of §3 apply (with T, = T1); in view of Lenuua 3.11, this case is
quite unlikely. Second, termination at Step 2 means a satisfactory solution Lias been found.
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Third, termination at Step 3’ implies Vi < (2¢/t1)/? (cf. (2.21)); thus 2* is a satisfactory
solution if ¢ is “large enough”, otherwise a failure occurs.

The above analysis suggests that the existing bundle codes may behave reasonably well
in the inexact case, provided large enough stepsizes are used (most codes allow the user
to choose the initial stepsize and its updating strategies). Of course, in case of failure, the
user may choose a larger stepsize, disallow stepsize decreases, and restart the algorithm at
Step 1; such a “natural” strategy reinvents Algorithm 2.1! Finally, note that the existing
codes won’t face any trouble until the predicted descent vy falls below the oracle’s error e
(since wy, < 0 implies vy < ~ay < € by (3.7b}, (2.18) and (2.17)).

5 Lagrangian relaxation

In this section we consider the special case where problem (1.1) with S := IR} is the
Lagrangian dual problem of the following primal convex optimization problem

o =max ¥p(2) st P;(2) 20, 5=1n, z€ Z, (5.1)

where ) # Z ¢ R™ is compact and convex, and each %; is concave and closed (upper
semicontinuous) with dom¢; D Z. The Lagrangian of (5.1) has the form (z) + (y, ¥(2)),
where ¥ = (¢1,...,%,) and ¥ is a multiplier. Suppose that, at each y € S, the dual
function

f(y) =max {¢o(2) + (y,¥(2)) : 2€ Z } (5.2)
can be evaluated with accuracy € > 0 by finding a partial Lagrangian e-solution
2y) €2 suchthat f, = vo((y)) + (v, Y((0)) = fy) - (5.3)

Thus f is finite convex and has an e-subgradient mapping g. := ¢¥{z(-)) on S. In view of
Rem. 3.10(i), we suppose that 1(z(-)) is locally bounded on S (e.g., f agrees on S with
a convex function finite on an open neighborhood of S, or infz min}_, v; > ~o0, or % is
continuous on Z). Finally, we assume that fs is coercive, i.e., Arg ming f is nonempty and
bounded (e.g., Slater’s condition holds: (£) > 0 for some Z € Z).

In effect, assuming £ — oo, the results of §3 hold with ¢; := € and ¢, := 0, f. > —o00,
{z*} is bounded (cf. Rem. 3.10(ii)) and Lemuma 3.11 yields lim; V) = 0. In particular, the
partial Lagrangian solutions z* := z(y*) (cf. (5.3)) and their constraint values g* := 1(2*)
determine the linearizations (2.2) as Lagrangian pieces of f in (5.2):

Fi() = wo(2*) + (- 9(2h) (5.4)
Using their weights {15} ;e (cf. (2.8)), we may estimate solutions to (5.1) via aggregate
primal solutions .
=3k (5.5)
jeJk

We now derive useful bounds on ¢(3¥) and ¥(2*) as in [Kiw95a, Lem. 4.1].
Lemma 5.1. 3* € Z, 9(z*) > f* — oy — <p’°,:v’”'>, P(z*) > pf > p.
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Proof. We have (cf. (2.8)) ZJGJ;J/ = 1 with I/J" > 0. Hence #* € cof{z?}jen C Z,
Po(2*) = T uive(2), w(25) = ;v (zJ) by convexity of Z and concavity of g, .
Since (cf. (2.7)) p € Os(y*+!) with S ;= R%, we have p& < 0 and <p’§',yk+1> =0, so
(cf. (2.14)) p} = p* — p§ > p*. Next, using (2.8) and (5.4) with 9(27) =: g7, we get
Vi) = £ vhg? = pf and

R = 30 v 5 = X205 o) + (B 0] = 2 o= + (5, b)) -
Rearranging and using <p§,yk+1> =0, "= p’j + p (cf. (2.14)), (2.12) and (2.13) gives
S, vide(#) = ) = (0 + 050 = T50) = £5 — an — (2.

Combining the preceding relations yields the conclusion. (]

The bounds of Lemma 5.1 are expressed in terms of the primal-dual optimality measure
oo Lk ko k
Vi := max { ;1:1211:)75[—;)1-]1-, o + <p T > } (5.6)

as Yo (%) > fk— Ve, min; 1U(3R) > —Vh. Hence we may generate record measures V;

and primal bolutlonb #* as follows. At Step 0, set V1 = co. At Step 1, if Vi < V,:, set
Ve o= Vi, 35 := 75 At Step 4 set Vi, = V,c7 f“ = 2*. In effect, V¢ (the current
minimum of VJ for j < k) measures the quality of the primal iterate

Fez with ()2 fF-V, wE)2-V, j=Ln (5.7)
We now show that {#¥} converges to the set of e-optimal primal solutions of (5.1)
Zoi={2€ 2 vols) 2 0™ — e, (2) 2 0. (5.8)

Theorem 5.2. (i) {Z*} is bounded and all its cluster points lie in Z.
(i) lmy f¥=: f>* > f, — € and limg Vk <0.
(ili) Let 2% be a cluster point of {3¥}. Then 3* € Z..
(iv) dzs(z’f) ==infez |25 — 2 — 0 as k — o0.

Proof. (i) By (5.7), {2¥} lies in the set Z, which is compact by our asbumption
(i) By (2.5), f¥ > f(z*) — €, with ¢f := € gives f° > f, — e. Next, since pf > pF (cf.
Lem. 5.1) implies max;[—p}]; < |p*], using (5.6) and (2.16) yields

Vi < max{ [p*|, o + <pk,:ck>} < max { 2% (, } + |pF||z¥| € Vi (1 + |1k|) ; (5.9)

lLence by construction Vk < nnnJ 1 1(1 + |&7]). Recall that under our assumptions on
(5.1), lim; ¥ = 0 and {z*} is bounded. Therefore, lim; Vi < 0 by monotonicity.

(ili) By () 2 ¢ Z. Using (ii) in (5.7) gives o (2°) > f2°, ¥(£°) > 0 by closedness of
Wy, . Since > fo — € by (ii), where f. > 9™ by weak duality (cf. (1.1}, (5.1), (5.2)),
we have 1fo(22° ) > hye* —e. Thus 22° € Z, by the definition (5.8).

(iv) This follows from (i,iii} and the continuity of the distance function dz,. 0
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Remarks 5.3. (i) By the proofs of Lemima 2.3(iii) and Theorem 5.2, if an infinite loop
between Steps 1 and 3 occurs then V; — 0 yields max{V;,0} — 0 and dz,(3*) — 0.
Similarly, if Step 2 terminates with V;, = 0 then IU/L <QOand 3* € Z.

(ii) Theorem 5.2 holds for {#¥} replaced by {#}ref for any K C {1,2,...} such that
lime x max{Vy, 0} = 0.

(iil) Given a tolerance € > 0, the method may stop if

Po() 2 fF — e and 9;(2*) 2 —e, j=Lin.
Then 1(5%) > ™ — € — € from f¥ > f, — € (cf. (2.5)) and f. > 9™ (weak duality),

so #* € Z is an approximate solution of (5.1). This stopping criterion will be satisfied for
some k (cf. (5.7) and Thm 5.2(ii)).

No longer assuming coercivity of fg, we still have
Theorem 5.4. Theorem 5.2 holds if f, > —o0 and ty >ty > 0 for oll k.

Proof, In view of the proof of Theorem 5.2, we only need to show that liny, f/k“ < 0 when
infinitely many descent steps occur (since otherwise {z*} is bounded, whereas lim, V}/ = 0
by Lem. 3.11).

Let K := {k : 4 = 1}. Since vy —— 0 (cf. Lem. 3.7(i)) with ve = t4Jp*[? + o
(cf. (2.18)) and vr > |ax! at Step 4, we have oy £, 0 and telpk|? £ 0. By (2.18),

2 gk = it p®, so

!mk+ll2 _ |zk|2 = ity {tk}pk|2 -9 <pk’xk>} )
Suin up and use the fact ;. tkty 2> Fpex tmin = 00 tO get

T k2 o)k Lk
Jim {tklp | 2<p T >} >0
(since otherwise |z+1[2 — —oo, which is impossible). Combining this with #|p*[? - 0
yields limge g <p’°,wk> < 0, as well as |p*2 25 0 by using the fact ¢, > tmn. Since also
o X, 0, we have limcx Iv/k < 0 by (5.9). Then the fact f/k‘ < f/k implies limy 17,: <0.0

Remarks 5.5. (i) For Theorem 5.4, we may impose a lower bound ¢,,;, > 0 on tx4; at

Step 6, whereas f, > —oo0 if problem (5.1} is feasible (by weak duality). Thus, in contrast

with [FeK00, Kiw95a], our primal recovery works even if (5.1) has no Lagrange multipliers.
(ii) Remarks 5.3 remain valid under the assumptions of Theorem 5.4.

In the remainder of this section we allow the primal problem (5.1) to be nonconvex. As
before, our standing assumptions are that {y;}7_, are finite and upper semicontinuous on
the compact set Z, ¥(z(+)) is locally bounded oun S, and either fg is coercive or f, > —oc
and tr > tyin > 0 as in Theorem 5.4 (cf. Rem. 5.5(1)).

Since problem (5.1) may be nonconvex, cousider its relazed convezified version

M M M
Pl = max S va(2’) st Zu]ﬂ/)(zj) >0, )Y v=1,2¢€Z v;>0, (510

C M
(1/,,~J)J=l =1 =1 j=1
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where M := n + 1; see [FeK00, LeR01, MSW76|. Similarly to (5.8), let Z. denote the
set of e-optimal solutions of (5.10). Such solutions may be cstimated by (v5, 27) ;e e with
J¥ = {j € J*: vk # 0} as follows. Since the QP routine of [Kiw94] delivers [J*] < M,
whereas any (vf ) can be split into two elements (v5/2, 27), we may assume |J* = M.
Denoting (v J”’.)]EJ‘* as (0%, 27%)M | the proof of Lenuna 5.1 yields

M o
> /9;"1/10(27"") =fF - <7)k, n;"> and Z&fw(éﬂ") = p}' > pk (5.11)
i=1 j=1

Now, the record solutions (i, Zj")j”l are generated just like 2 by setting (7%, Z%)M | =
(08, 27%)M | at Step 1 if Vi < Vg, and (95, #3M0)M o (08 259)M ) at Step 4. We now
::hOW that (%, 27%)}, converges to Z, thus extending [FeKOO Thm 6.2].

Theorem 5.6. (i) {(0F, 2%)M,} lies in a compact set.
(i} limg f5 = f° > f. — € and lim, V7 < 0.
(iii) Let (U],z ) \ be a cluster point of {(7F,z7%)M }. Then (5;, #)M, € Z..
(iv) dZ((l/ ik )J 1) — 0 as k — o0.

Proof. (i) By coustruction (cf. (2.8)), ;5 =1, i¥ > 0, 2* € Z, a compact set.

(ii) The proofs of Theorems 5.2(ii) and 5.4 remain valid.

(i) By (i), &, = 1, 7 2 0, ¥ € Z, j = 1: M. Next, using (i) with Vi = V, (cf.
(5.6)) for k such that (2%, 27*) = (7, #*) in (5.11) and the upper semicontinuity of ¥, ¥
gives

M . M )
Lol 2 22 fom e and () 20

Since (7, 7)), is feasible in (5.10) and f, > i by weak duality (cf. (1.1), (5.2), (5.10)),
we have 7, ujwo(zf) >yt —¢ ie., (7, 2)M, is an e-optimal solution of (5.10).
(iv) This follows from (i,ili) and the continuity of dz . O

Extensions to separable problems are easily developed as in [FelS00, §6].
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