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Designing PI Controllers for Robust Stability and 
Performance 

Wiesław Krajewski, Antonio Lepschy and Umberto Viaro 

Abstract 

The design of PI controllcn; can profitably be carricd out by rcfcrring to a normali'l..ccl procci;i; model and t.o t.hc 
loci of constant stability margins an<l croos-ovcr frcqucncy in the paramctcr space. Thcsc loci are ca.siły obtaincd from 
lincar intcrpolation conditions. Aftcr chccking the compatibility of the spccifications with the controllcr strudurc, 
it is shown how the abovc-mcntioncd loci can be cxploitcd for tuning purposcs and robustncss analysii;. Critcria for 
chorn:;ing the controllcr puramcten; within the a.dmissiblc region arc discusscd with the aid of cxamplcs. 

Index Terms - PI controllers, first-order lag plus dcad-time proccss models, stability margins, parameter~ 
piane stability regions. 

I. INTRODUCTION 

Whcn dealing with PID control, it is customary to rccall that: (i) according to survcys on the state of proccss control 
systcms, more than 90% of the control loops arc of the P!D type III, most of which usc PI control only (97% in the 
pulp and paper industry 121), and large part of them arc poorly tuncd 131; (ii) an important rcason of the continual 
intcrcst in such kind of controllcrs is the sprcading of ccntralizcd computcr control systems; ( iii) in the majority of 
industrial applications, a simplc first-ordcr-lag-plus-dclay (FOLPD) model of the plant provcs adequatc [41 for design 
and tuning sincc the scminal paper by Ziegler and Nichols l5I. In view of these facts, it is not surprising that many 
recent rcscarch papers arc dcvotcd to the subjcct (cf., c.g., IG]-1101). 

Clcarly, the FOLPD model can only be an approximation of the actual plant bchavior so that robustncss i.ssucs play 
a major role. Traditionally1 stability margins have bccn used as meaningful mcasurcs of robustncss with rcspcct to both 
system .stability and performance1 and PIO dP,sign techniques have becn dcvclopcd to satisfy gain and phasc margin 
specifications, pos.sibly in conjuction with performance optimization critcria. In particular, in [llj the transcendental 
equations cxprcssing magnitude and phase of the loop frequcncy rcsponse have bcen solved numerically for the cross-over 
frequcncics and controllcr paramcters1 and the ISE for various combinations of stability margins havc bccn computcd 
to allow a tradeoff between these margins and performance. 

Naw, the phase margin mq, accounts wcll for dynamie precision, especially for the step responsc ovcrshoot, but is not 
relatcd to its rise time which depcnds instead on the gain cross-over frequcncy WA. On the othcr hand, the rcquirernent 
of steady-state accuracy is satisfied by the presencc of the integral action in both PI and PID controllcrs; thercfore it is 
rcasonablc to fil1it chcck whether a PI controllcr is cnough, and resort to a PID controller othenvisc. For thcsc reasons 1 

the paper refcrs to spccifications regarding m4' and WA and to the PI structure which affords two design paramcters 
and allows us to mect, in many cases, both spccifications. In the fo1lowing sections, simplc rulcs will be providcd to 
ascertain the compatibility of the two specifieations with the controller structure. 

As will be shown, the suggcsted mcthocl can be extended to the case in which the spccifications arc given in terms of 
phasc margin m4' and gain margin m 9 . Howcvcr1 this critcrion scems to be less justificd because, with the r:onsidcrcd 
process and PI controller, the magnitude of the open-loop frequcncy rcsponsc is monotonically decrcasing, which implics 
that thcre is a unique intersection of the open-loop Nyquist diagram with the unit circle {for w= WA). It follows that, 
very often, if mq, is accepta.blc, m 9 will be sufficicntly large tao. 

This paper is organizcd as follows. Aftcr introducing the csscntial notation, a simplc variablc transfonnation is 
adoptcd in Scction Il lcading to a normalized proccss transfer function characterized by a single paramcter. The basie 
intcrpolation equations arc dcrivcd in Section IIIi thcy turn out to be 1inear in the <lc::;ign paramctcrs. Section IV 
analyses the stnbility of the feedback control ::;ystem by detennining the ::;tability rcgions as wcll as the loci of co11sta11t 
m,:, in the paramctcr space, whcrcas the loci of eorn,tant WA arc dctcrmined in Scction V. The possibility of satisfyiug 
the spccifications with n PI controllcr is invcstigated in Section VI by cxploiting the loci prcviously dcrivc<l. Sec:tion 
VII shows how to avail onrsclves of these loci to design the controller ami to cvaluatc the rohustne::.s of the rcsultiJ1g 
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control system. In Scction VIII a similar approach is uscd to takc account of the gain margin. The paper cnds with 
somc cxamplcs that clcarly show how tao large phasc margins givc risc to unacccptablc scttling timcs. 

Probably the main contributions of the prcscnt work arc: (i) the dctcrmination of the loci of constant stability 
margins and cross-over frcąucncy in the paramcter space, and (ii) the suggestion of criteria for robust controller tuning 
ba.':'icd 011 such loci . 

li. MODEL NORMALIZATION 

In the following, rcfcrcncc will be made to processcs that can adcquately be modcllcd by a transfer function of the 
form: 

-Lś 

P(s) = K i"+rs' K,T,L > o (!) 

whcrc the independent variable is denoted by S because the symbol s will be used to indicate a normalir.ed variablc. 
The transfer function of the adoptcd PI controller is: 

(2) 

with 

(3) 

Thercforc1 the open-loop transfer function becomcs: 

G(') = K(K1 + Kps) c-" 
5 s l+Ts 

(4) 

For the rcasons explained in the Introduction, we initially consider spccifications in terms of phase margin mq, and 
gai n cross-over frcqucncy W A. 

For normalization purposcs, the independent variablc will be transformed to: 

so that ( 4) bccomes: 

whcre: 

s := Ts 

G(s) := G( ~) = (a+ bs) e-" _ 
T s l+s 

b := KKp, 

L 
T := r• 

Accordingly, the spccification on WA is translatcd into a constraint on the normalizcd cross-over frcąucncy: 

whercas the 8pecification on m,p is not affcctcd hy (5). 

III. JNTERPOLATION CONDITIONS 

(5) 

(6) 

(7a) 

(7b) 

(7c) 

(8) 

It is easy to rclate Lhc vnlues of paramctcrs a and b to the valucs of WA and m,p, given the valuc of r (which is the 
uniąuc paramctcr charactcrizing the proccss in the normalized transfer func:tion function (6)). Oncc a and b have bccn 
clrtcrmincd, the controller paramctcrs !(,.. and 1(1 1 or /(p nnd Tr, can be obtaincd from (7n), (7b) and (7c). 

Nccessary conditions for G(jw) to cxhibit phase 1n~1, - 1r (and, thus, for the system to cxhibit pha . .._c margi11 m .,p) and 
unit nrngnitudc at w✓i follow immediatcly from the intcrpolation coudition: 

(!J) 

Mnltiplying (O) by jw,1 - w;,, for WA real and strictly positivc we gct: 

a.cos(rwA) + bwA sin(rw„l) = w~ cosmę + WA sin m,p, (IOa) 



(!Ob) 

A uscful fcature of cquations (10a}, (10b} is thcir lincarity with rcspcct to a and b, which allows us to casily find thcir 
uniquc solution: 

a= WA[sin(TWA + m,;) + WA cos(TWA + m,;)], (Jiu) 

b = WA sin(rwA + m,;) - cos(rwA + m,;). (llb) 

Clearly, conditions {10a), (IOb) arc not sufficicnt to nchicvc the dcsircd stability margin mq> bccausc, cvcn if the 
Nyquist diagram of G(jw) passcs through point ei<"'r•>, it could cncirclc point -1 + jO (sec Scction IV). 

In the following sections, the abovc cquations will be cxploitcd to chcck the compatibility of the consiclcrcd spccifi­
cations, to design the controllcr and to cvaluatc the system robustne&;. 

IV. STABILITY ANALYSIS 

The Nyquist diagram of the type-one loop function G(jw) for w--+ O+ tcnds to a vertical asymptotc whosc abscissa 
is: 

r := lim Re[G(jw)J = b - (I + r)a. 
w--,() 

Moreovcr we have: 
sgn{ lim /m[G(jw)I} = -sgn a. 

w----0+ 

It follows that the initial arc (w small) of the (positive) Nyquist diagram belongs to: 
(i) the first quadrant for a< O, b > (1 + r)a; 

(ii) the second quadrant for a< O, b < (1 + r)a; 
(iii) the third quadrant for a> O, b < (1 + r)a; 
(iv) the fourth quadrant for a> O, b > (1 + r)a. 
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The first two cascs (a < O) cxemplified in Fig. la and Fig. lb, corrcspond to unstablc bchavior according to the 
Nyquist critcrion. Thcrcforc, the stability region in the (a, b) paramctcr piane may only bclong to the right half-piane 
a > O. The last two c:ru:;cs, howcvcr, may corrcspond to cither unstable bchavior, as in Fig. le and Fig. Id, or stable 
bchavior, as in Fig. le and Fig. lf. 

Dy taking into account that IG(jw)I dccrcascs monotonically as w incrcascs (which would not be truc in the case 
of PIO controllcrs), the positivc Nyquist diagram intcrsccts the unit circlc at one point only. For all valucs of T, the 
stn.bility boundary is formed by a segment of the l>-axis (a= O) and by the curvc of the (a, b)-planc characterized by: 

arg[G(jwA)] = -rr, (14) 

along which m;, = O. (Note that, if arg[G(jwA)] = -(2k + l)rr, k E Z+, the system would not be stable bccausc the 
Nyquist diagram would eneirclc the critical point). 

The curvcs corrcsponding to phase margins grcatcr than zero arc includcd in the just-dcfincd stability region. The 
stability bonndarics for various values of r arc depictcd in Fig. 2, whcrcas the curvcs corrcsponding to a set of valucs 
of m; for the same value of T ( T = 0.5) arc shown in Fig. 3. These havc been obtained with a MATLAB program that 
repeat.edly solves cquations (lla) and (llb). 

(•) 

r-0,1 

" 
14 

12 

10 

Fig. 2. Sto.bility rcgions of the (a, b)-plane: (a) -r = 0.170.5; (b) -r = 0.6 + I.O. 

V. GAIN CROSS-OVER FREQUENCY 

The analytic cxprcssion of the curvcs on the (a 1 b)-planc corrcsponding to WA = const can immcrliatcly be dctermincd 
from the condition [G(jwA)I = 1. In faet, taking account of (6) and considering squarc magnitudes, we gct: 

and then: 

a2 + b2w~ = I 
w~(I + w~) 

(15) 

(IG) 

whic:h reprcscntH an dlipsc ccutcrcd at (a= O, b = O) whosc axcs bclong to the straight lincs a = O and b = O. Thcsc 
ellipscs intcrsect the vertical axis for a = O and 

b = ±Jr +w;1, 

whcrcas thcy intcrscct the horizontal axis for b = O and 

a = ±wAJl +w;,. 

(17) 

(18) 



Fig. 3. Curves m.,, = con.st in the (a, b)-plnne for T = 0.5. 

In particular, for WA = 1 the ellipse becomcs a circle of radius J2i for WA < 1 the horizontal axis is smaller than the 
vertical one, and vice versa for WA > 1. It is intcrcsting to obscrvc that the cllipsc corrcsponding to cvcry WA intcrsccts 
the line b = a for b =a= WA, 

Note, also, that ellipscs (16) arc independent of T (whcreas the curvcs m,; = const dcpend on it) and that only thcir 
right halvcs may belong to the stability region. Fig. 4 shows the right halvcs of the ellipses corresponding to diffcrcnt 
valucs of WA in the region of interest. 

2.5~~-~-~-~-~-~-~-~-~-, 

-2.5~~-~-~-~-~-~-~-~-~-~ 
O 0.5 1.5 2.5 3.5 4.5 

Fig. ,J. Ares of the curvc:. WA = 0.25k, k = I 7 8. 



VI. SPECIFICATIONS COMPATIBILITY 
According to the considcrations of Scction I, !et us assumc that the spccifh::ations arc cxprcsscd as: 

m,p 2: m;, (ID) 

(20) 

Givcn the proccss to be controllcd, and thus r, spccifications (ID) and (20) arc compatiblc with cach other if, on 
the paramctcr piane corrcsponding to such T, au arc of the cllipsc WA = w.A, bclongs to the region bctwccn the curvc 
ni"' = rn; an<l the vertical axis. For instancc, for r = 0.5 the condition WA = 2 is not compatiblc with m,p 2: 75°, 
whcrcas it is compatiblc with 1n<fi 2: 45°; in fact, as shown in Fig. 5, the curvc WA= 2 is cxtcrnal to the curvc mrp = 75°, 
whcrcas it intcn:iccts the curvc mr;, = 45° at point P1 so that the points of arc P1 P2 cxhibit a phasc margin grcatcr 
than 45° (prcciscly1 it rangcs from 45° to almost 60°). 

,., ,., 

Fig. 5. Compat ibility or conditions w,A = 2 nnd wA, = 1.5 with mq, ~ 75°, m, ~ 60° nud m,t, ~ 45° for -r = 0.5. 

On the othcr hand, it is easy to find analytically the highest valuc 1n; of niq, compatiblc with a cross-over frcqucncy 
WA, In fact 1 m; characterizcs the curve of constant m,,, intersccting the ellipse for such WA at a= O (upper intcrscction 
of the cllipsc with the vertical axis). Now, whcn a = O, the phasc of the open-loop frcqucncy responsc G(jw) is 
arglG(jw)J = -rw - nrctan(w), so that the phasc margin turns out to be: 

m4, = m~ = 1T - TWA - arctan(wA)­

It follows that the spccified phasc margin m; is compatiblc with wA if: 

(21) 

(22) 

For example, if w;, = 2 and r = 0.5, thcn m~ < 1.034 rad = 59.27°. Fig. G plots the valuc of m; (in rad) vs. WA (in 
rad/s) for somc valucs of T. 

VII. DESIGN CIIARTS AND ROBUSTNESS ANALYSIS 

The design procctlurc ca11 be illustratcd by rcfcrri11g to chartH dcpicting the loci m,J, = const and WA = const in the 
region of intcrcst of the (a,b)-planc for diffcrc11t valt1cs of r. Charts or this kill{I me shown in Fig. 7. 

The design procedure can be stated as fellows: 
(i) rcfcr to the chart corresponcli11g to the v.1.lne or r = f. eąual (or closcst) to the act11al normaliicd dclay: 

(ii) chcck whcthcr specificatio11s {19) and {20) arc compatiblc (if thcy arc not so, cithcr modify the nonnalizcd gain 
cross-over frcqucncy wA or resort to amore complicated controller)i 

(iii) dctcrmine (iF ncccssary, by interpolation) the coordinatc8 (a 1 b) or a point P on the curvc WA = w,A inclu<lcd 
bctwccn it8 intcn;cctions with the curvc mci" = m; and the vertical axis, like points p' 1 p" and p'" in Fig. 5 (the 
choicc or P is disc11Hscd in Scction IX) ; 

" 



3.5 

.. 
Fig. 6. Highest value m; of the phose margin vs. cross-over frequency WA for T = 0.2,0.4,0.6,0.8, 1.0. 

,., 
(b} 

-,,~--~-~~-~ 

Fig. 7. Loci mtp = const (solid liues) and WA = const (dashcd lincs) in the (a, b}-plane: (a) T = O.Jj (b) T = 0.5. 

{iv} using relations (7a}, {7b} and {7c} compute the controller parameters as: 

b 
J(p=K' I(=_..':_ 

I [(1' or T,=~-
a 

The abovc charts can also be uscd to cvaluatc the cffccts on mq, and WA of changcs in the process paramctcrs. 

{23} 

To this purpose, let us denote by I( p and I( 1 the valucs of the controller parameters ens11ring that m,; = m,; ~ m; 

and W A = WA. w hen the proccss paramctcrs takc the 11nomi11al" valucs I(, L and T, and dcuotc I(, L' and r' thcir 
modificd valucs. By kccping the controllcr unchangcd, the new proccss paramctcrs lead to the following va.lues for the 
paramctcrs of the normalizcd loop transfer function: 

b' = [(' l(p , (24) 

Using the chart for r', the new phasc margin ui~ and nonnalizcd cross-over frcqucncy w~ corrcsponcling to (a' , b') can 

be cvaluatcd, from which the new actual cross-over frcąucncy W~ = ~ i8 immcdiatcly obtaincd. 



To mca'3ure the effccts of the considcrcd proccss modificatio11, it is rcasonablc to considcr the dcviatiom; 6.rn tp and 
6.WA of the new valucs m~ and W~ from the old vn.lucs 1Yi,p and WA of phasc margin and cross-over frcquency, Le.: 

ó.·mef> := m~ - rri' ef>, (25) 

~wA := w~ -w;.. (26) 

In practice, it will only be possible to predict the rangcs IK,,., J(M ], [Lm, LM], (T,,., TM] over which the process 
parameters K, L, T, rcspectively, can vary. Thcse intervals define a parallclepiped of the original proccss paramctcr 
spnce that is mapped via relations (7a), (7b), (7 c), with Kp and K1 constant, into a 6-facc solid of the (a, b, r) space 
chnracterized by 23 = 8 vcrtices and 12 edges. To facilitate the determination of the worst case, a MATLAil program 
has bccn developcd to rcprcscnt the cross sections of this solid on the charts for a suitablc number of r valucs in the 
interval of intcrcst, i.e., TE {~ 1 ~]-

As far as mcp is concerncd, the worst case usually corrcsponds to eithcr the vcrtcx {KM, LM, T,,.J or to the vcrtcx 
(I(M,LM,TM]-

As far as the cross-over frcquency is concerned, simple analytical considerations (equations (15) and (16)) show that 
its largest value is achicvcd for KM and TM and its smallest valuc for I<rn and T,11 • 

VIJI. GAIN MARGIN 

The Nyquist diagram of the loop function (6) crosscs the negative real axis an infinitc number of timcs. The value 
of WB of the frequcncy w c:orresponding to the first intersection is the so-callcd phase cross-over frequency. Denoting 
by g the absolute valuc of (6) at this point, we havc: 

G(jwn) = -g. (27) 

A8 is known, the gain margin m9 can be defined in diffcrent ways 1 e.g. 1 m9 = 1 - g or m9 = i or, cspccially with 

rcfcrcncc to Bodc diagrams, my =log~ = - logg. To simplify the analysis we directly rcfcr tog, from which the gain 
margin may be obtaincd irnrnediatcly, whatevcr definition is adoptcd. 

Multiplying both sides of (27) by jwa - w~ and equating real and imaginary parts, we get: 

a= gwa[sin(rwa) +wa cos(rwa)], (28a) 

b = g[wa sin(rwa) - cos(rwa)]. (28b) 

Givcn r, for any value of g cquations (28a) and (28b) dcfine a curvc in the (a,b)-planc with currcnt coordinate w8 . Of 
coursc, the curvc for g = l coincidcs with the curve charactcrizcd by mq, = 0° of the family prcviously com;idcrcd 1 and 
forms the boundary of the stability region togethcr with the rclevant segment of the b-axis. Jnsidc the stability region, 
the curves g = const (O < g < 1) havc the shapc showu in Fig. 8. Thcir shape is roughly similar to that of curvcs 
rn,; = const (cf. Fig. 7). Howevcr, the two intcrsections of cvery g = canst with the vertical axis always include point 
(0,0), whcreas the two intersections of cvcry curvc m,; = const always includc point (O, 1). 

Concerning the curves wn = const (which dctcrminc the paramctrization of thosc forg = const), their analytical 
cxprcssion, casily obtained from equations (28a) and (28b), is sirnply: 

b=pa 

which reprcscnts a straight line through the origin whose angular cocfficicnt: 

p = wa sin(rwa) - cos(rwn) 
wn[sin(rwa) + wa cos(rwa)J 

is independent of g (but dcpcnds on r). The lincs wn = const arc also drawn in Fig. 8. 

(W) 

(30) 

The charts in Fig. 8 allow us to fincl the gain margin (m1d the rclatcd phase cross-over frcqucncy wn) associatcd 
with a pair (a, b) determined according to the dc:,ign proccdurc of Scction V, i.c., satisfyi11g the spccification:, on ntq, 
and w,.1,, and can thus be used to discriminatc the points of the "admissiblc"arc of the µanunctcr µlanc (likc arc P1P2 

of Fig. 5): note in this regard, that a not tao small valuc of g is oftcn prefcrablc (sec later). 
Clcarly, if the design is ba'3ed on mtp aud m 9 , iustcad of mtp and WA, it is useful to avail oursclvcs of dw.rts dcpicting1 

for cvery r, the curves mcp = const and g = const inside the stability region. In this case, by dcnotiug with m; and g* 

tl1c spccificd lowcr bound on ·mqi and upper bound on g, the spccification!l arc compatiblc if curve m,p = m; crnsses curvc 
g = g* on the chart for the rclevnnt value of T I and the acccptable valucs of the nonnalized controllcr paramctcrs will 



,., (b) 

3.5 

Fig. 8. Curves g = conftt (solid lines) and lines WD = consl (da.shed lincs) in the (a, b)-planc: (a) r = 0.3; (b) r = 0.5. 

corre;pond to the points in the intcrscction of the rcgions whcrc m4i ~ m; and g ,::; g•. The proccdurc is cxcmplificd in 
Fig. 9 with reference to T = 0.5, m; = 60° and g' = 0.3: curvcs m,; = 60° and g = 0.3 intcracct cach othcr at (1, 0.916) 
for WA = 0.96 and at {0.221, -0.200) for WA = 0.21. The Nyquist diagrams of the loop functions corrcsponding to 
thcsc two points practically coincidc, cxccpt for their graduation in w, along the arc bctwccn the intcrscction with the 
real axis, and slightly differ outsidc this arc. Corrcspondingly, the overshoots of the step rcsponscs of the two feedback 
systems arc about the same, whcrcas the ratio bctwccn thcir risc timcs is nlmost rcciprocal to the ratio betwccn the 
rclatcd gain cross-over frequencics. 

Fig. 9. R.cgions where m.,, ~ 60° and g $ 0.3 for T = 0.5. 

IX. CHOJCE OF A POINT (a,b) IN THE ADMISSIBLE REGION 

If the spccifications am compatible, thcy can be satisficd in diffcrcnt ways. The followi11g considcration:; liclp us 
idcntify the :solutions that arc mo:;t satisfactory for the specific problem at hand. 

As already said 1 if the spccifications arc givcn in terms of gain cross-over freąucncy and phasc margin , i.c., in the 
form w= w;\ and m<; ~ 1n; , the admissiblc region of the (a, b)-planc rcduccs to the arc of the cllipsc WA = wA bctwccn 
its intcrscctions with the curve mq1 = rn~ and the b-axis 1 likc arc P 1 P2 of Fig. 5 which rcfcrs to the case of T = 0.5 1 



ł„ 

Fig. IO. SLep re:;po11MC8 or the feedback control system 
for T = 0.5, WA = wA = 2 ond ml/> ~ m; ::;::: 45": (a.) 
a = l.!023, b = 2.1671 (m, = 45°); (b) a = 0.8, 
b = 2.2 (m, "'49°); (c) a= 0.5, b = 2.2 (m•"' 53"): 
(d) a= O.I, b = 2.2355 (m, "'58°). 

Fig. 11. Step rcspouses for T = 0.5, WA = 1.5 nud: 
(a) m.,, = 45° (a= 1.5786, b = 1.4637); (b) m.,, ~ 60° 
(a = 0.9566, b = 1.686}; (c) ml/> ~ 75" (a = 0.2842, 
b = 1.7859). 

IO 

wA = 2 and m; = 45°. It is instructive to cxaminc the step responsc of the feedback control system corrcsponding to 
different points of arc P1 Pz. To this purposc, Fig, 10 shows the rcsponses for: 

(i) point P1 = (1.1023, 2.1671), where m;, = 45"; 
(ii) point p' = (0.8, 2.2), where m;, "'49°; 

(iii) point p" = (0.5, 2.2), where m;, "'53"; 
(iv) point p"' = (0.1, 2.2355), very close to P2, where m;, "'58°. 

For t > T, all responscs are well approximated by the step rcsponse of a third-order system with two com pl ex poi es. 
On pa.s.sing from P 1 to P2 , the importance of the aperiodie mode inereases. As a result, the time to reach half the finał 
value and the rise time rcmain (practically) unchanged, whereas the overshoot, strictly relatcd to the phasc margin 1 

dccrcascs and the scttling time incrcascs. 
Similar conclusions can be drawn with rcfcrcnce to the step rcsponscs reprcsented in Fig. Il, which correspond to 

the intersections of the cllipsc WA = l.5 with the curves mq, = 45°, 1nrp = 60° and mcp = 75°, also shown in Fig. 5. 
The last two interscctions, like the points on the arc P1P2 considercd in Fig. 10, lic nbove the line b = a, along which, 
as alrcady observed in Scction 3, the gain cross-over frcquency is WA = a = b. The first intcrsection, in contra.st, is 
bclow this line, but quite close to it. Now, for a= b the zero introduccd by the controllcr canccls the pole at -1 of 
the normalized process and the feedback system exhibits only two dominant poles (this can easily be explained with 
the aid of root locus considcrations; its part closest to the origin contains arcs of two branchcs only). For this rea.son, 
fort> T the step response corresponding to WA = 1.5 and m;, = 45° (curve (a) of Fig. 11) is very similar to that of a 
second-order system, whereas the other rcsponses arc characterized by three dominant poi es ( the poles closest to the 
origin) and, thcreforc, contain an additional apcriodic mode. 

Conccrning the choice of a point in the admissiblc region when the spccifications arc in terms of phasc and gain 
margins, Jet us consider again the example illustrated in Fig. 9. The point (1, 0.916) at the intersection of the curves 
m;, = m; = 60" and g = g* = 0.3 is very close to the straight line b = a. The step rcsponsc of the rclated feedback 
control system is represented in Fig. 12 togcther with the responses for a= b = 0.75 (wherc the settling time is almost 
minimal) and a = b = 0.5 corrcsponding to poiul::; inside the admisible region. For the rcasons prcviously explained, 
all thesc rcsponscs arc vcry similar to second-order rcsponscs (for t > r). As the com;idered point approache::; the 
origin along the abovc-mentioncd straight line a = b, m~ incrcascs (from GO" to 75.7°) and WA dccreases (from 0.96 
to 0.5). Correspondingly, the responscs bccome monotonically increasing with longer risc timcs. If, instcad 1 the (a, /J)­
point approachcs the b--axis along the horizontal line b = 0.916), the step rcsponsc:; change as shown in Fig. 13: the 
importancc of the additional (apcriodic) dominant mode incrcascs and the scttling time bccomes longcr. 

X. CONCLUSIONS 

A simplc proccdnre has bccn suggcstcd that allows us to chcck the co1upatibility of the spccifications with tl1c t1sc of 
PI controllcrs and facilitate the dctcrmination of thcir parametcn;. Ou the basis of linear intcrpolation equations (1 l}, 
l'vfATLAB programs havc been dcvclopcd for findiug tltc loci of constant stability margins and cros::;-ovcr frcqucm.:ics 
in the paramctcr space of a suitably normalizcd open-loop transfer function. In this way, the cffect::; of proccss changcs 
on system performance can ca.siły be evaluatcd. Finally, with the aid of reprcscntativc cxamplcs1 critcria have bcc11 
suggcstcd to guide the choice of a design solution among the admi:;siblc oncs. 



Fig. 12. Step rcspoll8Cl:I for r = 0.5 corresponding 
to points on, or close to, the line b = a: (o.) a = 
1.0, b = 0.916 (m• = 60°, g = 0.3, WA = 0.96); (b) 
a = b = WA = 0.75 (m,t, = 68.5", g = 0.24); (c) 
a= b =WA= 0.5 (mrp = 75.7", g = 0.16). 

Fig. 13. Step reiponses for T = 0.5 corresponding to 
points on the horizontal line b = 0.916: {a) a = 1.0 
(m• = 60°, g = 0.3, WA= 0.96); (b) a= 0.75 (m• = 
72.2", g = 0.28, WA = 0.82); (c) a= 0.5 (m..; = 88.3°, 
,q = 0.26 WA= 0.65). 
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