
Raport Badawczy

Research Report
RB/70/2003

Randomized selection
with tripartitioning

Krzysztof C. Kiwiel

Instytut Badań Systemowych
Polska Akademia Nauk

Systems Research Institute
Polish Academy of Sciences

POLSKA AKADEMIA NAUK

Instytut Badań Systemowych

ul. N ew el ska 6

01-447 Warszawa

tel.: (+48) (22) 8373578

fax: (+48) (22) 8372772

Kierownik Pracowni zgłaszający pracę :
Prof dr hab. Krzysztof C. Kiwiel

Warszawa 2003

•

Randomized selection with tripartitioning

Krzysztof C. Kiwiel*

December 20, 2003

Abstract

We show that severa! versions of Floyd and Rivest's algorithm SELECT [Comm.
ACM 18 (1975) 173] for finding the kth sma!lest of n elements require at most
n+ min{k, n - k} + o(n) comparisons on average, even when equal elements occur.
This parallels our recent analysis of another variant due to Floyd and Rivest [Comm.
ACM 18 (1975) 165- 172] . Our computational results suggest that both variants
perform well in practice, and may compete with other selection methods, such as
Hoare's FIND or quickselect with median-of-3 pivots.

Key words. Selection, medians, partitioning, computational complexity.

1 Introduction

The selection problem is defined as follows: Given a set X := { Xj }1=1 of n elements, a
total order< on X, and an integer 1::; k::; n, find the kth smallest element of X, i.e., an
element x of X for which there are at most k - 1 elements Xj < x and at least k elements
·xJ :S x. The median of X is the 1n/27th smallest element of X.

Selection is one of the fundamental problems in computer science; see, e.g., the refer­
ences in [DHUZ0l, DoZ99, DoZOl] and [Knu98, §5.3.3]. Most references concentrate on
the number of comparisons between pairs of elements made in selection algorithms. In the
worst case, selection needs at least (2 + c)n comparisons [DoZ0l], whereas the algorithm
of [BFP+72j makes at most 5.43n, that of [SPP76] needs 3n + o(n), and that in [DoZ99]
takes 2.95n + o(n). In the average case, for k :S I n/21, at least n+ k - 0(1) comparisons
are necessary [CuM89], whereas the best upper bound is n+ k + O(n112 ln1l 2 n) [Knu98,
Eq. (5.3.3.16)]. The classical algorithm FIND of [Hoa61], also known as quickselect, has
an upper bound of 3.39n + o(n) for k = I n/21 in the average case [Knu98, Ex. 5.2.2- 32],
which improves to 2.75n + o(n) for median-of-3 pivots [Grii99, KMP97].

In practice FIND is most popular. One reason is that the algorithms of [BFP+72,
SPP76] are much slower on the average [Mus97, ValO0], whereas [KMP97] adds that other
methocls proposecl so far, although better than FIND in theory, are not practical because
they are clifficult to implement, their constant factors and hiclclen !ower order terms are

"Systems Research Institute, Ncwclska 6, 01 - 447 Warsaw, Poland (kiwiel©ibspan . waw. pl)

too large, etc. It is quite suprising that these references [KMP97, Mus97, Va!OO] ignore
the algorithm SELECT of [FIR75b], since most textbooks mention that SELECT is asymp­
totically faster than FINO. In contrast, this paper shows that SELECT can compete with
FINO in both theory and practice, even for fairly small values of the input size n.

We now outline our contributions in mare detail. The initial two versions of SELECT

[FIR75b] had gaps in their analysis (cf. [Bro76, PRKT83], [Knu98, Ex. 5.3.3- 24]); the first
version was validated in [Kiw03b], and the second one will be addressed elsewhere. This
paper deals with the third version of SELECT from [FIR75a], which operates as follows.
Using a small random sample, it finds an element v almost sure to be just above the kth
if k < n/2, or below the kth if k ;=:: n/2. Partitioning X about v leaves min{ k, n - k} +
o(n) elements on average for the next recursive call, in which k is near 1 or n with high
probability, so this second call eliminates almost all the remaining elements.

Apparently this version of SELECT has not been analyzed in the literature, even in
the case of distinct elements. We first revise it slightly to simplify our analysis. Then,
without assuming that the elements are distinct, we show that SELECT needs at most
n+ min{ k, n - k} + O(n213 Jn113 n) comparisons on average, with ln113 n replaced by ln112 n
for the original samples of [FIR75a]. Thus the average cost of SELECT reaches the !ower
bounds of 1.5n + o(n) for median selection and 1.25n + o(n) for selecting an element of
random rank. For the latter task, FINO has the bound 2n + o(n) when its pivot is set to
the median of a random sample of s elements, with s--, oo, s/n--, oo as n--, oo [MaROl];
thus SELECT improves upon FINO mostly by using k, the rank of the element to be found,
for selecting the pivot v in each recursive call.

SELECT can be implemented by using the tripartitioning schemes of [Kiw03a, §5], which
include a modified scheme of [BeM93]; mare traditional bipartitioning schemes [Kiw03a,
§2] can perform quite poorly in SELECT when equal elements occur. We acid that the
implementation of [FIR75a] avoids random number generation by assuming that the input
file is in random order, but this results in poor performance on some inputs of [Va!OO];
hence our implementation of SELECT employs random sampling.

Our computational experience shows that SELECT outperforms even quite sophisticated
implementations of FINO in both comparison counts and computing times. To save space,
only selected results are reported for the version of [Va!OO], but our experience with other
versions on many different inputs was similar. SELECT turned out to be more stable than
FINO, having much smaller variations of solution times and numbers of comparisons. Quite
suprisingly, contrary to the folklore saying that SELECT is only asymptotically faster than
FINO, SELECT makes significantly fewer comparisons even for small inputs (cf. Tab. 7.8).

To relate our results with those of [Kiw03b], let's call QSELECT the quintary method
of [Kiw03b] stemming from [FIR75b, §2.1]. QSELECT eliminates almost all elements on
its first call by using two pivots, almost sure to be just below and above the kth element,
in a quintary partitioning scheme. Thus most work occurs on the first call of QSELECT,

which corresponds to the first two calls of SELECT. Hence SELECT and QSELECT share
the same efficiency estimates, and in practice make similarly many comparisons. However,
QSELECT tencls to be slightly faster on median fincling: although its quintary scheme is
more complex, most of its work is spent on the first pass through X, whereas SELECT first
partitions X and then the remaining part (about half) of X on its second call to achieve a

2

similar problem reduction. On the other hand, SELECT makes fewer comparisons on small
inputs. Of course, future work should assess more fully the relative merits of SELECT and
QSELECT. For now, the tests reported in [Kiw03a, Kiw03b] and in §7 suggest that both
SELECT and QSELECT can compete successfully with refined implementations of FINO.

The paper is organized as follows. A generał version of SELECT is introduced in §2,
and its ·basic features are analyzed in §3. The average performance of SELECT is studied in
§4. A modification that improves practical performance is introduced in §5. Partitioning
schemes are discussed in §6. Finally, our computational results are reported in §7.

Our notation is fairly standard. IAI denotes the cardinality of a set A. In a given
probability space, Pis the probability measure, Eis the mean-value operator and P[•ll'] is
the probability conditioned on an eveut [; the complement of [is denoted by [' .

2 The algorithm SELECT

In this section we describe a generał version of SELECT in terms of two auxiliary functions
s(n) and g(n) (the sample size and rank gap), which will be chosen later. We omit their
arguments in generał, as no confusion can arise.

Algorithm 2.1.
SELECT(X, k) (Selects the kth smallest element of X, with 1 :,; k :s; n:= IXI)
Step 1 (Initiation). If n= 1, return x 1. Choose the sample size s :s; n - 1 and gap g > O.

Step 2 (Sample selection). Pick randomly a sample S := {y1, ... , y,} from X.

Step 3 (Pivot selection). Let v be the output of SELECT(S,iv), where

i·={ min{fks/n+gl ,s } ifk<n/2,
v· max{fks/n-gl,l} ifk~n/2.

(2.1)

·step 4 (Partitioning). By comparing each element x of X\ Sto v, partition X into the
three sets L : = { x E X : x < v}, E : = { x E X : x = v} and R : = { x E X : v < x}.

Step 5 (Stopping test). If IL[< k :s; [LU E[, return v.

Step 6 (Reduction). If k :s; [LI, set X := L, fi := [X[and k .- k; else set X := R ,
fi:= [X[and k := k- [LUEI.

Step 7 (Recursion). Return SELECT(X, k).

A few remarki; on the algorithm are in order.

Remarks 2.2. (a) The correctness and finiteness of SELECT stern by incluction from the
following observations. The returns of Steps 1 and 5 cleliver the desired element. At Step
6, X and k are chosen so that the kth smallest element of X is the kth smallest element
of ,Y, and fi< n (since v (/. X). Also IS[< n for the recursive call at Step 3.

(b) When Step 5 returns v, SELECT may also return information about the positions
of the elernents of X relative to v. For instance, if X is storecl as an array, its k smallest

3

elements may be placed first via interchanges at Step 4 (cf. §6). Hence Step 4 need only
compare v with the elements of X \ S.

(c) The following elementary property is needed in §4. Let c,, denote the maximum
uumber of comparisons taken by SELECT on any input of size n . Since Step 3 makes at
most c, comparisons with s < n, Step 4 needs at most n - s, and Step 7 takes at most c,-1

with ft < n, by induction c,, < oo for all n.

3 Sampling deviations

In this section we analyze generał features of sampling used by SELECT. Our analysis
hinges on the following bound on the taił of the hypergeometric distribution established
in [Hoe63] and rederived shortly in [Chv79].

Fact 3.1. Let s balls be chosen uniformly at random from a set of n balls, of which r
are red, and r' be the random variable representing the number of red balls drawn. Let
p := r/n. Then

P [r' 2 ps + g] S:: e-292/• Vg 2 O. (3.1)

Denote by xi s; ... s; x;, and y; s; ... s; y; the sorted elements of the input set X and
the sample set S, respectively, so that v = y;.. The following result will give bounds on
the position of v in the sorted input sequence.

Lemma 3.2. Supp~se 'i:= max{l,min(fK.sl,s)}, J1 := max{IK-n - gn/sl, 1}, and Jr :=
min{rKn+gn/s7,n}, where -g<KsS::s+g, ls;ss;n andg;:::O. Then:

(a) P[y; < xj,] S:: e-292/• if 'i<:'. f K.S 7.
(b) P[xj. < y;] S:: C 292/• if 'i S:: f KS 7.

Proof. Note that -g < KS s; s + g implies that J1 s; n and Jr 2 1 are well-defined.
(a) If y; < xj,, at least 'i samples satisfy y; s; x;, where r := maxxj<xj, j . In the

·setting of Fact 3.1, we have r red elements Xj s; x; , ps = rs/n and r' 2 'i. Now,
1 s; r s; Ji -1 implies 2 s; J1 = f K.n- gn/s7 < Kn- gn/s+ 1, so -rs/n > -K.s+g. Hence
'i - ps - g > KS - K.S + g - g = O, i.e., r' > ps + g. Thus P[y; < xj,] s; e-292/• by (3.1).

(b) If xj. < y;, s - 'i+ 1 sam pies are at least xj-+1 with J := maxxj=xj. j. Thus we have
r := n - J red elements Xj 2 xj-+1 , ps = s - Js/n and r' 2 s - 'i+ l. Since 'i< K.S + 1 and
n> J 2 Jr 2 Kn + gn/s, we get s - 'i+ 1 - ps - g > Js/n - K.S - g 2 K.S + g - K.S - g = O.
Hence r' > ps + g and P[xj, < y;] s; P[r' 2 ps + g] s; e-2Y2

/• by (3.1). D

We now bound the position of v rclative to xi,, xi_, and x;_,, where

k1 := max { fk- 2gn/sl, 1} and k,. := min{ fk + 2gn/sl,n}. (3.2)

Corollary 3.3. (a) P[v < x;:] s; e- 211'/s if iv = r ks/n+ g l and k < n/2 .
(b) P[xi:, < v] s; e-292/.• if k < n/2.
(c) P[:ri; < v] s; e-292/• if iv = fks/n - .97 and k 2 n/2.
(cl) P[v < xi;,] s; e- 292/• if k 2 n/2.
(e) ff k < n/2 , then iv o/ fks/n + gł iff n< k + gn/s; similarly, if k 2 n/2, then

i,. o/ fks/n - .9 7 ijf ks; gn/s.

4

Table 4.1: Sample size /(n):= n213 Jn 113 n and relative sample size cp(n) := f(n)/n .

n
f(n)
if,(n)

103 104 105 10" 5 · 10"
190.449 972.953 4864. 76 23995.0 72287.1
.190449 .097295 .048G48 .023995 .014557

107 5 • 107 108

11 7248 353885 568986
.011725 .007078 .005690

Proof. Use Lem. 3.2 with 1,,s =ks/n+ g for (a,b), and 1,,s = ks/n - g for (c,d). D

4 A verage case performance

In this section we analyze the average performance of SELECT for various sample sizes.

4.1 Floyd-Rivest's samples

For positive constants a and (3, consider choosing s = s(n) and g = g(n) as

s := min U af (n)l, n - 1} and g := (f3s In n) 1l2 with /(n) := n 213]n113 n. (4.1)

This form of g gives a probability bound e-292/• = n-2/3 for Car. 3.3. To get mare feeling,
suppose a= f3 = 1 and s = f(n). Let cp(n) := f(n)/n . Then s/n = g/s = cp(n) and it
will be seen that the recursive call reduces n at least by the factor 4cp(n) on average, i.e.,
cp(n) is a contraction factor; note that cp(n) ~ 2.4% for n= 106 (cf. Tab. 4.1).

Theorem 4.1. Let Cnk denote the expected number of comparisons made by SELECT for
s and g chosen as in (4.1) with f3 2: 1/6. There exists a positive constant I such that

C„k :Sn+ min{ k,n - k} + ,/(n) v'l :S k :Sn. (4.2)

Proof. We need a few preliminary facts. The function cp(t) := f(t)/t = (lnt/t) 113 de­
creases to O on [e,oo), whereas f(t) grows to infinity on [2,oo). Let ó := 4(f3/a) 112 . Pick
fi 2: 3 large enough so that e - 1 :S af(fi) :S fi - 1 and e :S 8/(fi). Let a:= a+ 1/ /(fi).
Then, by (4.1) and the monotonicity off and cp, we have for n 2: fi

s :S aj(n) and /(s) :S acp(aj(fi))f(n),

/(l8/(n)J) :S /(8/(n)) :S 8cp(8J(n))f(n).

For instance, the first inequality of (4.3) yields f(s) :S f(af(n)), whereas

f(af(n)) = acp(af(n))f(n) :S acp(aj(fi))f(n).

(4.3)

(4.4)

Also for n 2: fi, we have s = r a/(n)l = af(n) + 1: with 1: E [O, 1) in (4.1). Writing
s = &J(n) with a::= a+ 1:/ f(n) E [a , a), we clecluce from (4.1) that

gn/s = ((3/&) 112.f(n) :S (f3/a) 112 j(n). (4.5)

5

In particular, 4gn/s :S: of(n), since 5 := 4((3/a.) 112. Next, (4.1) implies

ne-292/s :S: nl -2/J = f(n)nl/3-2/J ln-I/:l n.

Using the monotonicity off and c/>, increase fi if necessary to get for all n ?: ii

(4.6)

2ó.ą>(i5.f(ii)) + 5cp(5f(ii)) + 2n-2fi + 2 max { [5J(n)] 213- 2/Jn-2!3 , n-2/J} ::;: 0.95. (4.7)

By Rem. 2.2(c), there is --y such that (4.2) holds for all n :s; fi; incr\)asing --y if necessary,
and using the monotonicity of J and the assumption (3 ?: 1/6, we have for all n ?: fi

2i5. + 25 + 5n1!3- 2il 1n-113 n+ 3 max { 51- 2/J J(n)- 213 , n 1/:1- 213 1n-113 n} :S: 0.05--y. (4.8)

Let n'?: ii. Assuming (4.2) holds for all n :S: n', for induction let n= n'+ 1.
We need to consider the following two cases in the first call of SELECT.
Left case: k < n/2. First, suppose the event E1 := {xZ, :S: v :s; xt,,.} occurs. By the rules

of Steps 4-6, we have X= L (from xZ, :S: v), k =kand ft:= IXI :S: kr - 1 (from v :S: xt);
since kr< A:+ 2gn/s + 1 by (3.2), we get the two (equivalent) bounds

ft < k + 2gn/ s and n - k < 2gn/ s. (4.9)

Note that if iv = fks/n + gł then, by Cor. 3.3(a,b), the Boole-Benferroni inequaJity
and the choice (4.1), the complement Ef of E1 has P[Ef] :S: 2e-292/• = 2n-2/J. Second, if
iv /c f ks/n+ gł, then n < k + gn/ s (Car. 3.3(e)) combined with k < n/2 gives n< 2gn/ s;
hence ft - k < n < n < 2gn/ s implies (4.9). Since also E1 implies (4.9), we have

P[An :s: 2-n- 213 for A1 := { n - k < 2gn/s}. (4.10)

Right case: k ?: n/2. First, suppose the event E,. := {xi,, :S: v :s; xt,} occurs. By the
rules of Steps 4- 6, we have X = R (from v :s; xj,), n - k = n - k and ft := IXI :S: n - k1

(from xt,, :S: v); since k1 ?: k - 2gn/s by (3.2), we get the two (equivalent) bounds

fi:S:n-k+2gn/s and k:s;2gn/s, (4.11)

using n - k = n - k. If iv = fks/n - gł thcn, by Cor. 3.3(c,d), the complement E; of Er
has P[E;] :S: 2e-292/• = 2n-213 . Second, if iv /c fks/n - gł, then k :S: gn/s (Cor. 3.3(e))
combined with k?: n/2 gives n :s; 2gn/s; hence k :s; n< n :s; 2gn/s implies (4.11). Thus

P[A~] :S: 2n-213 for Ar:= { k :S: 2gn/s}. (4.12)

Since k < n - k if k < n/2, n - k :S: k if k?: n/2, (4.9) and (4.11) yieJd

P[B'] :S: 2n-213 for B := { n :s; min{ k, n - k} + 2gn/s}. (4.13)

Note that min{ k , n - k} :S: l n/2 J :S: n/2; this relation will be used implicitJy beJow.
For the rccursive call of Step 7, Jet s, _ą and i„ denote the quautities generated as in

(4.1) and (2.1) with n and k repJaced by n and k, Jet v be the pivot found at Step 3, and
let _,,'{ , n and k correspond to X, n and kat Step 7, so that ii:= I.XI < n.

6

The cost of selecting v and 1} at Step 3 may be estimated as

Cs;"+ C,;" ~ 1.5s + 1J(s) + 1.5s + "ff(s) ~ 3s + 21f(s), (4.14)

since fis increasing and (4.2) holds fors~ s ~ n - l = n' (cf. (4.1)) from fi.< n.
Let c := n - s and c := n - s denote the costs of Step 4 for the two calls. Since

O~ c < n and Ee= E[clB]P[B) + E[clB')P[B') ~ E[clB) + nP[B'), by (4.13) we have

C +Ee~ n - s + min{ k, n - k} + 2gn/s + 2111- 213 . (4.15)

Using (4.2) again with ii< n, the cost of finishing up at Step 7 is at most

(4.16)

Thus we need suitable bounds for Ei1. and Ef(ii), which may be derived as follows.
To generalize (4.13) to the recursive call, consider the events

.B:={ii~min{k,n-k}+2gil/s} and C:={ii~l8f(n)J}. (4.17)

By (4.10) and (4.12), BnAt and BnAr imply C, since 2gn/s+2gn/s ~ 8f(n) by (4.5)
with ii< n and 8 := 4({3/c,) 112 . For the recursive call, proceeding as in the derivation of
(4.13) with ~ replaced by fi.= i, k byk, etc., shows that, due to random sampling,

P[B'IAt, n= i) ~ 2i-213 and P[.B'IA,., fi.= i) ~ 2i- 213 .

In the left case of k < n/2, using fi< n and P[A;) ~ 2n-2fi (cf. (4.10)), we get

En= E[nlAdP[Ad + E[ri!A;JP[A;J ~ E[nlAd + n2n-213 •

(4.18)

Partitioning At into the events 'Di:= At n {fi.= i}, i= O: n - l (n< n always), we have

n-1

E[ii,IAt] = L E[iil'Di)P['DilAt] ~ . max E[iil'Di),
i=O t = O:n-1

where E[nl'D;] ~ l8J(n)J if i~ l8f(n)J + 1, because n< n always. As for the remaining
terms, BnAt CC implies P[C'l'D;] ~ P[.B'l'D;] ~ 2i-213 by (4.18), where C :={n~ l8f(n)J}
and n< n= i when the event 'D; occurs, so E[nl'D;) ~ l8f(n)J + i2i-213 . Hence

. max E[nl'D;] ~ l8J(n)J + max 2i1- 213 ,
•=0,n-1 i=[ó/(n)J+2,n-1

where the fina! term is omitted if l8J(n)J > n - 3; otherwise it is at most

2 max { (L8f(n)J + 1)1- 213 , n1- 213 } ~ 2 max { 51- 213 f (n)-2f3, nl/3-2/3 ln-1/3 n} J(n),

since max;=[ó/(n)J+I,n 2i1- 2/3 is bounded a8 above (consider /3 2: 1/2, then /3 < 1/2 and use
8f(n) < L8f(n)J + 1, the monotonicity off and (4.6) for the fina! inequality). Collecting
the preceding estimates, we obtai11

En ~ L8f (n)J + 2n 1- 2/3 + 2 max { 51- 213 f (n)- 213 , n 1!3- 2/3 ln-113 n} f (n). (4.19)

7

Similarly, replacing ii by f(ii) in our clerivations and using the monotonicity off yielcls

Ef(n)::::; f(lt5f(n)J) + 2f(n)n-2(3 +. max 2J(i)C2f3,
•=lóf(n)J+2,n-1

where the finał term is omittecl if lt5f(n)J > n - 3; otherwise it is at most

{ f(lt5J(n)J + 1) f(n)} < { ['}'()]2/3-2(3 -2/3 -2(3} •()
2rnax (lt5f(n)J + l)2f3, n2 f3 _ 2max o n n ,n j n.

To see this, use the monotonicity off and the fact that for i::::; n (cf. (4.1))

f(i)C2(3/ J(n) = i2/3-2(3n-2f3(In i/ In n)J/3::::; i2/a-2(3n-2/a .

(4.20a)

(4.20b)

For the right case, replace At by A„ in the prececling paragraph to get (4.19)-(4.20).
Acid the costs (4.14), (4.15) and (4.16), using (4.19)- (4.20), to get

C„k::::; 3s + 2-yf(s) + n - s + min{ k, n - k} + 2gn/s + 2n1- 2f3

+ 1.5lt5f(n)J +3n1- 2f3 +3rnax{ J1- 2f3J(n)- 2f3,nl/3- 2f3]11- 1l3 n }f(n)

+-yf(lbf(n)J) + 2-yf(n)n-2(3 + 2-ymax{ [t5f(n)j 213- 2f3n- 2!3 ,n-2(3} f(n).

Now, using the bouncls (4.3)- (4.4), 2gn/s::::; ½bf(n) (cf. (4.5)) and (4.6) gives

Cnk::::; n+ min{ k, n - k}
+ [2a + 2ó + 5n1/ 3- 2f3111- 113 n+ 3 max { t5 1- 2f3 f (n)-2f3, n 1/ 3- 2f3111- 113 n}] f (n)

+ [2aą,(af(n)) + t5q,(t5f(n)) + 2n-2f3 + 2max{ [t5J(n)J 2!3- 2f3n- 213,n-2f3 }] 1f(n).

By (4.7)-(4.8), the two bracketecl terms above are at most 0.05-yf(n) and 0.95--yf(n),
respectively; thus (4.2) holcls as reąuirecl. O

4.2 Other sampling strategies

We now inclicate briefly how to aclapt the proof of Thm 4.1 to severa! variations on (4.1);
a choice similar to (4.21) below was usecl in [FIR75a].

Remarks 4.2. (a) Theorern 4.1 remaius true for (3 2'. 1/6 and (4.1) replaced by

s := min {I an213], n - l}, g := ({3s In n) 1l2 and f(n) := n213 In1/ 2 n. (4.21)

Incleecl, using e312 - 1 ::::; an2!3 ::::; ii - l, e312 ::::; t5J(n), a:= a+ n-213 and s = Er.n213 with
er. E [a,a) yielcls (4.3)- (4.5) as before, and 111-1/ 2 replaces 111-1/ 3 in (4.6), (4.8) and (4.19) .

(b) Theorem 4.1 holcls for the following moclification of (4.1) with Et > 1

s := min {f af(n)l, n - l} and g := ({3s lu" n) 1l2 with J(n) := n2/:i ln',/3 n. (4.22)

First, using e'' - 1 ::::; af(n) ::::; i'i - l and e'' ::::; óf(i'i) gives (4.3)- (4.5) as before. Next,
fix fJ 2'. 1/6. Let (3,, := (3 lt1'1- 1 n. Increase n if necessary so that {Ji 2'. fJ for all i 2'.
miu{ii , rt5.f(n)l}; theu rcplace (3 by fJ and ln- 1/ 3 by ln-,,13 in (4.6) and bclow.

(c) Severa! other replacements for (4.1) may be analyzecl as in [Kiw03b, §§4.1- 4.2].
(cl) None of these choices gives f(n) better than that in (4.1) for the bound (4.2).

8

We now comment briefly on the possible use of sampling with replacement .

Remarks 4.3. (a) Suppose Step 2 of SELECT employs sampling with replacement. Since
the taił bound (3.1) remais valicl for the binomial clistribution [Chv79 , Hoe63], Lemma
3.2 is not affectecl. However, when Step 4 no longer skips comparisons with the elements
of S, -sin (4.15) is replacecl by O; the resulting change in the bound on C„k only needs
replacing 26' in (4.8) by 36'. Hence the preceding results remain valid.

(b) Of course, sampling with replacement neecls additional storage for S . However,
the increase in both storage and the number of comparisons may be tolerated because the
sample sizes are relatively small.

4.3 Handling small subfiles

Since the sampling efficiency decreases when X shrinks, consider the following modifica­
tion. For a fixed cut-off parameter ncut ~ 1, !et sSclect(X, k) be a "small-select" routine
that finds the kth smallest element of X in at most Ccut < oo comparisons when IXI :S: ncut
(even bubble sort will do). Then SELECT is modified to start with the following

Step O (Small file case). If n:= IXI :S: ncut, return sSelect(X, k).
Our preceding results remain valid for this modification. In fact it suffices if Ccut

bounds the expected number of comparisons of sSelect(X, k) for n S: ncut· For instance,
(4.2) holds for n S: ncut and 1 ~ Ccut, and by induction as in Rem. 2.2(c) we have Cnk < oo
for all n, which suffices for the proof of Thm 4.1.

Another advantage is that even small ncut (1000 say) limits nicely the stack space for
recursion. Specifically, the taił recursion of Step 7 is easily eliminated (set X:= X, k := k
and go to Step O) , and the calls of Step 3 deal with subsets whose sizes quickly reach ncut·
For example, for the choice of (4.1) with a = 1 and ncut = 600, at most four recursivc
levels occur for n S: 231 ::,:, 2.15 . 109 .

5 A modified version

We now consider a modification inspired by a remark of [Bro76]. For k close to r n/2ł, by
symmetry it is best to choose v as the sample median with iv = f s/2ł, thus attempting
to get v close to xk instead of xfk-vn/sl or xfk+vn/sl; then more elements are eliminated.
Hence we may let

i fks/n+gł ifk<n/2-gn/s,
iv:= fs/2ł ifn/2-gn/s:S:k:S:n/2+gn/s,

fks/n - gł if k > n/2 + gn/s.
(5.1)

Note that (G.l) coincides with (2.1) in the left case of k < n/2 - gn/s and the right case
of k > n/2 + gn/ s, but the middle case of n/2 - gn/ s S: k :::; n/2 + gn/ s fixes iv at the
median position fs/2ł; in fact iv is the median of the three values in (5.1):

iv := max{rnin (fks/n + gł, f s/2ł) , fks/n - gł}. (5.2)

9

Corollary 3.3 remains valid for the left and right cases. For the middle case, letting

.it := mm::{ 1n/2- gn/sl, 1} and j,. := min{ 1n/2 + gn/sl,n}, (5.3)

we obtain frorn Lemma 3.2 with 1,, = 1/2 the following complement of Corollary 3.3.

Corollary 5.1. P[v < xj,] :S e-2u'f., and P[1:j, < v] :S e-29'/-• if n/2 - gn/s s; k s;
n/2 + gn/s.

Theorem 5.2. Thcorern 4.1 holds for SELECT with Step 3 using (5.1).

Proof. We only indicate how to adapt the proof of Thm 4.1 following (4.8). As noted
after (5.1), the left case now has k < n/2 - gn/s and the right case has k > n/2 + gn/s,
so we only need to discuss the middle case.

Middle case: n/2 - gn/s :S k :S n/2 + gn/s. Suppose the event Em:= {xj, :Sv :S xjJ
ocenrs (note t.hat P[E;,.] :S 2e-2u'/• = 2n-2/3 by Cor. 5.1). If X = L then, by the rules of
Steps 4- 6, we have k = kand -n :S j,. - l; since j,. < n/2 + gn/s + l by (5.3), we get
·11 < n/2 + gn/s . Hence k 2': n/2 - gn/s yields fi< k + 2gn/s and Ft - k < 2gn/s as in
(-1.9). Next, if X= R then il, - k = n - kand k := k - IL U El, so LU E = {x EX:
:r: :S v} 3 x;, gives k :S k - .it- Since k :S n/2 + gn/s and j, 2': n/2 - gn/ s by (5.3), we get

k :S 2gn/s and fi :S ii- k + 2gn/s as in (4.11); further, fi :Sn- j1 yields ii :S n/2 + gn/s.
Notieing that n/2 - gn/ s s; k s; n/2 + gn/ s implies n/2 :S min { k, n - k} + gn/ s, we have
ii :S min{ k, n - k} + 2gn/ s in both cases.

Thus in the middle case we again have (4.13) and hence (4.15); further, by (4.10) and
(4.12), the event Em c A, U Ar is partitioned into Em n A1 and Em n A1 n Ar-

Next, reasoning as before, we see that (4.18) and hence (4.19)-(4.20) remain valid in
the left and right cases, whereas in the middle case we have

P[B'IE,,,, A1, -n= i] °s; 2i-213 and P[B'IE,,,, A;, Ar, ii= i] :S 2i-213 • (5.4)

In the middle case, Eii. = E[fi,IEm]P[E,,,]+E[fijE;,.]P[E;,.] is bounded by E[ii.lEm]+2n1- 2/3,

since P[E;,.] :S 2n-213 and ii < n always. Next, partitioning E,,. into Em n A1 and Em n
A1 n A,., we obtain E[ii.lE,,.] :S max{E[i'ilE,,., Ad, E[ii.lEm, A;, Al}, where E[ii.lEm, Ad and
E[iilEm, A1, Ar] niay be bounded like E[·nlAd and E[iijA,.] in the left and right cases to get
(4.19). Then (4.20) is obtained similarly, and the conclusion follows as before. O

6 Ternary partitions

In this section we discuss ways of implementing SELECT when the input set is given as an
array 1:[l: n]. We employ the following notation.

Each stage works with a segment :i:[ł: r] of the input array x[l: n], where 1 :S ł :S r :Sn
arc such that :c; < x1 for i = 1: ł - 1, x,. < x; for i = r + l: n, and the kth smallest
dement of x[l: n] is the (k - l + l)th smallest element of x[ł: r]. The task of SELECT is
e:ctended: given x[ł: r] and ł :S k :Sr, SELECT(x, l, r, k, k_, k+) permutes x[ł: r] and finds

10

l ~ k_ ~ k ~ k+ ~ r such that X; < Xk for all I ~ i < k_, X; = Xk for all k_ ~ i ~ k+,

Xi > Xk for all k+ < i ~ r. The initial call is SELECT(x, 1, n, k, k_, k+)-

A vector swap denoted by x[a: b] <--> x[b+l: c] means that the first d := min(b+l-a, c-b)
elements of array x[a: c] are exchanged with its last d elements in arbitrary order if d > O;
e.g., we may exchange Xa+i <--> Xe-i for O ~ i < d, or Xa+i <--> Xc-d+ł+i for O ~ i < d.

6.1 Tripartitioning schemes

For a given pivot v := X1 from the array x[ł: r], the following ternary scheme [Kiw03a, §5.l]
partitions the array into three blocks, with Xm < v for ł ~ m < a, Xm = v for a ~ m ~ b,
Xm > v for b < m ~ r. After comparing the pivot v to Xr to produce the initial setup

\x=vjx<vj? jx>vj:1;=vl
l p j q r

(6.1)

with ·i := ł and j := r, we work with the three inner blocks of the array

\x=vjx<vj ?
l p i j

jx>v/x=vl ,
q r

(6.2)

until the middle part is empty or just contains an element equal to the pivot

\x=vlx<vjx=vjx>vlx=vl
l p j q r

(6.3)

(i.e., j = i - 1 or j = i - 2), then swap the ends into the middle for the finał arrangement

\x<vjx=vjx>vl
l a b r

(6.4)

Scheme A (Safeguarded ternary partition).

Al. [Initialize.] Set i := ł, p :=i+ 1, j := r and ą := j - 1.
and set p := i; else if v < x1, set q := j .

If v > x1, exchange x; <--> x1

A2. [Increase i until x; 2'. v.] Increase i by 1; then if x; < v, repeat this step.

A3. [Decrease j until x1 ~ v.) Decrease j by 1; then if x1 > v, repeat this step.

A4. [Exchange.] (Here x1 ~ v ~ x;.) If i< j, exchange x; <--> x1; then if X;= v, exchange
X; <--> Xp and increase p by 1; if xi = v, exchange x1 <--> Xą and decrease q by 1; return
to A2. If i= j (so that x; = Xj = v), increase i by 1 and decrease j by 1.

A5. [Cleanup.] Set a:= ł + j - p + 1 and b := r - q + i - 1. Exchange x[ł: p - l] <--> x[p: j]
and x[i: ą] <--> x[ą + 1: r].

Step Al ensures that x1 ~ v ~ Xr, so steps A2 and A3 don't need to test whether i~ j.
This scheme makes two extraneous comparisons (only one when i = j at A4). Spurious
comparisons are avoided in the following modification [Kiw03a, §5.3] of the scheme of
[BeM93] (cf. [Knu98, Ex. 5.2.2-41]), for which i= j + 1 in (6.3).

11

Scheme B (Double-index controlled ternary partition).

Bł. [Initialize.] Set i := p := ł + 1 and j := q := r.

B2. [Increase i until x; > v.] If i s; j and :r; < v, increase i by 1 aud repeat this step. If
i s; j and X; = v, exchange x1,, Xi, increase p and i by 1, and repeat this step.

B3. [Decrease j until x1 < v.] If ·i < j and x1 > v, decrease .i by 1 and repeat this step.
If i < j and x1 = v, exchange x1 <--> Xą, decrease j and q by 1, and repeat this step.
If i 2: j, set j := i - 1 and go to B5.

B4. [Exchange.] Exchange X;...., x1, increase i by 1, decrease j by 1, and return to B2.

B5. [Cleanup.] Set a := ł + i - pand b := r - q + j. Swap x[ł:p - 1], x[p:j] and
x[i: q], x[q + 1: r].

6.2 Preparing for ternary partitions

At Step 1, r - l + 1 replaces n in finding s and g. At Step 2, it is convenient to place the
sample in the initial part of x[ł: r] by exchanging X; t-t Xi+rand(r-i) for ł s; i s; r8 := ł+s-1,
where rand(r - i) denotes a random integer, uniformly distributed between O and r - i .

Step 3 uses i := k - l + 1 and m := r - l + 1 instead of k and n to fincl the pivot position

k ·={ min{fł-l+is/m+gl,rs} ifi<m/2,
v· max{fł-l+is/m-gl,ł} ifi2:m/2,

(6.5)

so that the recursive call of SELECT(x, ł , r8 , kv, k;, k;;) produces v := xk •.

After v has been found , our array looks as follows

jx<vl x=v lx>vl?
l k; k;; rs r

(6.6)

·setting [:= k; and f := r - r8 + k;;, we swap x[k;; + 1: r.] ;-; x[rs + 1: r] in (6.6) to get

lx<vlx=vl? lx>vl
l l k;; r r

(6.7)

If k;; = rs, we use scheme A with ł replaced by k;; in Al (cf. (6.1)) and by I in A5 (cf.
(6.3)); for k;; < rs, we set i := k;;, p :=·i+ 1, j := f + 1, q := f, omit Al and replace ł, r
by[, fin A5. Similarly, for scheme B, we replace ł, r byk;;, fin Bł, and by[, fin B5.

After partitioning ł and r are updated by setting ł := b + 1 if a s; k, r := a - 1 if k s; b.
If ł 2: r , SELECT may return k_ := k+ := k if ł = r, k_ := r + 1 and k+ := ł - 1 if ł > r .
Otherwise, instead of calling SELECT recursively, Step 6 may jump back to Step 1, or to
Step O if sSelect is used (cf. §4.3).

A sim ple version of sSelect is obtained if Steps 2 and 3 choose v := Xk w henr - l + 1 s;
ncu, (this choice of [FIR75a] works well in practice, but mare sophisticated pivots could be
tried); then the ternary partitioning cocle can be used by sSelect as well.

12

7 Experimental results

7.1 lmplemented algorithms

An implementation of SELECT was programmed in Fortran 77 and run on a notebook
PC (Pentium 4M 2 GHz, 768 MB RAM) under MS Windows XP. The input set X was
specified as a double precision array. For efficiency, the recursion was removed and small
arrays with n ~ ncut were handled as if Steps 2 and 3 chose v := Xk; the resulting version
of sSelect (cf. §§4.3 and 6.2) typically required less than 3.5n comparisons. The choice of
(4.21) was employed, with the parameters a= 0.5, /3 = 0.25 and ncut = 600 as proposed
in [FIR75a] ; future work should test other sample sizes and parameters.

7.2 Testing examples

As in [Kiw03b], we used minor modifications of the input sequences of [ValO0]:

random A random perrnutation of the integers 1 through n.

onezero A random permutation of r n/21 ones and L n/2 J zeros.

sorted The integers 1 through n in increasing order.

rotated A sorted sequence rotated left once; i.e., (2, 3, ... , n, 1) .

organpipe The integers (1, 2, ... , n/2, n/2, .. . , 2, 1).

m3killer Musser's "median-of-3 killer" sequence with n = 4j and k = n/2:

(1 2 3 4 . . . k - 2 k - l k k + l . . . 2k - 2 2k - 1 2k)
l k + l 3 k + 3 . . . 2k - 3 k - l 2 4 . . . 2k - 2 2k - 1 2k .

twofaced Obtained by randomly permuting the elements of an m3killer sequence in po­
sitions 4llog2 nj through n/2 - 1 and n/2 + 4llog2 nj - 1 through n - 2.

For each input sequence, its (!ower) median element was selected for k := f n/21.

7.3 Computational results

We varied the input size n from 50,000 to 16,000,000. For the random, onezero and
twofaced sequences, for each input size, 20 instances were randomly generated; for the
deterministic seąuences, 20 runs were made to measure the solution time.

The performance of SELECT on randomly generated inputs is summarized in Table 7.1 ,
where the average, maximum and minimum solution times are in milliseconds, and the
comparison counts are in multiples of n; e.g., column six gives Cavg/n, where Cavg is the
average number of comparisons made over all instances. Thus "Yavg := (Cavg - l.5n)+/ f(n)
estimates the constant "Y in the bound (4.2); moreover, we have Cavg ""' Lavg, where Lavg
is the average sum of sizes of partitioned arrays. Further, Pavg is the average number of
SELECT partitions , whereas Navg is the average number of calls to sSelect and Pavg is the
average number of sSelect partitions per call; both f>.wg and Navg grow slowly with In n

13

Table 7.1: Performance of SELECT on randomly generated inputs.

Scquence Size Time [mscc) Comparisons [n) 1'nvg Lavg ~wg N,wg Pnvg Snvg
n avg max min avg max min [n) [Inn] [Inn) [%n)

random 50K 2 10 o 1.66 1.77 1.61 1.74 1.65 0.46 0.55 8.33 2.59
lOOK 3 10 o 1.63 1.71 1.55 1.76 1.63 0.60 0.69 7.58 2.12
5001< 13 20 10 1.56 1.61 1.54 1.36 1.56 O.G7 0.74 8.05 1.19

lM 23 30 20 1.52 1.58 1.00 0.55 1.52 0.66 0.73 8.32 0.91
2M 46 51 40 1.54 1.56 1.52 1.22 1.54 0.75 0.82 8.38 0.72
4M 88 91 80 1.53 1.55 1.52 J.18 1.53 0.86 0.92 8.22 0.57
SM 172 181 160 1.52 1.53 1.51 1.13 1.52 0.92 0.98 8.54 0.44

16M 336 341 320 1.52 1.53 1.51 1.06 1.52 0.95 1.01 8.41 0.35
onczcro 50K 2 JO o 1.28 1.51 1.00 O.DO 1.28 0.24 0.18 1.26 1.91

lOOK 3 10 o 1.25 1.51 1.00 O.DO 1.25 0.26 0.15 1.20 1.49
500K 15 20 10 1.33 1.50 1.00 O.DO 1.33 0.29 0.17 1.34 0.93

lM 30 41 20 1.33 1.50 1.00 O.DO 1.33 0.27 O.IS 1.20 0.73
2M 60 71 41 1.30 1.50 1.00 O.DO 1.30 0.26 0.14 1.29 0.56
4M 109 131 90 1.20 1.50 1.00 O.DO 1.20 0.22 0.13 1.18 0.41
8M 219 261 190 1.20 1.50 1.00 O.OD 1.20 0.22 0.13 1.31 0.32

16M 436 501 370 1.25 1.50 1.00 O.OD 1.25 0.20 0.11 1.21 0.27
twofaced 50K 1 10 o 1.67 1.77 1.59 1.87 1.67 0.47 0.56 8.24 2.63

lOOK 3 11 o 1.62 1.73 1.56 1.67 1.62 0.60 0.69 7.61 2.11
500K 12 20 JO 1.56 1.59 1.53 1.23 1.56 0.63 0.71 8.33 1.18

lM 24 31 20 1.55 1.57 1.53 1.23 1.55 0.69 0.76 8.22 0.92
2M 45 51 40 1.54 1.57 1.52 1.23 1.54 0.78 0.85 8.36 0.73
4M 88 91 80 1.53 1.54 1.52 1.17 1.53 0.88 0.94 8.05 0.57
BM 170 180 160 1.52 1.53 1.51 1.12 1.52 0.90 0.97 8.51 0.44

16M 332 341 320 1.52 1.53 1.51 1.04 1.52 0.96 1.02 8.55 0.35

(linearly on the onezero inputs) . Finally, Savg is the average sum of sample sizes; Savg/n213

,drops from 0.95 for n = 50K to 0.88 for n = 16M on the random and twofaced inputs,
and oscillates about 0.7 on the onezero inputs, whereas the initial s/n213 ~ a = 0.5.
The results for the random and twofaced sequences are very similar: the average solution
times grow linearly with n (except for small inputs whose solution times couldn't be
measured accurately), and the differences between maximum and minimum times are
quite small (and also partly due to the operating system). Except for the smallest inputs,
the maximum and minimum nurnbers of cornparisons are quite close, and Cavg nicely
approaches the theoretical !ower bound of 1.5n; this is reflected in the values of 1'avg• The
results for the onezero inputs essentially average two cases: the first pass elirninates either
alrnost all or about half of the elements.

Table 7.2 exhibits similar features of SELECT on the deterministic inputs. The results
for the sorted and rotated sequences are very similar, whereas the solution times on the
organpipe and m3killer sequences are between those for the sorted and random sequences.

The results of Tabs. 7.1-7.2 were obtained with scherne A of §6.2; to save space, Table
7.3 gives only selected results for scheme B, whereas Table 7.3 presents results for the
hybrid scheme I of [Kiw03a, §5.6], which combines some features of schemes A and B. The
hybricl scheme is quite competitive, although slower than scheme A on the onezero inputs.

14

Table 7.2: Performance of SELECT on deterministic inputs.

Scquence Size Time [msecl Comparisons [ni l'twg L,wg Pu.vg Nuvg Ptivg Snvg

n avg max min avg max min [ni [Inn] [Inni [%ni
sortcd 50K 1 10 o 1.67 1.7G 1.59 1.85 I.GG 0.48 0.57 7.24 2.65

1001(2 10 o 1.62 l.G9 1.55 1.70 l.G2 0.60 0.69 6.76 2.12
5001(8 10 o 1.56 1.62 1.53 1.35 1.56 O.G7 0.74 7.52 1.19

lM 15 20 10 1.54 1.58 1.53 1.19 1.54 0.68 0.75 7.87 0.92
2M 27 31 20 1.54 1.56 1.52 1.23 1.54 0.74 0.81 7.Gl 0.73
4M 51 Gł 40 1.53 1.55 1.52 1.19 1.53 0.87 0.93 7.34 0.57
8M 98 111 90 1.52 1.53 1.51 1.10 1.52 0.89 0.95 8.03 0.44

16M 186 200 170 1.52 1.52 1.51 1.04 1.52 0.95 1.01 7.99 0.35
rotated 50K 1 10 o 1.67 1.78 1.59 1.86 1.66 0.48 0.57 9.45 2.64

1001(2 10 o 1.63 1.73 1.58 1.76 1.63 0.61 0.69 9.12 2.12
500K 8 10 o 1.56 1.62 1.54 1.39 1.56 0.65 0.73 10.03 1.18

lM 15 20 10 1.55 1.58 1.53 1.29 1.55 0.69 0.76 9.56 0.92
2M 27 31 20 1.54 1.55 1.52 1.19 1.54 0.78 0.84 8.69 0.72
4M 51 60 50 1.53 1.54 1.52 1.18 1.53 0.87 0.94 8.92 0.57
8M 98 111 90 1.52 1.53 1.51 1.12 1.52 0.89 0.96 9.29 0.44

!GM 185 210 170 1.52 1.53 1.51 1.04 1.52 0.93 0.99 8.96 0.35
organ pipe 501(1 10 o 1.67 1.78 1.59 1.94 1.67 0.45 0.55 8.21 2.62

1001(3 10 o 1.62 1.69 1.57 1.68 1.62 0.60 0.69 7.61 2.11
5001(10 10 10 1.57 1.60 1.54 1.43 1.5G 0.67 0.75 8.18 1.19

lM 20 20 10 1.55 1.58 1.52 1.24 1.55 0.70 0.77 8.21 0.93
2M 37 41 30 1.53 1.55 1.52 1.15 1.53 0.78 0.85 8.48 0.72
4M 68 80 60 1.53 1.54 1.52 1.13 1.53 0.84 0.91 8.21 0.57
8M 130 150 120 1.52 1.54 1.51 1.07 1.52 0.88 0.94 8.64 0.44

16M 240 260 230 1.52 1.53 1.51 1.02 1.52 0.94 1.00 8.44 0.35
m3killcr 501{ 1 10 o 1.67 1.76 1.60 1.89 1.67 0.47 0.55 8.82 2.62

1001(4 10 o 1.63 1.71 1.57 1.80 1.63 0.60 0.69 7.69 2.13
5001(11 20 10 1.57 1.62 1.53 1.44 1.57 0.66 0.73 8.61 1.19

lM 20 20 20 1.55 1.59 1.52 1.40 1.55 0.72 0.79 8.33 0.93
2M 38 41 30 1.54 1.56 1.52 1.25 1.54 0.78 0.85 8.30 0.73
4M 73 81 70 1.53 1.54 1.52 1.28 1.53 0.87 0.94 8.22 0.57
8M 137 150 130 1.52 1.53 1.51 1.05 1.52 0.91 0.97 8.37 0.44

16M 248 260 230 1.52 1.52 1.51 0.96 1.52 0.92 0.97 8.42 0.35

The preceding results were obtained with the modified choice (5.1) of iv, For brevity,
Table 7.5 gives results for SELECT with scheme A and the standard choice (2.1) of iv on
the random inputs only, since these inputs are most frequently used in theory and practice
for evaluating sorting and selection methods. The modified choice typically requires fewer
comparisons for small inputs, but its advantages are less pronounced for larger inputs. A
similar behavior was observed for SELECT with scheme B.

For comparison, Table 7.6 extracts from [Kiw03b] some results of QSELECT for the
samples (4.1). As noted in §1, QSELECT is slightly fa.ster than SELECT on larger inputs
becausc most of its work occurs on the first partition (cf. Lavg in Tabs. 7.1 and 7.6). In
Table 7.7 we give corresponcling results for RISELECT, a Fortran version of the algorithm of
[Va!OO]. For these inputs, RISELECT behaves like FIND with median-of-3 pivots (because

15

Table 7.3: Performance of SELECT with ternary scheme B.

Sequence Size Time [msec] Comparisons [n] 'i'nvg Lavg Pavg N1wg Pavg Snvg

n avg max min avg rnax min [n] [Inn] [Inn] [%n]
random 2M 43 51 40 1.53 1.54 1.52 1.02 1.53 0.76 0.83 8.31 0.72

4M 93 101 90 1.53 1.55 1.52 1.09 1.53 0.85 0.92 8.42 0.57
8M 177 190 170 1.52 1.54 1.51 1.03 1.52 0.87 0.93 8.15 0.44

16M 343 350 340 1.51 1.53 1.51 0.88 1.51 0.91 0.97 8.50 0.35
onczcro 2M 82 91 70 1.30 1.50 1.00 0.00 1.30 0.26 0.14 1.29 0.56

4M 149 180 130 1.20 1.50 1.00 0.00 1.20 0.22 0.13 1.18 0.41
8M 304 351 270 1.20 1.50 1.00 0.00 1.20 0.22 0.13 1.31 0.32

16M 621 711 531 1.25 1.50 1.00 0.00 1.25 0.20 0.11 1.21 0.27
sorted 2M 23 30 20 1.54 1.55 1.52 1.18 1.54 0.78 0.85 7.61 0.72

4M 43 50 40 1.53 1.54 1.51 1.18 1.53 0.86 0.92 7.76 0.57
8M 82 90 80 1.52 1.53 1.51 1.10 1.52 0.89 0.95 8.01 0.44

16M 156 160 150 1.52 1.53 1.51 1.04 1.52 0.97 1.03 8.12 0.35

the average numbers of ranclomization steps, Nrnd, are negligible); hence the expectecl
value of Cavg is of order 2.75n [KMP97].

Our fina! Table 7.8 shows that SELECT beats its competitors with respect to the num­
bers of comparisons macie on small random inputs (100 instances for each input size n).

Our computational results, combinecl with those in [Kiw03a, Kiw03b], suggest that
both SELECT and QSELECT may compete with FIND in practice.

Acknowledgment. I woulcl like to thank Olgierd Hryniewicz, Roger Koenker, Ronald
L. Rivest and John D. Valois for useful cliscussions.

R eferences
.[BcM93] J. L. Bentley and M. D. Mcllroy, Engineering a sort Junction, Softwarc- Practicc and Experi­

encc 23 (1993) 1249-1265.

[BFP+72] M. R. Blum, R.. W. Floyd, V. R. Pratt, R.. L. R.ivest and Il. E. Tarjan, Time bounds for
selection, J. Comput. System Sci . 7 (1972) 448- 461.

[Bro76]

[Chv79]

[CuM89]

[DHUZOl]

[DoZ99]

[DoZOl]

[FIR.75a]

[FIR.75b]

[Grii99]

T. Brown, Remark on Algo,~thm 489, ACM Trans. Math . Software 3 (1976) 301- 304.

V. Chvatal, The taił of the hypergeometric dist,ibution, Discrete Math. 25 (1979) 285- 287.

W. Cunto and J. I. Munro, Average case selection, J. of the ACM 36 (1989) 270-279.

D. Dor, J. Ha.stad, S. Ulfberg and U. Zwick, On lower bounds for selecting the median, SIAM
J. Discrete Math. 14 (2001) 299- 311.

D. Dor and U. Zwick, Selecting the median, SIAM J. Comput. 28 (1999) 1722- 1758.

--, Median selection requin,s (2 + ,)N compa,isons, SIAM J. Discrete Math. 14 (2001)
312- 325.

R.. W. Floyd and R.. L. R.ivcst, The algorithm SELECT-for finding the ith smallest of n
elements {Algorithm 489), Co111111. ACM 18 (1975) 173.

--, Expected time bounds Jor selection, Comm. ACM 18 (1975) 165- 172.

R. Griibel, On the median-of-k version of Hoare's selection algorithm, Theor . Inform. Appl.
33 (1999) 177- 192.

16

Table 7.4: Performance of SELECT with the hybrid scheme of [Kiw03a, §5.6].

Scqucncc Size Time [msec] Comparisons [n] "Yavg Lavg Pi.wg Navg Pavg Snvg

n avg max min avg max min [n] [Inn] [Inn] [%n]
random 2M 44 50 40 1.53 1.54 1.52 1.03 1.53 0.76 0.83 8.31 0.72

4M 86 100 80 1.53 1.55 1.52 1.10 1.53 0.85 0.92 8.42 0.57
SM 163 171 160 1.52 1.54 1.51 1.03 1.52 0.87 0.93 8.15 0.44

16M 317 321 310 1.51 1.53 1.51 0.88 1.51 0.91 0.97 8.50 0.35
onczero 2M 74 80 70 1.30 1.50 1.00 0.00 1.30 0.26 0.14 1.29 0.56

4M 141 151 130 1.20 1.50 1.00 0.00 1.20 0.22 0.13 1.18 0.41
SM 285 301 270 1.20 1.50 1.00 0.00 1.20 0.22 0.13 1.31 0.32

16M 578 621 541 1.25 1.50 1.00 0.00 1.25 0.20 0.11 1.21 0.27
sorted 2M 23 30 20 1.54 1.55 1.52 1.18 1.54 0.78 0.85 7.61 0.72

4M 42 50 40 1.53 1.54 1.51 1.19 1.53 0.86 0.92 7.76 0.57
SM 80 80 80 1.52 1.53 1.51 1.11 1.52 0.89 0.95 8.01 0.44

16M 153 170 150 1.52 1.53 1.51 1.04 1.52 0.97 1.03 8.12 0.35

Table 7.5: Performance of SELECT with the standard choice of iv.

Sequence Size Time [msec] Comparisons [n] Tavg Lavg Pavg Navg Pavg Savg

n avg max min avg n1ax 1nin [n] [Inn] [Inn] [%n]
random 50K 4 10 o 1.83 1.97 1.74 3.73 1.83 0.57 0.67 8.49 2.96

lOOK 4 10 o 1.73 1.83 1.61 3.13 1.73 0.73 0.82 7.80 2.32
500K 14 20 10 1.65 1.69 1.61 · 3.25 1.65 0.82 0.90 8.40 1.30

lM 25 30 20 1.61 1.65 1.58 2.83 1.60 0.89 0.97 8.28 0.99
2M 46 50 40 1.59 1.61 1.56 2.92 1.59 0.99 1.06 8.01 0.77
4M 90 100 80 1.56 1.58 1.54 2.61 1.56 1.15 1.22 8.34 0.60
8M 174 181 170 1.55 1.57 1.54 2.70 1.55 1.21 1.27 8.09 0.47

16M 341 351 330 1.54 1.56 1.53 2.68 1.54 1.21 1.28 8.33 0.36

Table 7.6: Performance of quintary QSELECT on random inputs.

Sequence Size Time [msec] Comparisons [n] "Yavg Lavg Pavg Nnvg Pavg Savg

n avg max min avg max min [n] [Inn] [Inn] [%n]
random 50K 3 10 o 1.81 1.85 1.77 5.23 1.22 0.46 1.01 7.62 4.11

lOOK 4 10 o 1.72 1.76 1.65 4.50 1.15 0.45 0.99 8.05 3.20
500K 13 20 10 1.62 1.63 1.60 4.14 1.08 0.59 1.27 7.59 1.86

lM 24 30 20 1.59 1.60 1.57 3.93 1.06 0.64 1.35 8.18 1.47
2M 46 50 40 1.57 1.58 1.56 3.73 1.04 0 .76 1.59 7.67 1.16
4M 86 91 80 1.56 1.56 1.55 3.61 1.03 0.94 1.94 7.21 0.91
8M 163 171 160 1.54 1.55 1.54 3.45 1.03 0.98 1.99 7.45 0.72

16M 316 321 310 1.53 1.54 1.53 3.44 1.02 0.99 2.02 7.55 0.57

17

Table 7.7: Performance of RISELECT on random inputs.

Sequence Sizc Time [mscc] Comparisons [n] Lavg Pavg Nrnd

n avg max min avg max min [Inn] [n]
ra.ndon1 501(2 10 o 3.10 4.32 1.88 3.10 1.G3 0.45

lOOK 4 10 o 2.Gl 4.19 1.77 2.61 l.GO 0.20
5001(17 20 1() 2.91 4.45 1.69 2.91 1.57 0.25

lM 33 41 20 2.81 3.79 1.84 2.81 1.57 0.40
2M 62 90 40 2.60 3.57 1.83 2.60 1.61 0.35
4M 135 191 90 2.8G 4.38 1.83 2.86 1.65 0.55
BM 249 321 190 2.60 3.48 1.80 2.60 1.58 0.40

16M 553 762 331 2.99 4.49 1.73 2.99 1.58 0.40

Table 7.8: Numbers of comparisons per element macie on small random inputs.

Sizc 1000 2500 5000 7500 10000 12500 15000 17500 20000 25000
avg 2.48 2.06 1.93 1.87 1.81 1.79 1.77 1.76 1.74 1.71

SELECT max 4.25 3.03 2.28 2.22 2.09 2.05 1.95 1.93 1.93 1.93
min 1.55 1.06 1.03 1.64 1.62 1.61 1.64 1.63 1.59 1.60
avg 2.86 2.55 2.24 2.16 2.07 2.03 1.98 1.98 1.94 1.90

QSELECT max 3.97 3.55 2.57 2.38 2.28 2.21 2.16 2.13 2.11 2.31
min 2.29 1.97 1.98 1.95 1.87 1.86 1.82 1.83 1.82 1.75
avg 2.72 2.85 2.66 2.71 2.72 2.83 2.78 2.75 2.75 2.84

RISELECT max 4.40 4.51 4.69 4.43 4.62 4.76 4.64 4.40 5.10 4.77

[Hoa61]

[Hoe63]

[Kiw03a]

[Kiw03b]

[KMP97]

[Knu98]

[MailOl]

[Mus97]

min 1.68 1.83 1.75 1.59 1.70 1.77 1.78 1.67 1.90 1.71

C. A. R. Hoare, Algorithm 65: FINO, Comm. ACM 4 (1961) 321- 322.

W. Hoeffding, Probability inequalities Jor sums of bounded random variables, J. Amer. Statist.
Assoc. 58 (1963) 13-30.

K. C. Kiwiel, Partitioning schemes for quicksort and quickselect, Tech. report, Systems Re­
search Institute, Warsaw, 2003. Available at the URL http://arxiv.org/abs/cs.DS/0312054.

__ , Randomized selection with quintar-y partitions, Tech. report, Systems Research Insti­
tute, Warsaw, 2003. Available at the URL http://arxiv.org/abs/cs.DS/0312055.

P. Kirschenhofer, C. Martinez and H. Prodinger, Analysis of Hoare's FINO algorithm with
median-of-three partition, Random Stucturcs and Algorithms 10 (1997) 143- 156.

D. E. Knuth, The Art of Computer Programming. Volume III: Sorting and Searching, second
ed ., Addison-Wcsley, Reading, MA, 1998.

C. Martinez and S. Roura, Optima/ sampling strategies in quicksort and quickselect, SIAM J.
Comput. 31 (2001) 683- 705.

D. R. Musser, Introspedive sorting and selection algorithms, Software-Prnctice and Expcrience
27 (1997) 983-993.

[PRKT83] .J. T. Postmus, A. H. G. Rinnooy Kan and G. T. Timmcr, An efficient dynamie selection
method, Comm. ACM 26 (1983) 878- 881.

[SPP76] A. Schiinhagc, M. Paterson and N. Pippcngcr, F-inding the median, .J. Comput. System Sci.
13 (1976) 184- 199.

18

[ValO0] J. D. Valois, Introspective sorting and selection 1·evisited, Software- Practice and Experience
30 (2000) 617- 638.

19

