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Abstract

We show that several versions of Floyd and Rivest’s algorithm SELECT for finding
the kth smallest of n elements requirc at most n + min{k,n — k} + o(n) comparisons
on average and with high probability. This rectifies the analysis of Floyd and Rivest,
and extends it to the case of nondistinct elements. Our computational results confirm
that SELECT may be the best algorithm in practice.
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1 Introduction

The selection problem is defined as follows: Given a set X := {z;}7_, of n elements, a
total order < on X, and an integer 1 < k < n, find the kth smallest element of X, i.e.,
an element z of X for which there are at most k& - 1 elements z; < z and at least k
elements z; < z. The median of X is the [r/2]th smallest element of X. (Since we are
not assuming that the elements are distinct, X may be regarded as a multiset).

Selection is one of the fundamental problems in computer science. It is used in the
solution of other basic problems such as sorting and finding convex hulls. Hence its lit-
erature is too vast to be reviewed here; see, e.g., [DHUZO01, DoZ99, DoZ01] and [Knu98,
§5.3.3]. We only stress that most references employ a comparison model (in which a se-
lection algorithm is charged only for comparisons between pairs of elements), assuming
that the elements are distinct. Then, in the worst case, selection needs at least (2 + €)n
comparisons [DoZ01], whereas the pioneering algorithm of [BFP*72] makes at most 5.437,
its first improvement of [SPP76] needs 3n + o(n), and the most recent improvement in
[DoZ99)] takes 2.95n+ o(n). Thus a gap of almost 50% still remains between the best lower
and upper bounds in the worst case.

The average case is better understood. Specifically, for £ < [n/2], at least n + & — 2
comparisons are necessary [CuM89], [Knu98, Ex. 5.3.3-25], whereas the best upper bound
is n+ k + OmY?In'?n) [Knu9s, Eq. (5.3.3.16)]. Yet this bound holds for a hardly
implementable theoretical scheme [Knu98, Ex. 5.3.3-24], whereas a similar frequently cited
bound for the algorithm SELECT of [FIR75b] doesn’t have a full proof, as noted in [Knu98,
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Ex. 5.3.3-24] and [PRKT83]. Significantly worse bounds hold for the classical algorithin
FIND of [HoaB1], also known as quickselect, which partitions X by using the median of a
random sample of size s > 1. In particular, for k = [n/2], the upper bound is 3.39n -+ o(n)
for s = 1 [Knu98, Ex. 5.2.2-32] and 2.75n + o(n) for s = 3 [Gri99, KMP97], whereas for
finding an element of random rank, the average cost is 3n+ o(n) for s = 1, 2.5n + o(n) for
s = 3 [KMP97], and 2n + o(n) when s — oo, s/n — 0 as n — oo [MaR01]. In practice
FIND is most popular, because the algorithms of [BFP*72, SPP76] are much slower on
the average [Mus97, Val00]. For the gencral case of nondistinct elements, little is known
in theory about these algorithms, but again FIND performs well in practice [Val00].

Our aim is to rekindle theoretical and practical interest in the algorithm SELECT of
[FIR75b, §2.1] (the versions of [FIR75b, §2.3] and [FIR75a] will be addressed elsewhere).
We show that SELECT performs very well in both theory and practice, even when equal
elements occur. To outline our contributions in more detail, we recall that SELECT operates
as follows. Using a small random sample, two clements v and v almost sure to be just
below and above the kth are found. The remaining elements are compared with v and v
to create a small selection problem on the elements between u and v that is quickly solved
recursively. By taking a random subset as the sample, this approach does well against any
input ordering, both on average and with high probability.

First, we revise SELECT slightly to simplify our analysis. Then, without assuming
that the elements are distinct, we show that SELECT needs at most n + min{k,n — &} +
O(n?*1In'® n) comparisons on average; this agrees with the result of [FIR75b, §2.2] which
is based on an unproven assumption [PRKT83, §5]. Similar upper bounds are established
for versions that choose sample sizes as in [FIR75a, Meh00, Rei85] and [MoR95, §3.3].
Thus the average costs of these versions reach the lower bounds of 1.5n + o(n) for median
selection and 1.25n+ o(n) for selecting an element of random rank (yet the original sample
size of [FIR75D, §2.2] has the best lower order term in its cost). We also prove that nonre-
cursive versions of SELECT, which employ other selection or sorting algorithms for small
subproblems, require at most n + min{k,n — k} + o(n) comparisons with high probability
(e.g., 1 —4n~% for a user-specified 8 > 0); this extends and strengthens the results of
[GeS03, Thm 1], [Meh00, Thm 2] and [MoR95, Thm 3.5].

Since theoretical bounds alone needn’t convince practitioners (who may worry about
hidden constants, etc.), a serious effort was made to design a competitive implementation
of SELECT. Here, as with FIND and quicksort [Sed77], the partitioning efficiency is crucial.
In contrast with the observation of [FIR75b, p. 169] that “partitioning X about both » and
v [is] an inherently ineflicient operation”, we introduce a quintary scheme which performs
well in practice.

Relative to FIND, SELECT requires only small additional stack space for recursion,
because sampling without replacement can be done in place. Still, it might scem that
random sampling needs too much time for random number generation. (Hence several
popular implementations of FIND don't sample randomly, assuming that the input file is
in random order, whercas others [Val00] invoke random sampling only when slow progress
occurs.) Yet our computational experience shows that sampling doesn’t hurt even on
randomi inputs, and it helps a lot on more difficult inputs (in fact our interest in SELECT
was sparked by the poor performance of the implementation of [FIR75a] on several inputs




of [Val00]). Most importantly, even for examples with relatively low comparison costs,
SELECT beats quite sophisticated implementations of FIND by a wide margin, in both
comparison counts and computing times. To save space, ouly selected results are reported,
but our experience on many other inputs was similar. In particular, empirical estimates
of the constants hidden in our bounds werc always quite small. Further, the performance
of SELECT is extremely stable across a variety of inputs, even for small input sizes (cf.
§7.3). A theoretical explanation of these featurcs will be undertaken elsewhere. For now,
owr experience supports the claim of [FIR75b, §1] that “the algorithin presented here is
probably the best practical choice”.

The paper is organized as follows. A general version of SELECT is introduced in §2,
and its basic features are analyzed in §3. The average performance of SELECT is studied
in §4. High probability bounds for nonrecursive versions are derived in §5. Partitioning
schemes are discussed in §6. Finally, our computational results arc reported in §7.

Our notation is fairly standard. |A] denotes the cardinality of a set A. In a given
probability space, P is the probability measure, and E is the mean-value operator.

2 The algorithm SELECT

In this section we describe a general version of SELECT in terms of two auxiliary functions
s(n) and g(n) (the sample size and rank gap), which will be chosen later. We omit their
arguments in general, as no confusion can arise.

SELECT picks a small random sample S from X and two pivots u and v from S such that
1 < 2}, < v with high probability, where z} is the kth smallest element of X. Partitioning
X mto elements less than u, between w and v, greater than v, and equal to u or v, SELECT
either detects that u or v equals 3, or determines a subset X of X and an integer k such
that z7 may be selected recursively as the kth smallest clement of X.

Below is a detailed description of the algorithm.

Algorithm 2.1.

SELECT(X, k) (Selects the kth smallest element of X, with 1 < & < n:=|X])

Step 1 (Initiation). If n = 1, return z;. Choose the sample size s <n —1 and gap g > 0.
Step 2 (Sample selection). Pick randomly a sanple S := {y1,...,ys} from X.

Step 3 (Pivot selection). Set i, := max{[ks/n — g], 1}, 1, == min{[ks/n + g],s}. Let u
and v be the ¢,th and 4,th smallest elements of S, found by using SELECT recursively.
Step 4 (Partitioning). By comparing each element z of X to u and v, partition X into
Li={freX : zs<u,U={reX iz=ul, M ={zre X u<z<uv}
Vi={reX:z=v}, R:={z e X :v<a} Il k<n/2 zis compared to v first, and to
wonly if z < vand u < v. If £ > n/2, the order of the comparisons is reversed.

Step 5 (Stopping test). If |L| < k < |LUU| then return u; else if [LUUUM| < k < n—|R|
then retwru v.

Step 6 (Reduction). If k < |L], set X:=Land k:=k; else if n — |R} < k, set X:=R
and k= k —n+ |R[; else set X := M aud k:=k — |LUU|. Set #:= | X].
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Step 7 (Recursion). Return SELECT(X, k).
A few remarks on the algorithm are in order.

Remarks 2.2. (a) The correctness aud finiteness of SELECT stemn by induction from the
following observations. The retirns of Steps 1 and 5 deliver the desired element. At Step
6, X and k arc chosen so that the kth smallest element of X is the kth simallest element
of X, and A < n (since u, v ¢ X). Also |S| < n for the recursive calls at Step 3.

(b) When Step 5 returns u (or v), SELECT may also return information about the
positions of the elements of X relative to u (or v). For instance, if X is stored as an array,
its k smallest elements may be placed first via interchanges at Step 4 (cf. §6). Hence after
Step 3 finds u, we may remove from S its first 7, smallest elements before extracting v.
Further, Step 4 need only compare u and v with the elements of X \ S.

(c) The following elementary property is needed in §4. Let ¢, denote the maximum
number of comparisons taken by SELECT on any input of size n. Since Step 3 makes at
most ¢, + ¢,_;, comparisons with s < n, Step 4 needs at most 2(n — s), and Step 7 takes
at most ¢; with 72 < n, by induction ¢, < oo for all n.

3 Preliminary analysis

In this section we analyze general features of sampling used by SELECT.

3.1 Sampling deviations and expectation bounds

Our analysis hinges on the following bound on the tail of the hypergeometric distribution
established in (Hoe63] and rederived shortly in [Chv79].

Fact 3.1. Let s balls be chosen uniformly at random from a set of n balls, of which r
.are red, and r' be the random variable representing the number of red balls drawn. Let
p=r/n. Then

Plr'>ps+g]< e vg > 0. (3.1)

We shall also need a simple version of the (left) Chebyshev inequality [Kor78, §2.4.2].
Fact 3.2. Let z be a nonnegative random variable such that Pz < ] = 1 for some

constant (. Then Ez < t+4 (P[z > 1] for all nonnegative real numbers t.

3.2 Sample ranks and partitioning efficiency

Denote by 7 < ... <z}, and y] < ... <y the sorted elements of the input set X and
the sample set S, respectively. Thus zf is the kth smallest element of X, whereas u = yJ,
and v =y} at Step 3. This notation facilitates showing that for the bounding indices

kyi=max{ [k —~2¢n/s],1} and k, :=min{{k+2gn/s],n}, (3.2)
we have 27, <u <z} <o < zp with high probability for suitable choices of s and g.
K k [ g
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Lemma 3.3. (a) Plz} < u] < e~2%5 4f i, = [ks/n —g].

(b) Plu < zj,] < e,

(¢) Plv < 23] < e %% if i, = [ks/n +g].

(d) Plzg, <o} < g2,

(€) iy # [ks/n~g]| off k< gn/s; i, # [ks/n+g] iff n <k+gn/s.

Proof. (a) If 2} < y7,, at least s — 4, + 1 samples satisfy y; > 25, with 7:= IMaXgs=ze j.
In the setting of Fact 3.1, we have v := n — J red elements z; 2> 23,,, ps = s ~ 7s/n
and v > s —14, + 1. Since iy, = [ks/n—g] < ks/n—g+1 and 7 > k, we get v’ >
ps+ (7— k)s/n+g > ps+g. Hence Pz < u] < Pl’ > ps+g] < e727° by (3.1).

(b) If y;, < af,, i, samples are at most z7, where 7 ;= maXes <y 4. Thus we have r red
elements z; < z?, ps = rs/nand r’ > i,. Now, 1 <r < f;—1implies 2 < k; = [k—2gn/s]
by (3.2) and thus k; < k — 2gn/s + 1, so —rs/n > —ks/n + 2g. Hence i, — ps — g >
ks/n—g—rs/n—g>0,ie,r >ps+g;invoke (3.1) as before.

(c) If y; < x}, i, samples are at most =}, where r := maXgrcay J. Thus we have r red
elements z; < z7, ps = rs/n and v’ > ¢,. But i, —ps—g > ks/n+g—rs/n~g >0
implies 7' > ps + g, so again (3.1) yields the conclusion.

(d) Iz}, < i, s~iy+1samples are at least z7, |, where J:= MaXgr—g; 7. Thus we have
r:=n—jred elements ; > 2},,, ps = s—js/nand 7’ > s—4, +1. Now, i, < ks/n+g+1
and 7> k. > k+2¢gn/s (cf. (3.2)) yield s -1, +1—ps—g > Js/n—ks/n—g—1+1—g > 0.
Thus 2zj, < v implics 7/ > ps + g; hence Pz}, < v] < P[r' > ps + g] < e=%7% by (3.1).

() Follows immediately from the properties of [-] (Knu97, §1.2.4]. O

We may now estimate the partitioning costs of Step 4. We assume that only necessary

comparisons are made (but it will be seen that up to s extraneous comparisons may be
accomodated in our analysis; ¢f. Rem. 5.4(a)).

Lemma 3.4. Let ¢ denote the number of comparisons made at Step 4. Then
Plc<é]|>1-e %7 and Ec<c+2(n—s)e ™7 with (3.3a)
¢:=n+min{k,n-—-k}—s+2gn/s. (3.3b)

Proof. Consider the event A := {¢ < &} and its complement A’ := {¢ > &}. If u = v then
c=n—s < g hence P[A] = P[A'N {u < v}], and we may assume u < v below.

First, suppose k < n/2. Thenc =n~s+|{z € X\ S : 2 < v}|, since n ~ s
elements of X \ S are compared to v first. In particular, ¢ < 2(n — s). Since k < n/2,
F=n+k—s+2n/s. fo<az; then {re X\S:z<v}c{reX z<v}\{y,v}
yields [{z € X\ Sz < v} <k —2,50c<n—s+k —2;since k, <k +2gn/s+ 1, we
get c<n+k—~s+2gn/s—1 <& Thus u < v < zf implies A. Therefore, A'N{u < v}
implies {z; < v} N {u < v}, so PlA N {u < v}] < Plzj < o] < e™2%s (Lem. 3.3(d)).
Hence we have (3.3), since Ee < &+ 2(n —s)e™29"7% by Fact 3.2 (with z := ¢, ( := 2(n—s)).

Next, suppose k > n/2. Now c=n—s+ [{x € X\ S:u < z}|, since n — s elenents
of X\ S are compared to u first. If 2y < u, then {z € X\ S:u <z} C {z € X:
u < a}\ {u,v} yields [{v € X\ S :u <z} <n-k —1; hence k; > k — 2gn/s gives
c<n—s+(n~k)+2gn/s—1<¢c Thus A'N{u < v} implies {u < 27, } N{u < v}, so
PlA N {u < v} <Plu<gi] < e~ (Lem. 3.3(b)), and we get (3.3) as before. []
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The following result will imply that, for suitable choices of s and g, the set X selected
at Step 6 will be “small enough” witli high probability and in expectation; we let X := 0
and 7t := 0 if Step 5 returns u or v, but we don’t consider this case explicitly.

Lemma 3.5. P/ < dgn/s] > 1 — 4¢"27% and En < dgn/s + dne 2075,

Proof. The first bound yields the sccond one by Fact 3.2 (with z := 72 <n). In each case
below, we define an event £ that unplies the event B := {7 < dgn/s}.

First, consider the middle case of i, = [ks/n—yg] and 4, = [ks/n+g]. Let € := {z}, <
w < xf < v < af }. By Lem. 3.3 and the Boole-Benferroni inequality, its complement £’
has P[E'] < de~%% 50 P[£] > 1 — 4¢=%"/5. By the rules of Steps 4-6, u < z} < v implies
X = M, whereas z, <u <o < yields A < k. —k +1—2; since k. < k+ 2gn/s+1
and k, > k — 2gn/s by (3.2), we get n < 4gn/s. Hence £ C B and thus P[B] > P[£].

Next, consider the left case of i, # [ks/n —g], Le., k < gn/s (Lem. 3.3(e)). If
i, # [ks/n+ g], then n < k + gn/s (Lem. 3.3(e)) gives 1t < n < k + gn/s < 2gn/s; take
£ = {n < k+gn/s}, a certain event. For i, = [ks/n+g], let £ := {z} < v < zi }; again
P[£] > 1 — 2¢~%Y* by Lem. 3.3(c,d). Now, z} < v implies X C LU M, whereas v < af,
gives n < k, — 1 < k+ 2gn/s < 3gn/s; therefore £ C B.

Finally, consider the right case of i, # [ks/n+g], i.e., n < k+gn/s. Ifi, # [ks/n—g]
then k < gn/s gives 2 < n < 2gn/s; take € = {k < gn/s}. For iy, = [ks/n — g],
&=z}, Su<a} has PIE] > 1 - 2¢72%/% Dy Lem. 3.3(a,b). Now, u < z} implies
X CcMuU R, whereas zj, < u yields 7t < n — k; with k > & — 2gn/s and thus 2 < 3gn/s.
Hence £ ¢ B. 0

Corollary 3.6. Plc < ¢ andn <4gn/sj > 1— 42",

Proof. Check that £ implies A in the proofs of Lems. 3.4 and 3.5; note that n < 2gn/s
yields ¢ < 2(n — s) < ¢ (cf. (3.3b)) in the left and right subcases. [J

Remark 3.7. Suppose Step 3 resets 4, := 1, if & < gn/s, or iy 1= 1, if n < k+ gn/s,
finding a single pivot u = v in these cases. The preceding results remain valid.

4 Analysis of the recursive version

[n this section we analyze the average performance of SELECT for various sample sizes.

4.1 Floyd-Rivest’s samples
For positive constants « and 3, consider choosing 5 = s(n) and g = g(n) as
s :=min {[af(n)],n ~ 1} and g := (Bsnn)!/? with f(n) := n?*In'n. (4.1)

This form of g gives a probability bound e=20%s = n=2 for Lems. 3.4-3.5. To get more
feeling, suppose & = § = 1 and s = f(n). Let ¢(n) := f(n)/n. Then s/n = g/s = ¢(n)
and 72/ is at most d¢(n) with high probability (at least 1—4/n?), i.e., ¢(n) is a contraction
factor; note that ¢(n) = 2.4% for n = 10° (cf. Tab. 4.1).
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Table 4.1: Sample size f(n) := n**In'*n and relative sample size ¢(n) := f(n)/n.

n 10° 10" 10° 106 5- 108 107 5107 108
f(n) 190.449 972,953 4864.76 239950 72287.1 117248 353885 568986
$(n) .190449 .007295 048648 .023995 014557 011725 .007078 .005G90

Theorem 4.1. Let C,u. denote the expected number of comparisons made by SELECT for
s and g chosen as in (4.1) with 3 > 1/6. There exists a positive constant v such that

Cor <n+min{k,n—k}+vf(n) Vi<k<n. (4.2)

Proof. We need a few preliminary facts. The function ¢(t) := f(¢)/t = (In¢/t)*/* de-
creases to 0 on [e,00), whereas f(¢) grows to infinity on [2,00). Let § := 4(3/a)¥?. Pick
7 > 3 large enough so that e — 1 < af (1) < A~ 1 and e < 6f(A). Let & = a+ 1/f(n).
Then, by (4.1) and the monotonicity of f and ¢, we have forn > 7

s<af(n) and f(s) < ag(af(n))f(n), (4.3)
F3f(n) < 3¢(3f(n)) f(n). (4.4)
For instance, the first inequality of (4.3) yields f(s) < f(@f(n)), whereas
flaf(n)) = ag(af(n))f(n) < aglaf(n)) f(n).

Also for n > 7, we have s = [af(n)] = af(r) + ¢ with ¢ € [0,1) in (4.1). Writing
s =a&f(n) with & ;== a+¢/f(n) € [a,a), we deduce from (4.1) that

gn/s = (8/@)"2f(n) < (8/a)"* f(n). (4.5)
Tn particular, 4gn/s < 6 f(n), since 8 := 4(8/a)"/2. For 8 > 1/6, (4.1) implies
ne™%75 < pt% = fp PP I n < fln) InVn. (4.6)
Using the monotonicity of ¢ and f on [e, 00), increase 7 if necessary to get
2a¢(af(n)) + dp(8f(n)) + 4(An*~PIn3 5 < 0.95. (4.7)

By Rem. 2.2(c), there is 4 such that (4.2) holds for all n < ; increasing -y if necessary, we
have
26 + 26 + 84 ¥ In™3 7 < 0.05y. (4.8)

Let n’ > 7. Assuming (4.2) holds for all n </, for induction let n =n' + 1.

The cost of Step 3 can be estimated as follows. We may first apply SELECT recursively
to S to find # = g}, and then extract v = y;, from the elements g ,,,...,y; (assuming
iy < iy; otherwise v = u). Since s < n’, the expected number of comparisons is

Coiw + Comivimin S 155+ 7f(5) +1.5(s —du) +7f(s — @) < 35 = 1.5+ 27f(s). (4.9)
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The partitioning cost of Step 4 is estimated by (3.3) as
Ec<n+min{kn—k}—s+2gn/s+ e 27", (4.10)
The cost of finishing up at Step 7 is at most Cj; < 1.50 + vf(n). But by Lem. 3.5,
Pli > 4gn/s] < 4e~275 and 71 < n, so (cf. Fact 3.2 with z := 1.54 + vf())
E[L57+vf(7)] < 1.5-4gn/s + v f(4gn/s) + [ 1.5n + v f(n)] de~ 2",
Since dgn/s < df(n), f is increasing, and f(n) = ¢(n)n above, we get
EC,; < 6gn/s +vf(6£(n)) + [ 1.5+ y(n) ] dne=297%, (4.11)
Add the costs (4.9), (4.10) and (4.11) to get
Cor €35 =15+2vf(s) +n+min{k,n—k} —s+2gn/s+ Ine=297s
+6gn/s + 7 f(6F(n)) + [ 1.5+ y(n) ] dne 207
<n+mn{kn—k}+ [25 +8gn/s+ 8ne_292/'*] (4.12a)
+7[2f(s) + F(85(n)) + dne™V*p(n) ] . (4.12b)

By (4.3)-(4.6), the bracketed term in (4.12a) is at most 0.05yf(n) due to (4.8), and that
in (4.12b) is at most 0.95f(n) from (4.7); thus (4.2) holds as required. [J

We now indicate briefly how to adapt the preceding proof to several variations on (4.1);
choices similar to (4.13) and (4.17) are used in [Meh00] and [FIR75a], respectively.

Remarks 4.2. (a) Theoremn 4.1 holds for the following modification of (4.1):
s:=min {[af(n)],n —1} and g := (BsInfs)/? with f(n) :=n¥*1n'n, (4.13)
provided that § > 1/4, where 6 > 0. Indeed, the analogue of (4.5} (cf. (4.1}, (4.13))
gn/s = (8/&)*2f(n)(In8s/Inn)'? < (B/a)2f(n)(Inbs/ Inn)/? (4.14)
works like (4.5) for large n (since limy, oo 11:;9"5 = 2/3), whereas replacing (4.6) by

ne 7% = n(Bs)"%* < f(n)(ah) Pn(-18)/3 1n=(+200/3 (4.15)

we may replace 1'/*~% by (af)~#a(1-4)/3 in (4.7)-(4.8).
(b) Theorem 4.1 holds for the following modification of (4.1):
s:=min{[af(n)],n— 1} and g:= (Bsin?n)"/2 with f(n) == n?**n,  (4.16)

provided either ¢, = 1 and 8 > 1/6, or ¢ > 1. Indeed, since (4.16)=(4.1) for ¢ = 1,
suppose € > 1. Clearly, (4.3)-(4.5) hold with ¢(¢) := f(t)/t. For @ > 1/6 and n large

cnough, we have g%s = B1ln“n > Blnn; hence, replacing 23 by 23 and In™/3 by In~&/3
in (4.6)~(4.8), we may use the proof of Thin 4.1.
(c) Theorem 4.1 remains true if we use 8 > 1/6,
§ 1= min {[anQ/Bl - 1} L g=(Bslnn)V? and f(n) == 3" n. (4.17)

Again (4.3)-(4.5) hold with ¢(¢) := f()/¢, and In~"? replaces In™"* in (4.6)-(4.8).
(d) None of these choices gives f(n) better than that in (4.1) for the bound (4.2).




Table 4.2: Relative sample sizes ©.(n) and probability bounds e

—2nt

Q. (n) = (t4/Int)1/3 exp(—2nf)
7. 10°  10° 5-10° 107 10° 108 5109 107
1/4 (116 132 145 1.52 | 3.6-107'¢ 34.107% 84.107%* 1.4.107%
e 1/6|.840 898 946 .069 | 1.2.107% 2.1.107% 4.4.107'%2 1.8.10712
1/9 | 678 695 711 719 | 7.6-107t  9.3-107° 1.5.-10° 6.2.107°¢

4.2 Reischuk’s samples

For positive constants « and J, consider using

s=min{[an“],n -1} and g¢:=(fsn)’* with (4.18a)

n:=max{1l+ (e —¢)/2,6} <1 forsome fixed 0 < e < ¢,. (4.18b)

Theorem 4.3. Let C., denote the expected number of comparisons made by SELECT for
s and g chosen as in (4.18). There exists a positive constant 7, such that for all k <n

Cor <n4+min{k,n—- Lk} +v,fy(n) wih f,(n):=n" (4.19)
Proof. The function f,(t) := ¢? grows to co on (0, 00), whereas ¢,(t) := f,{t)/t = "1
decreases to 0, so f, and ¢, may replace f and ¢ in the proof of Thm 4.1. Indeed,
picking 7 > 1 such that af® < 7 — 1, for n > 7o we may use s = an® < af,(n) with
a< &< a@:=1+1/a% to get analogues (4.3)—(4.4) and the following analogue of (4.5)
gn/s = (B/a)/ !+l < (B/a)' 2 f,(n). (4.20)
€ _\1/e
Since g¥s = (3n¢ by (4.18), and te %/t decreases to 0 for t > ¢, = (12—&’1) ! , we may
replace (4.6) by

ne~ %Y = ne= ¥ <l W f (n) Wi > A >t (4.21)

Hence, with 7' ~7e™ 2™ replacing 722~ In~'/* 7 in (4.7)-(4.8), the proof goes through. [
Remarks 4.4. {a) For a fixed ¢ € (0,1), minimizing 7 in (4.18) yields the optimal sample
size parameter

€ = (24+¢€)/3, (4.22)

with 7 = ¢, > 2/3 and f,(n) = nt**9/%; note that if s = an® in (4.18), then g = (aB)/?n%
with €, := (1+ 2¢)/3. To compare the bounds (4.2) and (4.19) for this optimal choice, let
O (t) := (¢ 1nt)Y3, so that &.(t) = f,(t)/f(t) = $y(t)/(t). Since lim, ., D.(n) = oo,
the choice (4.1) is asymptotically superior to (4.18). However, ®.(n) grows quite slowly,
and ®.(n) < 1 even for fairly large n when € is small (cf. Tab. 4.2). On the other hand,
for small € and g = 1, the probability bound e=2% = ¢~ of (4.18) is weak relative to
e720%% = n~? ensured by (4.1).




(b) Cousider using s := min{[an®],n — 1} and g := B%n% with ¢,, ¢, € (0,1) such
that € 1= 2¢;, — ¢, > 0 and n := max{l + ¢; — €,, €} < 1. Theorem 4.3 covers this choice.
Indeed, the equality 1+ ¢, —€, = 1+ (e —€,)/2 shows that (4.18b) and (4.20) remain valid,
and we have the following analogue of (4.21)

ne~ %7 < gl MBI £ 0y Yn >0 > [(1- n)a/(26)]VF, (4.23)

so compatible modifications of (4.7)-(4.8) suffice for the rest of the proof. Note that
7> (24 €)/3 by (a); for the choice €, = 3, €, = % of [Rei85], € = § and 7 = $2.

4.3 Handling small subfiles

Since the sampling efficiency decrcases when X shrinks, consider the following modifica-
tion. For a fixed cut-off parameter nq. > 1, let sSelect(X, k) be a “small-select” routine
that finds the kth smallest element of X in at most Cy,, < co comparisons when |X| < ngy,
(even bubble sort will do). Then SELECT is modified to start with the following

Step 0 (Small file case). If n:=|X| < ey, return sSelect(X, k).

Our preceding results remain valid for this modification. In fact it suffices if Cey
bounds the ezpected number of comparisons of sSelect(X, k) for n < ngw. For instance,
(4.2) holds for n < ng, and v > Cpy, and by induction as in Rem. 2.2(c) we have Cpg < 00
for all n, which suffices for the proof of Thm 4.1.

Another advantage is that even small 7., (1000 say) limits nicely the stack space for
recursion. Specifically, the tail recursion of Step 7 is easily eliminated {set X := X k=k
and go to Step 0), and the calls of Step 3 deal with subsets whose sizes quickly reach neyg.
For example, for the choice of (4.1) with « = 1 and n, = 600, at most four recursive
levels occur for n < 23! & 2.15 - 10Y.

5 Analysis of nonrecursive versions

Consider a nonrecursive version of SELECT in which Steps 3 and 7, instead of SELECT, en-
ploy a linear-time routine (e.g., PICK [BFP*72]) that finds the sth smallest of m elements
in at most ypm comparisons for some constant yp > 2.

Theorem 5.1. Let ¢, denote the number of comparisons made by the nonrecursive ver-
sion of SELECT for a given choice of s and g. Suppose s <n — 1.
(a) For the choice of (4.1) with f(n):=n3In**n, we have

Plew <n+min{k,n—k}+4pf(n)] > 1—4n"% with (5.1a)

Ap = (dyp +2)(B/a)/? + (2vp — 1) [+ 1/ f ()], (5.1b)
also with f(n) in (5.1b) replaced by f(3) > 2 (since n > 3). Moreover, if 3> 1/6, then

Ecue < n+minf{k,n—k}+ (p +4vp +2) f(n). (5.2)
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(b) For the choice of (4.13), if 8s < n, then (5.1a) holds with n™%° replaced by
(af)~Bp=187% %" n. Moreover, if 8 > 1/4, then (5.2) holds with 4vyp + 2 replaced
by (dyp + 2)(ab) ™.

(¢} For the choice of (4.18), (5.1) holds with f(n) replaced by f,(n) := n" and n~%
by e~%" . Moreover, if n'™1e= " < 1, then (5.2) holds with f replaced by f,.

Proof. The cost ¢, of Steps 3, 4 and 7 is at most 2yps 4+ ¢+ yp7i. By Cor. 3.6, the event
C:= {c¢ < & < 4dgn/s} has probability P[C] > 1 — 4e”%7/° If C occurs, then

e <m+min{k,n—k} —s+2gn/s + 2yps + yp|4gn/s)
<n+min{kn—k}+(4dyp+2)gn/s+(2vp —1}s. (5.3)

Similarly, since Ecni < 2yps + Ec + ypEn, Lems. 3.4-3.5 yield
Ecu <n+min{k,n—k}+ (dvp +2)gn/s +(2yp— 1) s+ (dyp + 2)nc_292/‘“. (5.4)

(a) Since ¢2%7° = n"% 5 = [af(n)} < &f(n) from s < n — 1 and (4.3), and gn/s is
bounded by (4.5), (5.3) implies (5.1). Then (5.2) follows from (4.6) and (5.4).

(b) Proceed as for (a), invoking (4.14)—(4.15) instead of (4.5) and (4.6).

(c) Argue as for (a), using the proof of Thm 4.3, in particular (4.20)—(4.21). O

Corollary 5.2. The nonrecursive version of SELECT requires n + min{k,n — k} + o(n)
comparisons with probability at least 1 — 4n~% for the choice of (4.1), at least 1 ~
4aB) /3 for the choice of (4.13), and at least 1 — 4¢™**™ for the choice of (4.18).

Remarks 5.3. (a) Suppose Steps 3 and 7 simply sort S and X by any algorithm that
takes at most vys(slns + filnf) comparisons for a constant yg. This cost is at most
(s 4+ )ysInn, because s,7 < n, so we may replace 2yp by vglnn and 4yp by 4dvglnn in
(5.3)~(5.4), and hence in (5.1)-(5.2). For the choice of (4.1), this yields

Plewe < n+min{k,n -k} +4sf(n)lnn) > 1 —4n~%  with (5.5a)
Fs = (dvs + 2In7 n)(B/a)? + (vs —In"'n) [a + 1/f(n)], (5.5b)
Ecy <n+min{k,n—k}+ (’?g +4dvs +2In7! n) f(n)lnn, (5.6)

where In~ n may be replaced by In"! 3, and (5.6) still needs 3 > 1/6; for the choices (4.13)
and (4.18), we may modify (5.5)-(5.6) as in Thm 5.1(b,c). Corollary 5.2 remains valid.

(b) The bound (5.2) holds if Steps 3 and 7 employ a routine (e.g., FIND [Hoa6l],
[AHU74, §3.7]) for which the expected number of comparisons to find the ith smallest of
m elements is at most ypm (theu Ec,x < 2yps + Ec + ypEn is bounded as before).

(c) Suppose Step 6 returns to Step 1 if 74 > 4gn/s. By Cor. 3.6, such loops are finite
wp 1, and don’t occur with high probability, for n large enough.

(d) Our results improve upon [GeS03, Thi 1], which only gives an estimate like (5.1a),
but with 4n~% replaced by O(nl‘z"/ %), a much weaker bound. Further, the approach of
[GeS03] is restricted to distinet elements.

11




We now comment briefly on the possible use of sampling with replacement.

Remarks 5.4. (a) Suppose Step 2 of SELECT employs sampling with replacement. Since
the tail bound (3.1) remains valid for the binomial distribution [Chv79, Hoe63], Lemma
3.3 is not affected. However, when Step 4 no longer skips comparisons with the elements
of S, —s in (3.3) and (4.10) is replaced by 0 (cf. the proof of Lem. 3.4), 2s in (4.12a) by
3s and 2@ in (4.8) by 3a@. Similarly, adding s to the right sides of (5.3)-(5.4) boils down
to omitting —1 in (5.1b) and —In~'n in (5.5b). Hence the preceding results remain valid.

(b) Of course, sampling with replacement needs additional storage for S. This is
inconvenient for the recursive version, but tolerable for the nonrecursive ones because the
sample sizes are relatively small (hence (3.3) with —s omitted is not too bad).

(¢) Our results improve upon [MoR95, Thm 3.5], corresponding to (4.18) with e = 1/4
and 8 = 1, where the probability bound 1 — O(n~'74) is weaker than our 1 — 46'2"1/4,
sampling is done with replacement and the clements are distinct.

(d) Our results subsume [Meh00, Thm 2], which gives an estimate like (5.2) for the
choice (4.13) with 8 = 1, using quickselect (cf. Rem. 5.3(b)) and sampling with replacement
in the case of distinct elements.

6 Ternary and quintary partitioning

In this section we discuss ways of implementing SELECT when the input set is given as an
array z[1:n]. We need the following notation to describe its operations in more detail.

Each stage works with a segment z[l: 7] of the input array z{1:n], where 1 <{<r <n
are such that z; < z for ¢ = 1:01 — 1, o, < x; for i = r + 1:n, and the kth smallest
elenent of z[l:n] is the (k — [ 4 1)th smallest element of z{l:r]. The task of SELECT is
eztended: given z[l:r] and [ < k < 7, SELECT(z, !, 7, k, k_, k1) permutes z[l: 7] and finds
I <k <k<ky <rsuchthat oy <zp forall ! <4< k_, o; =z for all k- <1 < &y,
z; >z, for all k4 < 4 < r. The initial call is SELECT(z, 1,7, k, k_, k).

A vector swap denoted by z[a: b] — x[b+1: ¢] means that the first d := min(b+1—a,c—b)
elcinents of array zfa: ¢] are exchanged with its last d elements in arbitrary order if d > 0;
e.g., we may exchange z,4; < z._; for 0 < ¢ < d, or Zay; & Te—gi14i for 0 <7 < d.

6.1 Ternary partitions

For a given pivot v := zj from the array z[l: 7], the following ternaery scheme partitions
the array into three blocks, with z,, < v forl <m < a, &, =vfora <m <d, z,, > v for
d < m < 7. The basic idea is to work with the five inner parts of the array

L$<U‘}':UII(U[_QI>UTI:?I$>U‘] (6.1)

l l P i q 7 T

until the middle part is empty or just contains an element cqual to the pivot

EEnFENEEnEEnEST o2

l P J i q 7
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Table 7.3: Performance of RISELECT on randomly generated inputs.

Sequence  Size Time [msec) Comparisons (n]  Lavy  Pavg  Nena
n avg max min avg max min [lnn] [n]

random 50K 2 10 0 310 432 1.88 3.10 1.63 045
100K 4 10 ¢ 261 4.19 1.77 2.61 1.60 0.20

500K 17 20 10 291 445 1.69 291 157 0.25

1M 33 41 20 281 379 1.84 281 1.57 040

2M 62 90 40 260 3.57 1.83 2.60 1.61 035

4N 135 191 90 286 4.38 1.83 286 1.65 0.55

8M 249 321 190 2.60 3.48 1.80 260 1.58 0.40

16M 553 762 331 299 449 1.73 299 1.58 040

oltezero 50K 1 10 0 273 322 2068 273 1.73 0.00
100K 3 10 0 272 288 268 272 180 0.00

500K 15 20 10 274 288 268 274 182 040

1M 31 41 30 272 285 268 272 184 055

2M 62 70 60 271 299 268 271 182 0.75

4M 126 131 120 273 285 2.68 273 185 100

8M 251 261 240 2.72 2.88 2.68 272 1.87 1.00

16M 505 521 491 272 285 2.08 2,72 185 0.95

twofaced 50K 2 10 0 7.77 884 .88 7.77 199 125
100K 8 10 0 7.76 963 6.65 776 2.07 130

500K 29 40 20 7.59 9.09 6.69 7,59 191 1.10

M 58 70 50 7.50 9.19 6.63 750 195 130

2M 123 141 110 807 905 7.26 807 204 145

4M 232 281 200 7.64 8.86 6.79 7.64 193 1.25

8M 458 530 401 762 854 696 762 193 135

16M 905 1132 771 7.56 9.10 6.79 7.56 194 130
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