

Randomized selection with tripartitioning

Krzysztof C. Kiwiel*
December 20, 2003

Abstract

We show that several versions of Floyd and Rivest’s algorithm SELECT [Comm.
ACM 18 (1975) 173] for finding the kth smallest of n elements require at most
n+ min{k,n — k} 4+ o(n) comparisons on average, even when equal elements occur.
This parallels our recent analysis of another variant due to Floyd and Rivest [Comm.
ACM 18 (1975) 165-172]. Our computational results suggest that both variants
perform well in practice, and may compete with other selection methods, such as
Hoare’s FIND or quickselect with median-of-3 pivots.

Key words. Selection, medians, partitioning, computational complexity.

1 Introduction

The selection problem is defined as follows: Given a set X := {z;}7_, of n elements, a
total order < on X, and an integer 1 < &k < n, find the kth smallest element of X, i.e., an
element z of X for which there are at most k£ — 1 elements z; < = and at least k elements
x; < 2. The median of X is the [n/2]th smallest element of X.

Selection is one of the fundamental problems in computer science; see, e.g., the refer-
ences in {DHUZ01, DoZ99, DoZ01] and [Knu98, §5.3.3]. Most references concentrate on
the number of comparisons between pairs of elements made in selection algorithms. In the
worst case, selection needs at least (2 + €)n comparisons [DoZ01], whereas the algorithm
of [BFP*72] makes at most 5.43n, that of [SPP76] needs 3n + o(n), and that in {DoZ99)
takes 2.95n + o(n). In the average case, for k£ < [n/2], at least n+ k — O(1) comparisons
are necessary [CuM89], whereas the best upper bound is n + k + Q(n21n'/? n) [Knu98,
Eq. (5.3.3.16)]. The classical algorithm FIND of [Hoa6l], also known as quickselect, has
an upper bound of 3.39n 4 o(n) for & = [n/2] in the average case [Knu98, Ex. 5.2.2-32],
which improves to 2.75n + o(n) for median-of-3 pivots [Grii99, KMP97}.

In practice FIND is most popular. One reason is that the algorithms of [BFP*72,
SPP76] are much slower on the average [Mus97, Val00], whereas [KMP97] adds that other
methods proposed so far, although better than FIND in theory, are not practical because
they are difficult to implement, their constant factors and hidden lower order terms are

*Systems Research Institute, Newelska 6, 01-447 Warsaw, Poland (kiwiel@ibspan.waw.pl)

1

too large, etc. It is quite suprising that these references [KMP97, Mus97, Val00] ignore
the algorithin SELECT of [FIR75b], since most textbooks mention that SELECT is asymp-
totically faster than FIND. In contrast, this papcr shows that SELECT can compete with
FIND in both theory and practice, even for fairly small values of the input size n.

We now outline our contributions in more detail. The initial two versions of SELECT
[FIR75b] had gaps in their analysis (cf. [Bro76, PRKT83], [Knu98, Ex. 5.3.3-24]); the first
version was validated in [Kiw03b], and the sccond one will be addressed elsewhere. This
paper deals with the third version of SELECT from [FIR75a], which operates as follows.
Using a small random sample, it finds an element v almost sure to be just above the kth
if k& < n/2, or below the kth if k& > n/2. Partitioning X about v leaves min{k,n — k} +
o(n) elements on average for the next recursive call, in which % is near 1 or n with high
probability, so this second call eliminates almost all the remaining elements.

Apparently this version of SELECT has not been analyzed in the litcrature, even in
the case of distinct elements. We first revise it slightly to simplify our analysis. Then,
without assuming that the elements are distinct, we show that SELECT needs at nmiost
n+min{k, n— k}+O(n?* In"/* n) comparisons on average, with In**n replaced by In*?n
for the original samples of [FIR75a]. Thus the average cost of SELECT reaches the lower
bounds of 1.5n + o(n) for median selection and 1.25n + o(n) for selecting an element of
random rank. For the latter task, FIND has the bound 2n + o(n) when its pivot is set to
the median of a random sample of s elements, with s — 0o, s/n — co as n — oo [MaR01];
thus SELECT improves upon FIND mostly by using k, the rank of the element to be found,
for selecting the pivot v in each recursive call.

SELECT can be implemented by using the tripartitioning schemes of [Kiw03a, §5], which
include a modified scheme of [BeM93]; morc traditional bipartitioning schemes [Kiw03a,
§2] can perform quite poorly in SELECT when equal elements occur. We add that the
implenentation of [FIR75a] avoids random number generation by assuming that the input
file is in random order, but this results in poor performance on some inputs of [Val00];
lience our implementation of SELECT employs random sampling.

Our computational experience shows that SELECT outperforms even quite sophisticated
implementations of FIND in both comparison counts and computing times. To save space,
only selected results are reported for the version of {Val00], but our experience with other
versions on many different inputs was similar. SELECT turned out to be wore stable than
F'IND, having much smaller variations of solution times and nurnbers of coniparisous. Quite
suprisingly, contrary to the folklore saying that SELECT is only asymptotically faster than
FIND, SELECT makes significantly fewer comparisons even for small inputs (cf. Tab. 7.8).

To relate our results with those of [Kiw03b], let’s call QSELECT the quintary method
of [Kiw03b] stemming fromn [FIR75b, §2.1]. QSELECT climinates alinost all elements on
its first call by using two pivots, alinost sure to be just below and above the kth element,
in a quintary partitioning scheine. Thus most work occurs on the first call of QSELECT,
which corresponds to the first two calls of SELECT. Hence SELECT and QSELECT share
the same efficiency estimates, and in practice inake similarly many comparisons. However,
QSELECT tends to be slightly faster on median finding: although its quintary scheme is
more coplex, most of its work is spent on the first pass through X, whercas SELECT first
partitions X and then the remaining part (about half) of X on its second call to achieve a

similar problem reduction. On the other hand, SELECT makes fewer comparisons on small
inputs. Of course, future work should assess more fully the relative merits of SELECT and
QSELECT. For now, the tests reported in [Kiw03a, Kiw03b} and in §7 suggest that both
SELECT and QSELECT can compete successfully with refined implementations of FIND.

The paper is organized as follows. A general version of SELECT is introduced in §2,
and its basic features are analyzed in §3. The average performance of SELECT is studied in
§4. A modification that improves practical performance is introduced in §5. Partitioning
schemes are discussed in §6. Finally, our computational results are reported in §7.

Our notation is fairly standard. |A| denotes the cardinality of a set A. In a given
probability space, P is the probability measure, E is the mean-value operator and P[-|€] is
the probability conditioned on an event £; the complement of £ is denoted by £’

2 The algorithm SELECT

In this section we describe a general version of SELECT in terms of two auxiliary functions
s(n) and g(n) (the sample size and rank gap), which will be chosen later. We omit their
arguments in general, as no confusion can arisc.

Algorithm 2.1.

SELECT(X, k) (Selects the kth smallest element of X, with 1 <k < n:=|X|)

Step 1 (Initiation). If n = 1, return z,. Choose the sample size s <n — 1 and gap g > 0.
Step 2 (Sample selection). Pick randomly a sample S = {y,...,ys} from X.

Step 3 (Pivot selection). Let v be the output of SELECT(S, 4,), where

. [min {[ks/n+g],s} if k<n/2,
VU max{ [ks/n—g],1} if k>n/2 (1)

Step 4 (Partitioning). By comparing each element z of X \ S to v, partition X into the
three sets L:={zre Xz <v}, E:={zeX:z=v}and R:={z € X v <z}

Step 5 (Stopping test). If |L] < k < |LU E], return v.
Step 6 (Reduction). 1f k < L], set X =1L #:=|X|and k := k; else set X = R,
fu:=|X|and k:=k — |LU E].
Step 7 (Recursion). Return SELECT(X, k).
A few remarks on the algorithin are in order.

Remarks 2.2. (a) The correctuess and finiteness of SELECT stem by induction from the
following observations. The returns of Steps 1 and 5 deliver the desired element. At Step
6, X and E are chosen so that the kth smallest clement of X is the kth smallest element
of X, and A < n (since v & X). Also 15| < m for the recursive call at Step 3.

(b) When Step 5 returns », SELECT 1ay also return information about the positions
of the elements of X relative to v. For iustance, if X is stored as an array, its k simallest

elements may be placed first via interchanges at Step 4 (cf. §6). Hence Step 4 need only
compare v with the elements of X \ S.

(c) The following elementary property is necded in §4. Let ¢, denote the maxinmum
muuber of comparisons taken by SELECT on any input of size n. Since Step 3 makes at
most ¢, comparisons with s < n, Step 4 needs at most n — s, and Step 7 takes at most c;
with 7 < n, by induction ¢, < oo for all n.

3 Sampling deviations

In this section we analyze general features of sampling used by SELECT. Our analysis
hinges on the following bound on the tail of the hypergeometric distribution established
in [Hoe63] and rederived shortly in [Chv79].

Fact 3.1. Let s balls be chosen uniformly af random from a set of n balls, of which v
arc red, and r' be the random variable representing the number of red balls drawn. Let
p:=r/n. Then

P{r' > ps+g] <e 27 g >0. (3.1)

Denote by o7 < ... <23 and yf < ... < ¥ the sorted clements of the input set X and
the sample set S, respectively, so that v = 3} . The following result will give bounds on
the position of v in the sorted input sequence.

Lemma 3.2. Suppose 7 := max{1, min([xs],s)}, 7 := max{[sn — gn/s],1}, and 7 =
min{[kn + gn/s],n}, where —g < ks <s+g,1<s<nandg>0. Then

(a) Ply; < 23] < e %% if 7> [xs].

(b) Pl < 93] < e=20s if 1< {ks).

-

Proof. Note that —g < ks < s+ g implies that 7, <n and 7. > 1 are well-defined.

(a) If y; < 3, at least 7 samples satisfy y; < 7, where r = MaAX,s <oz j. In the
setting of Fact 3.1, we have r red clements z; < 2, ps = rs/n and 7 > 7. Now,
1<r<j-1implies2 <7 = [kn—gn/s] <xn—gn/s+1,s0 —rs/n>—ks+g. Hence
T—ps—g>ks—Ks+g—g=0,1e,r >ps+g. Thus Ply; <a}] < e=20s by (3.1).

(b) If 27 < y;, s —7+ 1 samples are at least 27, with 7= MaXys—r; J- Thus we have
7:=n — jred elements x; > 2},,, ps = s — Js/n and 7’ > s —~ 7+ 1. Since 7 < ss + 1 and
n>j7>75 >kntgn/s,weget s—T+1—ps—g>is/n—ks—g>ks+g—rs—g=0.
Hence r' > ps+ g and Ple}, < yf] <Pl > ps+g] < e~2s by (3.1). O

We now bound the position of v relative to xj, zj, and zj_, where
ki :=max { [k —2gn/s],1} and k. :=min{[k+2gn/s],n}. (3.2)

Corollary 3.3. (a) Pl < a}] < e 7% if 4, = [ks/n+g] and k < n/2.

(b) Plxy, <] < =205 4f | < n/2.

(¢) Pla <] < e if i, = [ks/n —g] and k > n/2.

(d) Plv < a},) < €797 4f k> n/2.

(e) If k < n/2, then i, # [ks/n+ g iff n < k+ gn/s; similarly, if k> n/2, then
i # [ks/n—g] iff k< gn/s.

Table 4.1: Sample size f(n) == n** '3 7 and relative sample size ¢(n) := f(n)/n.

n 108 104 10° 108 5.108 107 5. 107 108
flr) 190449 972,953 4864.76 23995.0 72287.1 117248 353885 568986
d(n) 190449 097295 048648 023995 014557 011725 007078 .005690

Proof. Use Lem. 3.2 with ks = ks/n + g for (a,b), and ks = ks/n — g for (¢,d). U

4 Average case performance

In this section we analyze the average performance of SELECT for various sample sizes.

4.1 Floyd-Rivest’s samples
For positive constants a and g, consider choosing s = s(n) and ¢ = g(n) as
s:=min{[af(n)],n— 1} and g:= (Bslnn)"/? with f(n) := n?*In'n. (4.1)

This form of g gives a probability bound e=2¢"¢ = =28 for Cor. 3.3. To get more fecling,
suppose o = § = 1 and s = f(n). Let ¢(n) := f(n)/n. Then s/n = g/s = ¢(n) and it
will be seen that the recursive call reduces n at least by the factor 4¢(n) on average, i.e.,
$(n) is a contraction factor; note that ¢(n) = 2.4% for n = 10° (cf. Tab. 4.1).

Theorem 4.1. Let Cpy denote the expected number of comparisons made by SELECT for
s and g chosen as in (4.1) with 8 > 1/6. There ezists a positive constant vy such that

Cor <n+min{k,n—k}+vf(n) V1<k<n. (4.2)

Proof. We need a few preliminary facts. The function ¢(t) := f(¢)/t = (Int/t)"/* de-
creases to 0 on [e, 00), whereas f(t) grows to infinity on [2,00). Let § := 4(8/a)'/2. Pick
7 > 3 large enough so that e = 1 < af(A) < —1and e < 6f(n). Let & :=a+1/f(n).
Then, by (4.1) and the monotonicity of f and ¢, we have for n > n

s<af(n) and f(s) < aglaf(n))f(n), (4.3)

f18f(m)]) < £(5f(n)) < 6(8f(R)) f(n). (4.4)
For instance, the first inequality of (4.3) yields f(s) < f{@f(n)), whereas

faf(n)) = ag(af(n))f(n) < ad(af(n))f(n)

Also for n > A, we have s = [af(n)] = af(n) + ¢ with ¢ € [0,1) in (4.1). Writing
s = Gf(n) with @ := a + ¢/ f(n) € [, @), we deduce from (4.1) that

gn/s = (/@) f(n) < (8/a)*f(n). (4.5)

5

In particular, dgn/s < §f(n), since 6 := 4(f3/a)'/?. Next, (4.1) implies
ne=¥7s < =% = fp)n!AW I, (4.6)
Using the monotonicity of f and ¢, increase 7 if necessary to get for all n > 7
2ad(af(n)) + 646 f(7) +2n %P 42 mnx{ [0 f ()32 =23 20 } <095 (47

By Rem. 2.2(c), there is such that (4.2) holds for all n < 7; increasing «y if necessary,
and using the monotonicity of f and the assumption 3 > 1/6, we have for all n > 7

20 + 26 + 503 ¥ I3 3max { 512 (), nA-W gy } <0.05y. (4.8)

Let n' > fi. Assuming (4.2) holds for all n < n’, for induction let n =n’ + 1.

We need to consider the following two cases in the first call of SELECT.

Left case: k < /2. First, supposc the event & := {z < v <z} } occurs. By the rules
of Steps 4-6, we have X = L (from 2}, <), i = k and 7 := | X[< k, — 1 (from v < xE)
since k, < k + 2gn/s -+ 1 by (3.2), we get the two (cquivalent) bounds

fi<k+2gn/s and 7 —k<2gn/s. (4.9)

Note that if 3, = [ks/n + g] then, by Cor. 3.3(a,b), the Boole-Benferroni inequality
and the choice (4.1), the complement & of & has P[€]] < 2¢7%%* = 2n=%. Second, if
ty # [ks/n+g], then n < k -+ gn/s (Cor. 3.3(c)) combined with k < n/2 gives n < 2¢n/s;
hence 7 — k < A < n < 2gn/s implies (4.9). Since also & implies (4.9), we have

Pl < 20 for A= {n —k<2gn/s } . (4.10)

Right case: k > n/2. First, suppose the event & = {}, < v <z} occurs. By the
rules of Steps 4-6, we have X = R (fromv < z}), A~k =n—kand 7 := |[X| <n—k
(from zj, < v); since k; > k — 2gn/s by (3.2), we get the two (equivalent) bounds

A<n—k-+2m/s and k< 2gn/s, (4.11)
using i — k = n — k. 1f i, = [ks/n — g] then, by Cor. 3.3(c,d), the complement &! of &,
has P[E]] < 2e7%%° = 2172 Second, if 1, # [ks/n = g], then k < gn/s (Cor. 3.3(e))
combined with k > n/2 gives n < 2gn/s; hence k < 7 < n < 2gn/s implies (4.11). Thus

PlA] < 2% for A, = {k < 2gn/s}. (4.12)
Since k <n—kifk<n/2,n—k<kifk>n/2 (49)and (4.11) yield
PB)<2n % for B:={na<min{kn-—k}+29n/s}. (4.13)

Note that min{k,n — &} < [n/2] < n/2; this relation will be used implicitly below.

For the recursive call of Step 7, let 3, § and 2, denote the quantities generated as in
(4.1) and (2.1) with n and k replaced by 7 and k, let ¢ be the pivot found at Step 3, and
let. X, 7 and k correspond to X, 7 and k at Step 7, so that 7 := | X| < 7.

6

The cost of selecting v and 4 at Step 3 may be estimated as

Cu, + Cai, < 138 +7f(s) + 1.55 + vf(3) < 3s+27f(s), (4.14)

since f is increasing and (4.2) holds for § < s <n—1=7n' (cf. (4.1)) from A < n.
Let ¢ :== n— s and & := 7+ — § denote the costs of Step 4 for the two calls. Since
0 < ¢ < n and Eé = E[¢|B|P[B] + E[¢|B|P[B'] < E[&B]) +nP[B'], by (4.13) we have

c+EBe<n—s+min{kn—k}+2gn/s+2n % (4.15)
Using (4.2) again with 7 < n, the cost of finishing up at Step 7 is at most
EC,; < E[150 +vf(n)] = 1.5EA 4+ vYEf(n). (4.16)
Thus we need suitable bounds for En and Ef(7), which may be derived as follows.
To generalize (4.13) to the recursive call, consider the events

B:= {n <min{k,n— k) + 2g"ﬁ,/§} and C:={n<[8f(n)]}. (4.17)

By (4.10) and (4.12), BN A; and BN A, imply C, since 2gn/s + 247/ < §f(n) by (4.5)
with A < n and § := 4(3/a)'/*. For the recursive call, proceeding as in the derivation of
(4.13) with n replaced by 7 = 1, k by k, etc., shows that, due to random sampling,

PB|A, 7 =1 <2% and PIBA, 7 =1 <2 % (4.18)
In the left case of k < n/2, using # < n and P[A}] < 2n2? (cf. (4.10)), we get
En = E[f|A)P[A] + E[A|A]P[A]) < E[A|A)] + n2n .

Partitioning A; into the events D; := A, N {A =i}, i = 0:n — 1 (2 < n always), we have

n—1
E[n|lA] = ; E[R|D;)P[D:} Al < ,max, E[n|Dy],
where E[n|D;] < [6f(n)] if i < [df(n)] + 1, because 72 < 7 always. As for the remaining
terms, BN.A; C C implies P[C'|D;] < P[B/|Dy] < 2628 by (4.18), where C := {72 < [§f(n}]}
and 71 < 7 = ¢ when the event D; occurs, so E[|D;] < {6 f(n)]| +i2i72%. Hence

12
2% ﬂ,

nax E[n|D] < |6f(n)]| + 1X

e
i=|6f(n}]+2n—-1
where the final term is omitted if |6 f(n)] > n — 3; otherwise it is at most

2 max { (l0f(n)] + 1)1"% =% } < 2max { §1W f(n) =% -2 1y } f(n),

since MAaXi—|sf()|+1:n 231728 ig bounded as above (consider 3 > 1/2, then < 1/2 and use
§f(n) < [6f(n)] + 1, the monotonicity of f and (4.6) for the final inequality). Collecting
the preceding estimates, we obtain

En < [6f(n)] + 2% + 2max { Rl O N A A } F(n). (4.19)

7

Similarly, replacing 7 by f(7i) in our derivations and using the monotonicity of f yields

Ef(n) < f(l6fD) +2f(mn "+ _ max 2f(i)i", (4.20a)

i=|8f(n)j+2m—1

where the flual term is omitted if [§f(n)] > n — 3; otherwise it is at most

(16f +1) f(2325 —2s3 X
2111ax{ »fL_éf—n)?]‘ﬁ’ n(;;) } < 2111@*({ [(Sf(n)]z/s B =23 =28 } f(n). (4.20b)

To see this, use the monotonicity of f and the fact that for ¢ <n (cf. (4.1))
F)i™% f(n) = 2372020 (i) Inn) /3 < 23200 -2,

For the right case, replacc A; by A, in the preceding paragraph to get (4.19)-(4.20).
Add the costs (4.14), (4.15) and (4.16), using (4.19)~(4.20), to get

Cu < 35+ 27f(s) + n— s+ min{ k,n —~ b} + 29n/s + 20~
+ L5[5f(n)] + 3n' "% + 3max { § ()™ A I o} f(n)
+f([8f(n)]) + 2vf (m)n™ + 2y max { [§f(n)]/* 202 %} f(n
Now, using the bounds (4.3)-(4.4), 2gn/s < 1 f(n) (cf. (4.5)) and (4.6) gives
Cox <n+min{kn—-k}
-+ [2@ + 26+ 5027 In7 5 4 3max { §L2f(n)=28 plA-W 1By }] f(n)
+ [2a(af (R)) + 5¢(6 () + 20 + 2max { (5 ()02 =%] yf(n).

By (4.7)-(4.8), the two bracketed terins above arc at most 0.05yf(n) and 0.95vf(n),
respectively; thus (4.2) holds as required. [

4.2 Other sampling strategies

We now indicate briefly how to adapt the proof of Thm 4.1 to several variations on (4.1);
a choice similar to (4.21) below was used in [FIR75a)].

Remarks 4.2. (a) Theoren 4.1 remains true for 4 > 1/6 and (4.1) replaced by
5= min{[anz/ﬂ = 1} . 9= (Bsin)/? and f(n) == n**In"?n. (4.21)

Indeed, using ¢¥/? — 1 < an®3 < — 1, " < §f(7), & = o + 7723 and s = &n®? with
@ € [ov, &) yields (4.3)-(4.5) as before, and In™V/2 replaces In™Y% in (4.6), (4.8) and (4.19).
(b) Theorem 4.1 holds for the following modification of (4.1) with ¢ > 1

s :=min {[af(n)],n —1} and g:= (FsIn“n)"/? with f(n) := n?* I/ n. (4.22)

First, using e — 1 < af(A) <7 — 1 and e < §f(7) gives (4.3)—(4.5) as before. Next,
fix /.i > 1/6. Let 8, := fln"~ Y. Increase 7 if necessary so that g; > ﬁ for all i >
min{7i., [6£(7)]}; then replace 4 by 4 and ™3 by ™% in (4.6) and below.
(c) Several other replacements for (4.1} may be analyzed as in [Kiw03b, §§4.1-4.2].
(d) None of thesc choices gives f(n) better than that in (4.1) for the bound (4.2).

8

We now comment briefly on the possible use of sampling with replacement.

Remarks 4.3. (a) Suppose Step 2 of SELECT employs sampling with replacement. Since
the tail bound (3.1) remais valid for the binowial distribution [Chv79, HoeG3], Lennia
3.2 is not affected. However, when Step 4 no longer skips comparisons with the elements
of S, —s in (4.15) is replaced by 0; the resulting change in the bound on Cyy, only needs
replacing 2& in (4.8) by 3a. Hence the preceding results remain valid.

(b) Of course, sampling with replacement needs additional storage for S. However,
the increase in both storage and the munber of comparisons may be tolerated because the
sample sizes are relatively small.

4.3 Handling small subfiles

Since the sampling efficiency decreases when X shrinks, consider the following modifica-
tion. For a fixed cut-off parameter ney, > 1, let sSelect(X, k) be a “small-select” routine
that finds the kth smallest element of X in at most Cey < 00 comparisons when [X| < ngy,
(even bubble sort will do). Then SELECT is modified to start with the following

Step 0 (Small file case). If n := | X| < new, return sSelect(X, k).

Our preceding results remain valid for this modification. In fact it suffices if Cey
bounds the ezpected number of comparisons of sSelect(X, k) for n < ngy. For instance,
(4.2) holds for n < 7y, and v > Cey, and by induction as in Rem. 2.2(c) we have Gy < 00
for all n, which suffices for the proof of Thm 4.1.

Another advantage is that even small 1, (1000 say) limits nicely the stack space for
recursion. Specifically, the tail recursion of Step 7 is easily eliminated (set X := X ko= k
and go to Step 0), and the calls of Step 3 deal with subsets whose sizes quickly reach ng.
For example, for the choice of (4.1) with o = 1 and ne, = 600, at most four recursive
levels occur for n < 23 = 2.15 - 10°.

.5 A modified version

We now consider a modification inspired by a remark of [Bro76]. For k close to {n/2], by
symmetry it is best to choose v as the sample median with ¢, = [s/2], thus attempting
to get v close to a, instead of 27, /o OF Ty gu/s; then more elements are eliminated.
Hence we may let

[ks/n+g] ifk<n/2—gn/s,
Iy i=19 [8/2] ifn/2—gn/s <k<n/2+gn/s, (5.1)
[ks/n—g] ifk>n/2+gn/s.

Note that (5.1) coincides with (2.1) in the left case of k < n/2 — gn/s and the right case
of k > n/2 + gn/s, but the middle case of n/2 — gn/s <k < n/2+ gn/s fixes i, at the
median position [s/2]; in fact 4, is the median of the threc values in (5.1):

i, = max{min([ks/n+g],[s/2]), [ks/n—g]}. (5.2)

Corollary 3.3 remains valid for the left and right cases. For the iniddle case, letting
Jor=max{[n/2—gn/s],1} and j. :=min{[n/2+gn/s],n}, (5.3
we obtain from Lemma 3.2 with ~ = 1/2 the following complement of Corollary 3.3.

Corollary 5.1. Plv < 23] < e~ 2% amd Pla; <] < ™2 4f)2 — gnfs < k <
n/2+ gn/s.

Theorem 5.2. Theorem 4.1 holds for SELECT with Step 3 using (5.1).

Proof. We only indicate how to adapt the proof of Thm 4.1 following (4.8). As noted
alter (5.1), the left case now has k < n/2 — gn/s and the right case has k > n/2+ gn/s,
s0 we only nced to discuss the middle case.

Middle case: n/2 ~ gn/s <k <n/2+ gn/s. Supposc the cvent &, := {z}, <v <z}, }
ocenrs (note that P[E]] < 2¢727% = 2720 by Cor. 5.1). If X = L then, by the rules of
Steps 4-6, we have & = k and 7 < j, — 1; since j» < n/2 + gn/s + 1 by (5.3), we get
it < n/2+gn/s. Hence k 2 /2 — gn/s yields it < &+ 2gn/s and 7 — k < 2gn/s as in
(4.9). Next,if X = Rthenno -k =n-kand k:=k-[LUE|,s0o LUE = {z € X :
@ < v} 3 ag, gives k<k—j. Sincek< n/2+ gn/s and j; > n/2 — gn/s by (5.3), we get
k < 2gn/s and & < 7 — k + 2gn/s as in (4.11); further, 7 < n — j; yields & < n/2 + gn/s.
Noticing that n/2 — gn/s < k <n/2+ gn/s implics n/2 < min{k,n — k} + gn/s, we have
i < min{k,n — k} + 2gn/s in both cascs.

Thus in the middle case we again have (4.13) and hence (4.15); further, by (4.10) and
(4.12), the event &,, C A4; U A, is partitioned into &, N A, and &, N A N A,.

Next, reasoning as before, we see that (4.18) and hence (4.19)~(4.20) remain valid in
the left and right cases, whercas in the middle case we have

P8\, Al =1 < 207% and P[B|E, A}, Aryit = i) < 207%, (5.4)

In the middle case, En = E[ii|E,,|P[E,]+ E[R|E]PIEL] is bounded by E[#]&,,] +2nt=20,
since P[] < 2n~% and 7 < n always. Next, partitioning &, into &, N .4; and &, N
AN A,, we obtain E[n|€,] < max{E[i|E,,, A, E[#|E., A}, A}, where E[R|&,,, A] and
E[n)Em, Aj, Ar] may be bounded like E[fi|A;] and E[f}.A,] in the left and right cases to get
(4.19). Then (4.20) is obtained similarly, and the conclusion follows as before. [

6 Ternary partitions

In this section we discuss ways of implementing SELECT when the input sct is given as an
array z[l:n]. We employ the following notation.

Each stage works with a segment «[l: 7] of the input array z(1:n], where 1 <[<r <n
are such that x; < @y for ¢ = 1.l — 1, 2, < x; for i = r + 1lin, and the kth smallest
clement of a(1:n] is the (k — ! + 1)th smallest element of z{l:7]. The task of SELECT is
catended: given {lir] and [< & < r, SELECT(x,{, 7 k, k_, ki) perutes «[l:r] and finds

10

Table 7.2: Performance of SELECT on deterministic inputs.

Scquence Size Time [mscc} Compatisons {1] Yavg Lavg Pavg Navg Pavg Savg
n avg max min avg max min 0] {lnn] [inn] [Yon]
sorted 50K 1 10 0 1.67 176 1,59 1.85 1.66 048 057 7.24 265

100K 2 10 0 162 169 155 170 162 060 069 676 212
500KK 8 10 0 156 1.62 153 135 156 067 074 752 119
M 15 20 10 154 158 153 119 1534 068 075 7.87 0.92
2M 27 31 20 1.54 156 152 123 154 0.74 081 7.61 0.73
M 51 61 40 153 155 1.52 119 1.53 087 093 734 057
8M 98 111 90 1.52 1.53 151 110 1.52 0.89 095 8.03 044
16M 186 200 170 1.52 1.52 1.51 1.04 152 095 1.01 799 0.35
rotated 50K 1 10 0 167 178 159 186 1.66 048 0.57 945 2.64
100K 2 10 0 163 173 158 176 1.63 0.61 069 912 212
500K 8 10 0 156 1.62 1.54 139 156 065 073 10.03 1.18
IM 15 20 10 1.55 1.58 1.53 120 155 0069 076 956 092
2M 27 31 20 154 155 1.52 1.19 154 0.78 0.84 869 0.72
4M 51 60 50 1.53 1.54 1.52 1.18 1.53 087 0.94 892 0.57
sM 98 111 90 152 1.53 151 1.12 152 089 096 929 044
16M 185 210 170 1.52 1.53 1.51 1.04 1.52 093 099 896 0.35
organpipe 50K 1 10 0 167 178 159 194 167 045 055 821 2.62
100K 3 10 0 1.62 169 157 1.68 1.62 0.60 069 761 211
500K 10 10 10 1.57 1.60 154 143 156 0.67 075 818 1.19
M 20 20 10 155 1.58 1.52 124 1.55 070 077 821 093
2M 37 41 30 1.53 1.55 1.52 1.15 153 0.78 0.85 848 0.72
4M 68 80 60 153 1.54 1.52 1.13 1.53 0.84 091 821 057
8M 130 150 120 1.52 1.54 1.51 107 152 0.88 094 8.64 044
16M 240 260 230 152 1.53 1.51 102 152 094 1.00 844 035
m3killer 50K 1 10 0 167 176 1.60 189 1.67 047 055 882 262
100K 4 10 0 163 171 157 1.8 1.63 0.60 069 7.69 213
500K 11 20 10 1.57 1.62 153 144 1.57 066 073 861 1.19
IM 20 20 20 1556 1.9 152 140 1.55 072 0.79 833 0.93
2M 38 41 30 154 1.56 1.52 1.25 154 078 085 830 0.73
iM 73 81 70 153 154 152 128 1.53 087 094 822 057
8M 137 150 130 1.52 1.53 151 105 1.52 091 097 837 0.44
16M 248 260 230 1.52 1.52 151 096 152 092 097 842 0.35

The preceding results were obtained with the modified choice (5.1) of 1,. For brevity,
Table 7.5 gives results for SELECT with scheine A and the standard choice (2.1) of 7, on
the randoni inputs only, since these inputs are most frequently used in theory and practice
for evaluating sorting and sclection nethods. The modified choice typically requires fewer
comparisons for small inputs, but its advantages are less pronounced for larger inputs. A
similar behavior was observed for SELECT with scheme B. :

For comparison, Table 7.6 extracts from [Kiw03b] some results of QSELECT for the
samples (4.1). As noted in §1, QSELECT is slightly faster than SELECT on larger inputs
because most of its work occurs on the first partition (cf. Ly in Tabs. 7.1 and 7.6). In
Table 7.7 we give correspouding results for RISELECT, a Fortran version of the algorithm of
[Val00]. For these inputs, RISELECT hehaves like FIND with niedian-of-3 pivots (because

15

Table 7.4: Performance of SELECT with the hybrid scheme of [Kiw03a, §5.6].

Sequence Size Time [mscc] Comparisons (] Yave Lavg Pwg Navg Pavg Savg
n avg maX min avg max Imin 7] [lnn] [lnn] [%n]
random 2M 44 50 40 153 154 152 1.03 153 076 083 831 0.72
4M 86 100 80 153 155 1.52 1.10 1.53 085 092 842 057
sM 163 171 160 1.52 154 151 103 1.52 0.87 093 815 0.44
16M 317 321 310 1.51 1.53 1.51 0.88 1.51 091 097 850 0.35
onezero 2M 74 80 70 130 150 1.00 0.00 130 026 0.14 129 0.56
4M 141 151 130 1.20 150 1.00 0.00 1.20 0.22 0.13 1.18 041
8M 285 301 270 1.20 1.50 1.00 0.00 120 0.22 0.13 131 0.32
16M 578 621 541 125 1.50 1.00 000 1.25 020 011 121 0.27
sorted 2M 23 30 20 1.54 1.65 152 1.18 154 078 085 7.61 0.72
iM 42 50 40 153 154 151 119 153 086 092 7.76 0.57
SM 80 80 80 1.52 153 1.51 1.11 152 089 095 801 044
16M 153 170 150 1.52 1.53 151 1.04 1.52 097 1.03 812 035
Table 7.5: Performance of SELECT with the standard choice of ,.
Sequence Size Time [msec] Comparisons (0] Yavg Lavg Pavg Navg Pavg Savg
n avg max min avg max min [n} [Inn] [Inn] [%n]
random 50K 4 10 0 183 197 174 373 183 057 0.67 849 2.96
100K 4 10 0 173 183 161 313 173 073 0.82 780 232
500K 14 20 10 165 1.69 161 325 165 0.82 090 840 1.30
M 25 30 20 161 165 158 2.83 1.60 0.89 0.97 828 0.99
2M 46 50 40 1.59 1.61 156 292 159 099 1.06 8.01 0.77
4M 90 100 80 156 1.58 1.54 261 156 115 122 834 0.60
8M 174 181 170 1.55 1.57 1.54 2.70 155 1.21 1.27 8.09 047
16M 341 351 330 1.54 156 153 2.68 154 1.21 1.28 833 0.36
Table 7.6: Performance of quintary QSELECT on random inputs.
Scquence Size Time [msec] Comparisons (2] Yavg Lavg Pavg Navg Davg Sovg
n avg max min avg max min [n] [lnn] [Inn] [%n]
random 50K 3 10 0 181 18 177 523 122 046 101 7062 4.11
100K 4 10 0 172 176 165 450 115 045 0.99 805 3.20
500K 13 20 10 162 163 160 414 1.08 059 127 759 186
M 24 30 20 1.9 160 157 393 106 064 135 8.18 1.47
2M 46 50 40 1.57 1.58 156 373 1.04 076 159 7.67 1.16
iM 86 91 80 1.56 1.56 155 3.61 1.03 094 194 721 091
8M 163 171 160 1.54 155 1.54 345 1.03 0.98 199 745 0.72
16M 316 321 310 153 154 153 344 102 099 202 755 057

17

[Valoo] J. D. Valois, Introspective sorting and selection revisited, Software-Practice and Experience
30 (2000) 617-638.

19

