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Abstract

The design of PI controllers can profitably be carried out by referring to a normalized process model and to the
loci of constant stability margins and cross-over frequency in the parameter space. These loci are easily obtained [rom
lincar interpolation conditions. After checking the compatibility of the specifications with the controller strueture,
it is shown how the above-mentioned loci can be exploited for tuning purposes and robustness analysis. Criteria for
choosing the controller paramcters within the adiissible region are discussed with the aid of cxamples,

Indez Terms— PI controllers, first-order lag plus dead-time process models, stability margins, parameter-
plane stability regions.

I. INTRODUCTION

When dealing with PID control, it is customary to recall that: (i) according to surveys on the state of process control
systems, more than 90% of the control loops arce of the PID type [1], most of which use PI control only (97% in the
pulp and paper industry [2]), and large part of them are poorly tuned [3]; (i) an important reason of the continual
interest in such kind of controllers is the spreading of centralized computer control systems; (i71) in the majority of
industrial applications, a simple first-order-lag-plus-delay (FOLPD) model of the plant proves adequate [4] for design
and tuning since the seminal paper by Zicgler and Nichols [5]. In view of these facts, it is not surprising that many
recent rescarch papers are devoted to the subject (cf., c.g., [6]-[10]).

Clearly, the FOLPD modecl can only be an approximation of the actual plant behavior so that robustness issucs play
a major rolc. Traditionally, stability margins have been used as mcaningful measures of robustness with respect to both
system stability and performance, and PID design techniques have been developed to satisfy gain and phase margin
specifications, possibly in conjuction with performance optimization criteria. In particular, in {11] the transcendental
cquations expressing magnitude and phasc of the loop frequency response have been solved numerically for the cross-over
frequencics and controller paramecters, and the 1SE for various combinations of stability margins have been computed
to allow a tradeotf between these marging and performance.

Now, the phase margin mg accounts well for dynamic precision, especially for the step response overshoot, but is not
related to its rise time which depends instead on the gain cross-over frequency wa. On the other hand, the requirement
of steady-state accuracy is satisficd by the presence of the integral action in both PI and PID controllers; therefore it is
reasonable to first check whether a Pl controller is ecnough, and resort to a PID controller otherwise. For these reasouns,
the paper refers to specifications regarding myg and wy and to the PI structure which affords two design parameters
and allows us to mect, in many cases, both specifications. In the following sections, simple rules will be provided to
ascertain the compatibility of the two specifications with the controller structure.

As will be shown, the suggested method can be extended to the case in which the specifications are given in terms of
phasc margin my and gain margin m,. However, this criterion scems to be less justified Decause, with the considered
process and 1 controller, the magnitude of the open-loop frequency response is monotonically decreasing, which inplics
that there is a unique intersection of the open-loop Nyquist diagram with the unit circle (for w = w,). It follows that,
very often, if my is acceptable, my, will be sufficiently large too.

This paper is organized as follows. After introducing the cssential notation, a simple variable transforination is
adopted in Scction 11 leading to a normalized process transfer function characterized by a single parameter. ‘The basic
interpolation equations are derived in Scction HI; they turn out to be lincar in the design parameters. Scction 1V
analyses the stability of the feedback control system by determining the stability regions as well as the loci of constang
g in the parameter space, whereas the loci of constant wy arc determined in Section V. The possibility of satisfying
the specifications with a PI controller is imvestigated in Scetion VI by exploiting the loci previously derived. Section
VII shows how to avail owrsclves of these loci to design the controller and to evaluate the robustuess of the resulting
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control system. In Section VIII a similar approach is used to take account of the gain margin. The paper ends with
some examples that clearly show how too large phase margins give rise to unacceptable scttling times.

Probably the main contributions of the present work are: (i) the detcrmination of the loci of constant stability
margins and cross-over frequency in the parameter space, and (i¢) the suggestion of criteria for robust controller tuning
hased on such loci,

II. MODEL NORMALIZATION
In the following, reference will be made to processes that can adequately be modelled by a transfer function of the
form:
N e—Ld
P =K
=K
where the independent variable is denoted by § beeanse the symbol s will be used to indicate a normalized variable.
‘The transfer function of the adopted PI controller is:

K,T,L>0 (1)
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Thercfore, the open-loop transfer function becomes:

K(Kp+Kps) e 18
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For the reasons cxplained in the Introduction, we initially consider specifications in terms of phase margin mg and
gain cross-over frequency wa.
For normalization purposcs, the independent variable will be transformed to:

s:=T$ (5)

so that (4) becones:

a8y latbs) e
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where:

a:= KK, (7a)
b= KKp, (7b)
T = % (7¢)

Accordingly, the specification on @4 is translated into a constraint on the normalized cross-over frequency:
wp=Tda, (8)
wlicreas the specification on my s not affected by (5).

Iif. INTERPOLATION CONDITIONS

It is casy to relate the values of parameters @ and b to the values of wa and my, given the vahic of 7 (which is the
unique paramcter characterizing the process in the normalized transfer function function (6)). Once a and b have been
determined, the controller pavameters Kp and Kp, or K p and Ty, can he obtained from (7a), (7b) and (7c).

Necessary conditions for G(jw) to exhibit phase mg — m (and, thus, for the system to exhibit phase margin m,) and
unit magnitude at w, follow immediately from the interpolation condition:

Gjwa) = emem) = _cos iy — jsinmg, (9}
Multiplying (9) by jw.a — w3, for wy real and strictly positive we pet:

acos(Twy) + bwasin(rwa) = w? cos g + wsin g, (10a)




—asin(Twa) +bwacos(rwa) = —wa cosing, + w? sinmy,. (100)

A uscful featurce of cquations (10a), (10b) is their lincarity with respect to « and b, which allows us to casily find their

unique solution:
o =walsin{rwa + my) + wy cos(twa +my)), (11a)

b= wasin(Twy +mg) — cos(rwa + my). (110}

Clearly, conditions (10a}, (10b) arc not sufficient to achicve the desired stability margin my because, even if the
Nyquist diagram of G(jw) passcs through point ¢+~ it could encircle point —1 + j0 (sce Scction IV).

In the following scctions, the above cquations will be exploited to check the compatibility of the considered specifi-
cations, to design the controller and to cvaluate the system robustness.

IV. STABILITY ANALYSIS

The Nyquist diagram of the type-one loop function G(jw) for w — 0. tends to a vertical asymptote whose abscissa

is:
ri= lim“ RelG(jw)] =b— (1 + 7)a. (12)
Morcover we have:
sgn{ lim Im[G(jw)}} = ~sgna. (13)
werly

It follows that the initial arc (w small) of the (positive) Nyquist diagram belongs to:
(i) the first quadrant for a <0, b > (1 + 7)q;

;i) thc sccond quadrant for ¢ < 0, b < (14 7)g;

(iii) the third quadrant for & > 0, b < (14 7)g;

(iv) the fourth quadrant for @ > 0,5 > (1 + 7)a.
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Fig. 1. Typical Nyquist diagrams for (6).




The first two cases (a < 0) exemplified in Fig. la and Fig. 1b, correspond to unstable behavior according to the
Nyquist criterion. Therefore, the stability region in the (g, b) paramecter plane may only belong to the right hall-planc
a > 0. The last two cascs, however, may correspond to cither unstable behavior, as in Fig. e and Fig. 1d, or stable
behavior, as in Fig. 1c and Fig. 1f.

By taking into account that |G(jw)] decreases monotonically as w increases (which would not he true in the case
of PID controllers), the positive Nyquist diagram intersects the unit cirele at one point only. For all values of 7, the
stability boundary is formed by a segment of the b-axis (a = 0) and by the curve of the (a, b)-plane characterized by:

arg[G(jwa)] = ~m, (14)

along which mg = 0. (Note that, if arg{G(jwa)] = —(2k + 1)m, k € Z,, the system would not be stable because the
Nyquist diagram would cncircle the critical point}.

The curves corresponding to phase margins greater than zero are included in the just-defined stability region. The
stability boundaries for various values of T are depicted in Fig. 2, whereas the curves corresponding to a sct of values
of my for the same value of 7 (v = 0.5) arc shown in Fig. 3. These have been obtained with a MATLAB program that
repeatedly solves equations (11a) and (110).
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Fig. 2. Stability regions of the (a, b)-plane: (a) 7 = 0.1 +0.5; (b) 7 = 0.6 + 1.0.

V. GAIN CROSS-OVER FREQUENCY

The analytic expression of the curves on the (a, b)-plane corresponding to w4 = const can immediately be determined
from the condition |G(jw)] = 1. In fact, taking account of (6) and considering squarc magnitudes, we get:

2 42,2
“z_"',w_;\ =1 (15)
Wi (1 +wh)
and then:
a? - =0 (1G)

which represents an cllipse centered at (a = 0,5 = 0) whose axes belong to the straight lines @ = 0 and b = 0. These

cllipses interseet the vertical axis for a = 0 and
b=+\/1+w?, (17

whercas they intersceet the horizontal axis for b = 0 and

@ =dwyy/1+wh. (18)
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Fig. 3. Curves my = const in the (a,b)-plane for = 0.5.

In particular, for wy = 1 the cliipse becomes a circle of radius v/2; for wa < 1 the horizontal axis is smaller than the
vertical one, and vice versa for wa > 1. It is interesting to observe that the ellipse corresponding to cvery wa intersects
the line b= a for b = a = wy.

Note, also, that cllipses (16} arc independent of 7 (whereas the curves my = const depend on it) and that only their
right halves may belong to the stability region. Fig. 4 shows the right halves of the cllipses corresponding to different
values of wy in the region of interest.

25

°
o

-]
)

Fig. 4. Arcs of the curves wy = 0.25k, k=1 = 8.




V1. SPECIFICATIONS COMPATIBILITY

According to the considerations of Section I, let us assume that the specifications are expressed as:
my 2 my, (19)
wa = wj. (20)

Given the process to be controlled, and thus 7, specifications (19) and (20) are compatible with cach other if, on
the paramcter plane corresponding to such 7, an arc of the cllipse wy = w} belongs to the region between the curve
mg = mj and the vertical axis. Tor instance, for 7 = 0.5 the condition wa = 2 is not compatible with m, > 75°,
whereas it is compatible with iy > 45°; in fact, as shown in Fig. 5, the curve wy = 2 is external to the curve my, = 75°,
whereas it intersects the curve my = 45° at point P, so that the points of arc /P, exhibit a phase margin greater
than 45° (preciscly, it ranges from 45° to almost 60°).

Fig. 5. Compatibility of conditions w’y = 2 and o’ = 1.5 with my > 75°, my > 60° and mg > 45° for T = 0.5.

On the other hand, it is casy to find analytically the highest value mj of mm,, compatible with a cross-over frequency
wa. In fact, my characterizes the curve of constant my intersccting the cllipse for such w4 at o = 0 (npper intersection
of the ellipsc with the vertical axis). Now, when a = 0, the phasc of the open-loop frequency response G(jw) is
arg[G(jw)] = —Tw — arctan(w), so that the phasc margin turns out to be:

My =y =7 — Tws — arctan(wa). (21)
Tt follows that the specified phase margin m}, is compatible with wy ift
my < — 7w ~ arctan(w}). (22)

For example, if w) = 2 and 7 = 0.5, then my < 1.034 rad = 59.27°. Tig. G plots the value of my (in rad} vs. wy (in

rad/s) for some values of 7.

VII. DESIGN CIIARTS AND ROBUSTNESS ANALYSIS
The design procedure can be illustrated by referring to charts depicting the loci my = const and wq = const in the
region of interest of thie (a, b)-plance for different valnes of 7. Charts of this kind are shown in Fig. 7.
The design procedure can he stated as follows:
(i) refer to the chart corresponding to the valie of 7 = % cqual (or closest) to the actnal normalized delay:
(ii) check whether specifications (19} and (20) arc compatible (if they are not so, cither modify the normalized gain
cross-over frequency wly or resort to a more complicated controller);
(iif} determine (if necessary, by interpolation) the coordinates (¢.b) of a point P on the cnrve wy = wj included
between its intersections with the curve mg = mj and the vertical axis, like points P, P" and P in Fig. 5 (the

choice of P is discussed in Scetion IX):
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Fig. B. Curves g = const (solid lines) and lines wp = const (dashed lines) in the (a,&)-plane: (a) * = 0.3; (b) 7 = 0.5,

correspond to the points in the interscction of the regions where my 2 my and g < g*. The procedure is cxemplificd in
Fig. 9 with reference to 7 = 0.5, m, = 60° and g* = 0.3: curves mg = 60° and g = 0.3 interscct cach other at (1,0.916)
for wa = 0.96 and at (0.221, —0.200) for w4 = 0.21. The Nyquist diagrams of the loop functions corresponding to
these two points practically coincide, except for their graduation in w, along the arc between the intersection with the
real axis, and slightly differ outside this arc. Correspondingly, the overshoots of the step responses of the two fecdback
systems arc about the samne, whereas the ratio between their rise times is almost reciprocal to the ratio between the
related gain cross-aver frequencices.
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Fig. 9. Regions where mg > 60” and ¢ < 0.3 for = 0.5.

IX. CHOICE OF A POINT (a,b) IN THE ADMISSIBLE REGION

If the specifications are compatible, they can he satisfied in different ways. The following considerations help us
identify the solutions that arc most satisfactory for the specific problem at hand.

As already said, if the specifications are given in terms of gain cross-over frequency and phase margin, ie., in the
form w = w} and my > my, the admissible region of the (., b)-planc reduces to the arc of the cllipse wy = w} between
its interscetions with the enrve my = m} and the b-axis, like arc PPy of Fig. 5 which refers to the case of 7 = 0.5,
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Fig. 10. Step responses of the feedback control system Fie 1L St 'T(“" 05 15 and
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2 = 1.1023, b = 21671 (my = 45°); (b) a = 0, (a = D.9566, b = 1.686); (c) g & T5° (a = 0.2842,

b=2.2 (my = 49°); () a= 0.5, b=2.3 (my ~ 53°); S 17850),

(d) a = 0.1, b= 25355 (my ~ 58°).

wj =2 and mj = 45°. It is instructive to cxamine the step response of the feedback control system corresponding to
different points of arc PyJ%. To this purpose, Fig. 10 shows the responses for:

(i) point I = (1.1023,2.1671), where mg = 45°;

(ii) point P’ = (0.8,2.2), where mg ~ 49%;
(iii) point P = (0.5,2.2), where my = 53°%;
(iv) point P = (0.1,2.2355), very close to Iz, where mgy =~ 58°.

For t > T, all responses are well approximated by the step response of a third-order system with two complex poles.
On passing from P; to I%, the importance of the aperiodic mode increases. As a result, the time to reach half the final
value and the rise time remain (practically) unchanged, whereas the overshoot, strictly related to the phase margin,
decrcases and the settling time increascs.

Similar conclusions can be drawn with refereuce to the step responses represented in Fig. 11, which correspond to
the intersections of the cllipse wa = 1.5 with the curves my = 45°, my = 60° and my = 75°, also shown in Fig. §.
The last two intersections, like the points on the arc /% considered in Fig. 10, lie above the line b = a, along which,
as alrcady observed in Section 3, the gain cross-over frequency is wa = ¢ = b, The first interscetion, in contrast, is
below this line, but quite close to it. Now, for ¢ = b the zcro introduced by the controller cancels the pole at —1 of
the normalized process and the feedback system exhibits only two dominant poles {this can casily be explained with
the aid of root locus considerations; its part closest to the origin contains arcs of two branches only). For this reason,
for t > 7 the step response corresponding to wa = 1.5 and mg = 45° (curve (a) of Fig. 11) is very similar to that of a
second-order system, whereas the other responses are characterized by three dominant poles (the poles closest to the
origin) and, therefore, contain an additional aperiodic mode.

Concerning the choice of a point in the admissible region when the specifications arc in terms of phase and gain
margins, let us consider again the example illustrated in Fig. 9. The point {1,0.916) at the intersection of the curves
mg = my = 60° and g = ¢g* = 0.3 is very close to the straight line b = a. The step responsc of the related feedback
control system is represented in Fig. 12 together with the responses for a = b = 0.75 (where the scttling time is almost
minimal) and a = b = 0.5 corresponding to poiuts inside the admisible region. For the reasons previously explained,
all these responses are very similar to second-order responses (for 2 > 7). As thie considered point approaches the
origin along the above-mentioned straight line @ = b, my, increases (from 60° to 75.7°) and wa decreases (from 0.96
to 0.5). Correspondingly, the responses become monotonically increasing with longer rise times. If, instead, the (g, )-
point approaches the &-axis along the horizoutal line b = 0.916), the step responses change as shown in Fig. 13: the
importance of the additional (aperiodic) dominant mode increases and the scttling time becomes longer.

X. CONCLUSIONS
A simmple procedure has been suggested that allows us to check the compatibility of the specifications with the use of
PT controllers and facilitate the determination of their parameters. On the basis of linear interpolation equations (11),
MATLAB programs have been developed for finding the loci of constant stability margins and cross-over frequencies
in the parameter space of a suitably nornialized open-loop transfer function. In this way, the effeets of process changes
on system performance can easily be evaluated. Finally, with the aid of representative examples, criteria have been
suggested to guide the choice of a design solution among the admissible ones.




5o (I R R R B B

Tineisaca) Teindsace)
Fig. 12.  Step responses for 7 = 0.5 corresponding Fig. 13. Step reyponses for v = 0.5 corresponding to
to points on, or close to, the line b = a: (a) @ = points on the horizontal line b = 0.916: (a) @ = 1.0
1 0. b = 0.916 (my = 60, g = 03, w,, = 0.96); (b} (g = 60°, g = 0.3, wy = 0.96); (b) @ = 0.75 (my, =
b= wy = .75 (my = 68.5°, g = 0.24); (c} 72.2°, g = 0.28, w4 = 0.82); (c) o = 0.5 (my = 88.3°,

wa = 0.5 (my = 75.7°, q#()l(i) g=0.26 ws = 0.65).
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