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Abstract 

We show that severa! versions of Floyd and Rivest 's algorithm SELECT for finding 
the kth smallest of n elements require at most n+ min{ k, n - k} + o(n) comparisons 
on average and with high probability. This rectifies the analysis of Floyd and Rivest, 
and extends it to the case of nondistinct elements. Our computational results confirm 
that SELECT may be the best algorithm in practice. 
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1 Int rod uction 

The selection problem is defined as fotlows: Given a set X := {xJ.i=I of n elements, a 
total order < on X, and an integer 1 :::; k ::o; n, find the kth smal/est element of X, i.e., 
an element x of X for which there are at most k - 1 elements Xj < x and at least k 
elements xi :::; x. The median of X is the fn/2lth smallest element of X. (Since we are 
not assuming that the elements are distinct, X may be regarded as a multiset) . 

Selection is one of the fundamental problems in computer science. It is used in the 
solution of other basie problems such as sorting and finding convex hulls. Hence its lit­
erature is too vast to be reviewed here; see, e.g., [DHUZOl , DoZ99, DoZOl] and [Knu98, 
§5.3.3]. We only stress that most references employ a comparison model (in which a se­
lection algorithm is charged only for comparisons between pairs of elements), assuming 
that the elements are distinct. Then, in the worst case, selection needs at least (2 + 1:)n 
comparisons [DoZOl], whereas the pioneering algorithm of [BFP+72] makes at most 5.43n, 
its first improvement of (SPP76] needs 3n + o(n), and the most recent improvement in 
[DoZ90] takes 2.95n + o( n). Thus a gap of almost 50% stili remains between the best !ower 
and upper bounds in the worst case. 

The average case is better understood. Specifically, for k ::o; f n/21, at least n + k - 2 
comparisons are necessary [CuM89], [Knu98, Ex. 5.3.3- 25], whereas the best upper bound 
is n+ k + O(n112 111112 n) [Knu98, Eq. (5.3.3.16)]. Yet this bouncl holcls for a hardly 
implementable theoretical scheme [Knu98, Ex. 5.3.3-24], whereas a similar frequently cited 
bound for the algorithm SELECT of [FIR75b] cloesn't have a full proof, as notecl in [Knu98, 
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Ex. 5.3.3- 24] and [PRKT83]. Significantly worse bounds hold for the classical algorithm 
FIND of [Hoa61], also known as quickselect , which partitions X by using the median of a 
random sample of size s 2': 1. In particular, for k = f n/21, the upper bound is 3.39n+o(n) 
fors= 1 [Knu98, Ex. 5.2.2-32] and 2.75n + o(n) fors= 3 [Grii99, KMP97], whereas for 
finding an element of random rank, the average cost is 3n + o(n) fors= 1, 2.5n + o(n) for 
s = 3 [KMP97], and 2n + o(n) when s -> oo, s/n -> O as n-> oo [MaROl]. In practice 
FIND is most popular, because the algorithms of [BFP+72, SPP76] are much slower on 
the average [Mus97, Va!O0]. For the generał case of nondistinct elements, little is known 
in theory about these algorithms, but again FIND performs well in practice [Va!O0]. 

Our aim is to rekindle theoretical and practical interest in the algorithm SELECT of 
[FIR75b, §2.1] (the versions of [FIR75b, §2.3] and [FIR75a] will be addressed elsewhere). 
We show that SELECT performs very well in both theory and practice, even when equal 
elements occur. To outline our contributions in more detail, we recall that SELECT operates 
as follows. Using a small random sample, two elements u and v almost sure to be just 
below and above the kth are found. The remaining elements are compared with u and v 
to create a small selection problem on the elements between u and v that is quickly solved 
recursively. By taking a random subset as the sample, this approach does well against any 
input ordering, both on average and with high probability. 

First, we revise SELECT slightly to simplify our analysis. Then, without assuming 
that the elements are distinct, we show that SELECT needs at most n+ min{ k, n - k} + 
O(n213 !n113 n) comparisons on average; this agrees with the result of [FIR75b, §2.2] which 
is based on an unproven assumption [PRKT83, §5]. Similar upper bounds are established 
for versions that choose sample sizes as in [FIR75a, Meh00, Rei85] and [MoR95, §3.3]. 
Thus the average costs of these versions reach the !ower bounds of 1.5n + o(n) for median 
selection and l.25n+o(n) for selecting an element ofrandom rank (yet the original sample 
size of [FIR75b, §2.2] has the best !ower order term in its cost). We also prove that nonre­
cursive versions of SELECT, which employ other selection or sorting algorithms for small 
subproblems, require at most n+ min { k, n - k} + o(n) comparisons with high probability 
'(e.g., 1 - 4n-2.6 for a user-specified f3 > O); this extends and strengthens the results of 
[GeS03, Thm lj, [MehO0, Thm 2] and [MoR95, Thm 3.5]. 

Since theoretical bounds alone needn't convince practitioners (who may worry about 
hidden constants, etc.), a serious effort was made to design a competitive implementation 
of SELECT. Here, as with FIND and quicksort [Sed77], the partitioning efficiency is crucial. 
In contrast with the observation of [FlR75b, p. 169] that "partitioning X about both u and 
v [is] an inherently inefficient operation", we introduce a quintary scheme which performs 
well in practice. 

Relative to FIND, SELECT requires only small additional stack space for recursion, 
because sampling without replacement can be clone in place. Stili, it might seem that 
random sampling needs too much time for random number generation. (Hence severa! 
popular implementations of FIND don't sample randomly, assuming that the input file is 
in random order, whereas others [Va!00] invoke random sampling only when slow progress 
occurs.) Yet our computational experience shows that sampling doesn't hurt even on 
random inputs, and it helps a lot on mare difficult inputs (in fact our interest in SELECT 
was sparked by the poor performance of the implernentation of [FIR75a] on severa! inputs 
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of [Va!O0]). Most importantly, even for examples with relatively low comparison costs, 
SELECT beats quite sophisticated implementations of FINO by a wide margin, in both 
comparison counts and computing times. To save space, only selected results are reported, 
but our experience on many other inputs was similar. In particular, empirical estimates 
of the constants hidden in our bounds were always quite small. Further, the performance 
of SELECT is extremely stable across a variety of inputs, even for small input sizes (cf. 
§7.3). A theoretical explanation of these features will be undertaken elsewhere. For now, 
our experience supports the claim of [FIR75b, §1] that "the algorithm presented here is 
probably the best practical choice". 

The paper is organized as follows. A generał version of SELECT is introduced in §2, 
and its basie features are analyzed in §3. The average performance of SELECT is studied 
in §4. High probability bounds for nonrecursive versions are derived in §5. Partitioning 
schemes are discussed in §6. Finally, our computational results are reported in §7. 

Our notation is fairly standard. !Al denotes the cardinality of a set A. In a given 
probability space, P is the probability measure, and E is the mean-value operator. 

2 The algorithm SELECT 

In this section we describe a generał version of SELECT in terms of two auxiliary functions 
s(n) and g(n) (the sample size and rank gap), which will be chosen later. We omit their 
arguments in generał, as no confusion can arise. 

SELECT picks a small random sample S from X and two pivots u and v from S such that 
u :s; xj'. :s; v with high probability, where xt, is the kth smallest element of X. Partitioning 
X into elements less than u, between u and v, greater than v, and equal to u or v, SELECT 
either detects that u or v equals xi,, or determines a subset X of X and an integer k such 
that xi, may be selected recursively as the kth smallest element of X. 

Below is a detailed description of the algorithm. 

'Algorithm 2.1. 
SELECT(X, k) (Selects the kth smallest element of X, with 1 :S k :Sn:= !XI) 
Step 1 (Initiation) . If n= 1, return x 1• Choose the sample size s::::; n - 1 and gap g > O. 

Step 2 (Sample selection). Pick randomly a sample S := {y1 , ... , Ys} from X. 

Step 3 (Pivot selection). Set i,. := max{rks/n - g l, 1 }, iv := min{rks/n + g l, s }. Let u 
and v be the i„th and ivth smallest elements of S, found by using SELECT recursively. 

Step 4 (Partitioning). By comparing each element x of X to u and v, partition X into 
L := {x E X : x < u}, U := {x E X : x = u}, M := {x E X : u < x < v}, 
V:= {x EX: x = v}, R := {x EX: v < x}. If k < n/2, x is compared to v first, and to 
u only if x < v and u < v. If k 2c n/2, the order of the comparisons is reversed. 

Step 5 (Stopp·ing test). If ILI < k:::; ILUUI then return ·u; else if ILU U UMI < k:::; n-lRI 
the n ret urn v. 

Step_ 6 (Reduction). If k ::; !Lj, set X := L_ and k := k; else if n - IRI _< k, set X := R 
and k := k - n+ IRI; else set x := M and k := k - IL u u1. Set n:= 1x1. 
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Step 7 (Recursion). Return SELECT(X, k). 

A few remarks on the algorithm are in order. 

Remarks 2.2. (a) The correctness and finiteness of SELECT stem by induction frorn the 
following observations. The returns of Steps 1 and 5 deliver the desired element. At Step 
6, X and k are chosen so that the kth smallest element of X is the kth smallest element 
of X, and -n< n (since u, v ej X). Also ISI < n for the recursive calls at Step 3. 

(b) When Step 5 returns u (or v), SELECT may also return information about the 
positions of the elements of X relative to u (or v). For instance, if X is stored as an array, 
its k small est elements may be placecl first via interchanges at Step 4 ( cf. §6). Hence after 
Step 3 finds u, we may remove from S its first i„ smallest elements before extracting v. 
Further, Step 4 need only compare 11 and v with the elements of X\ S. 

(c) The following elementary property is needed in §4. Let c,, denote the maximum 
number of comparisons taken by SELECT on any input of size n. Since Step 3 makes at 
most Cs+ Cs-i„ comparisons with s < n, Step 4 needs at most 2(n - s), and Step 7 takes 
at most c,, with -n < n, by induction c,, < oo for all n. 

3 Preliminary analysis 

In this section we analyze generał features of sampling used by SELECT. 

3.1 Sampling deviations and expectation bounds 

Our analysis hinges on the following bound on the taił of the hypergeometric distribution 
established in [Hoe63] and rederived shortly in [Chv79]. 

Fact 3.1. Let s balls be chosen uniformly at random from a set of n balls, of which r 
,are red, and r' be the random variable representing the number of red balls drawn. Let 
p := r /n . Then 

P [ r' 2'. ps + g] ~ e-292/• Vg 2'. O. (3.1) 

We shall also need a simple version of the (left) Chebyshev inequality [Kor78, §2.4.2]. 

Fact 3.2. Let z be a nonnegative random variable such that P[z ~ (] = 1 for same 
constant (. Then Ez~ t + (P[z > tj for all nonnegative real numbers t. 

3.2 Sample ranks and partitioning efficiency 

Denote by xi ~ ... ~ x;, and Yi ~ ... ~ y; the sorted elements of the input set X and 
the sample set S, respectively. Thus x;_ is the kth smallest element of X , whereas u= vl„ 
and v = Yl, at Step 3. This notation facilitates showing that for the bounding indices 

k1 := max{ rk- 2gn/sl, 1} and k,. := min { rk + 2gn/sl,n}, (3.2) 

we have xi_, ~u~ x;_ ~ v ~ xi_, with high probability for suitable choices of s and g. 
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Lemma 3.3. (a) P[xi, <u]::; e-2a'/s if iu = rks/n - g l. 
(b) P[u < xi,,] ::; e-29'!•. 

(c) P[v < x;:] ::; e-29'/s if iv = fks/n + g 1-
( d) P[xt < v] ::; e-29'/s. 

(e) iu ej rks/n - gł iff k::; gn/s; iv ej rks/n + gł iff n< k + gn/s. 

Proof. ( a) If xj_ < v: .. , at least s - iu + l sam pies satisfy y; 2 xj+ 1 with J := maxx;=xz j. 
In the setting of Fact 3.1, we have r := n - J red elements Xj 2 xj+1 , ps = s - Js/n 
and r' 2 s - i,. + 1. Since i,. = rks/n - g l < ks/n - g + l and J 2 k, we get r' > 
ps + (J- k)s/n + g 2 ps + g. Hence P[xi, <u]::; P[r' 2 ps + g] ::; e-29'!• by (3.1). 

(b) If y7,, < xi:,, i„ samples are at most x;, where r := maxx;<xz, j. Thus we have r red 

elements Xj ::; x;, ps = rs/n and r' 2'. i,.. Now, 1 ::; r ::; k1- l implies 2 ::; k1 = fk-2gn/ s l 
by (3.2) and thus k1 < k - 2gn/s + 1, so -rs/n > -ks/n+ 2g. Hence i,. - ps - g 2'. 
ks/n - g - rs/n - g > O, i.e., r' > ps + g; invoke (3.1) as before. 

(c) If y:,, < xi,, iv samples are at most x;, where r := maxx;<xz j. Thus we have r red 
elements Xj ś x;, ps = rs/n and r' 2'. iv- But iv - ps - g 2'. ks/n+ g - rs/n - g 2'. O 
implies r' 2'. ps + g, so again (3.1) yielcls the conclusion. 

(d) If xi,r < y;_, s-iv+l samples are at least xj+1, whereJ := maxx;=x;;r j . Thus we have 
r := n-Jrecl elements Xj 2 xj+1 , ps = s-Js/n and r' 2 s-iv+l. Now, iv < ks/n+g+l 
andJ2'. kr 2 k+2gn/s (cf. (3.2)) yield s-iv+l-ps-g 2 Js/n-ks/n-g-l+l-g 2 O. 
Thus xt < v implies r' 2'. ps + g; hence P[xt < v] ::; P[r' 2 ps + g] ::; e-29'/s by (3.1). 

(e) Follows immediately from the properties of r-l [Knu97, §1.2.4]. • 
We may now estimate the partitioning costs of Step 4. We assume that only necessary 

comparisons are macie (but it will be seen that up to s extraneous comparisons may be 
accomodated in our analysis; cf. Rem. 5.4(a)). 

Lemma 3.4. Let c denote the number of comparisons made at Step 4. Then 

P[ c::; ej 2 1 - e-29'/s and Ee::; c + 2(n - s)e-29'!• with 

c := n+ min{ k,n- k}- s + 2gn/s. 

(3.3a) 

(3.3b) 

Proof. Consider the event A := { c ś c} and its complement A' := { c > c}. If u = v then 
c = n - s::; c; hence P[A'] = P[A' n {u< v }], and we may assume u< v below. 

First, suppose k < n/2. Then c = n - s + l{x E X\ S : x < v}I, since n - s 
elements of X\ S are comparecl to v first . In particular, c ::; 2(n - s). Since k < n/2, 
c = n + k - s + 2gn/ s. If v ::; xt, then { x E X \ S : x < v} C { x E X : x ::; v} \ { u, v} 
yields l{x EX\ S: x < v }I ś kr - 2, soc ś n - s + kr - 2; since kr < k + 2gn/s + 1, we 
get c ::; n+ k - s + 2gn/ s - l ś c. Thus u < v ś xt implies A. Therefore, A' n { u < v} 
implies {xi:,. < v} n {u< v}, so P[A' n {u< v}]::; P[x;:, < v]::; e-29'/s (Lem. 3.3(cl)). 
Hence we have (3.3), since Ee::; c+2(n-s)e-29'/• by Fact 3.2 (with z:= c, ( := 2(n-s)) . 

Next, suppose k 2'. n/2. Now c = n - s + l{x EX\ S: ii< x}I, since n - s elements 
of X \ S are compared to ·u first . If xi,, ::; u, then { x E X \ S : u < x} C { x E X : 
n ś x} \ {·u,v} yields l{x EX\ S: ·u< x}I ś n - k1 - l; hence k1 2 k - 2gn/s gives 
c::; n - s + (n - k) + 2gn/s - 1::; c. Thus A' n {·u< v} implies {u< xi,,} n {u< v}, so 
P[A' n { u < v}] ::; P[u < xt,] ::; e-29'!• (Lem. 3.3(b)), and we get (3.3) as before. D 
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The following result will imply that, for suitable choices of s and g, the set X selected 
at Step 6 will be "small enough" with high probability and in expectation; we Jet X := 0 
and n := O if Step 5 returns u or v, but we don 't consider this case explicitly. 

Lemma 3.5. P [n < 4gn/ s] 2: 1 - 4e-292/s, and En $ 4gn/ s + 4ne- 2a2!•. 

Proof. The first bound yields the second one by Fact 3.2 (with z:= n< n). In each case 
below, we define an event E that implies the event B := { n < 4gn/ s}. 

First , consider the middle case of iu = r ks /n - 9 l and iv = r ks /n+ 91- Let E: := { xk, $ 
u $ xk $ v $ xt} - By Lem. 3.3 and the Boole-Benferroni inequality, its complement E:' 
has P[E'] $ 4e-292/s, so P[E] 2: 1 - 4e- 292/•. By the rules of Steps 4- 6, u $ xZ $ v implies 
X= M, whereas xi_, $u$ v $ xt. yields n$ k, - k1 + 1 - 2; since k, < k + 2gn/s + 1 
and k1 2: k - 2gn/s by (3.2), we get n< 4gn/s. Hence E: CB and thus P[B] 2: P[E]. 

Next, consider the left case of i,. =/ rks/n - gł, i.e., k $ gn/s (Lem. 3.3(e)) . If 
iu =/ rks/n + 9 l, then n < k + gn/ s (Lem. 3.3(e)) gives n < n < k + gn/ s $ 2gn/ s; take 
E: := {n< k + gn/s }, a certain event. For i,,= iks/n+ g l, Jet E: := {xi_ $ v $ xt}; again 
P[E] 2: 1 - 2e-292

/• by Lem. 3.3(c,d). Now, xi_ $ v implies X C LUM, whereas v $ x;;, 
gives n $ k,. - 1 < k + 2gn/ s $ 3gn/ s; therefore E: c B. 

Finally, consider the right case of iv =/ rks/n+ g l, i.e., n < k+ gn/ s. If iu =/ rks/n- g l 
then k $ gn/s gives n < n < 2gn/s; take E := {k $ gn/s}. For iu = rks/n - gł, 
E: := {xi_, $ 11 $ x;;} has P[E] 2: 1 - 2e-292/• by Lem. 3.3(a,b). Now, u $ xZ implies 

X C MUR, whereas xj;, $ u yields n $ n - k1 with k1 2: k - 2gn/ s and thus n < 3gn/ s. 
Hence E: C B. • 
Corollary 3.6. P [c:::; c and n< 4gn/s] 2: 1 - 4e-292

/•. 

Proof. Check that E implies A in the proofs of Lems. 3.4 and 3.5; note that n $ 2gn/ s 
yields c $ 2(n - s) $ c (cf. (3.3b)) in the left and right subcases. O 

Remark 3. 7. Suppose Step 3 resets i,. := iv if k $ gn/ s, or i,, := iu if n < k + gn/ s, 
finding a single pivot u = v in these cases. The preceding results remain valid. 

4 Analysis of the recursive version 

In this section we analyze the average performance of SELECT for various sample sizes. 

4.1 Floyd-Rivest's samples 

For positive constants a and /3, consider choosing s = s(n) and g = g(n) as 

s := min n a/ (n)l, n - 1} and 9 := (,Bs In n) 112 with f (n) := n 2/ 3 ln113 n. (4.1) 

This form of g gives a probability bound e- 292!• = n-2/3 for Lems. 3.4- 3.5. To get more 
feeling, suppose a= ,B = 1 and s = f(n). Let r/;(n) := f(n)/n. Then s/n = g/s = r/;(n) 
and n/n is at most 4q,(n) with high probability (at least 1-4/n2), i.e., r/;(n) is a contraction 
factor; note that r/;(n) ~ 2.4% for n= 106 (cf. Tab. 4.1). 
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Table 4.1: Sample size J(n) := n213 !n113 n and relative sample size ef;(n) := f(n)/n. 

n 103 104 105 lOG 5 · lOG 107 5 · 107 108 

f(n) 190.449 972.953 4864.76 23995.0 72287.l 117248 353885 568986 
</>(n) .190449 .097295 .048648 .023995 .014557 .011725 .007078 .005690 

Theorem 4.1. Let C„k denote the expected number of comparisons made by SELECT Jor 
s and g chosen as in (4.1) with (3 2'. 1/6. There exists a positive constant 'Y such that 

C„k ś n+ min{ k, n - k} +-yf(n) \fl ś k ś n. ( 4.2) 

Proof. We need a few preliminary facts. The function <f;(t) := f(t)/t = (Int/t) 113 de­
creases to O on [e, oo), whereas f(t) grows to infinity on [2, oo). Let ó := 4((3/a) 112• Pick 
n 2'. 3 large enough so that e - 1 ś af(n) ś n - 1 and eś óf(n). Let a:= a+ 1/ f(n). 
Then, by (4.1) and the monotonicity of J and ef;, we have for n 2'. n 

s ś af(n) and f(s) ś a<f;(af(n))J(n), 

f(óf(n)) ś ócp(óf(n))f(n). 

For instance, the first inequality of (4.3) yields f(s) ś J(af(n)) , whereas 

f(af(n)) = a<f;(af(n))f(n) ś acp(af(n))J(n). 

(4.3) 

(4.4) 

Also for n 2'. n, we have s = faf(n)l = af(n) + E with E E [O, 1) in (4.1). Writing 
s = af(n) with a:= a+ Ej f(n) E [a, a), we deduce from (4.1) that 

gn/s = (f3/a) 112J(n) ś (/3/a) 112J(n). 

'rn particular, 4gn/s ś óf(n), since ó := 4(/3/a) 112. For /3 2'. 1/6, (4.1) implies 

ne-292/s ś nl-2{3 = f(n)nl/3-2{3 ln-1/3 n ś f(n) ln-1/3 n. 

Using the monotonicity of ef; and fon (e, oo), increase n if necessary to get 

2a<f;(af(n)) + ó<f;(óf(n)) + 4</>(n)n1!3- 2fJ 1n- 113 n ś 0.95. 

(4.5) 

(4.6) 

(4.7) 

By Rem. 2.2(c), there is 'Y such that ( 4.2) holds for all n ś n; increasing 'Y if necessary, we 
have 

2a + 2ó + 8n1/ 3- 2fJ 1n-1!3 n ś 0.05-y. (4.8) 

Let n' 2'. n. Assuming ( 4.2) hol ds for all n ś n', for induction !et n = n' + 1. 
The cost of Step 3 can be estimated as follows. We may first apply SELECT recursively 

to S to find u = y;_, and then extract v = Y7. from the elements Y7.+1 , •.. , y; (assuming 
i,, < iv; otherwise v = u). Since s ś n', the expected number of comparisons is 

C,;,. + C,-i,,,i.-i,. ś 1.5s +-yf(s) + 1.5(s - iu) +-yf(s - i,,) ś 3s - 1.5 + 2-yf(s). (4.9) 
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The partitioning cost of Step 4 is estimated by (3.3) as 

Ee::; n+ min{ k,n - k} - s + 2gn/s + 2ne-292/ s_ (4.10) 

The cost of finishing up at Step 7 is at most C,,k ::; l.5il. + 1/(Fi). But by Lem. 3.5, 
P[fi 2'. 4gn/s]::; 4e- 292fs, and fi< n, so (cf. Fact 3.2 with z:= l.5fi+1/(il.)) 

E [ l.5il. + "ff(n)]::; 1.5 · 4gn/s + "ff(4gn/s) + [ 1.5n + "ff(n)] 4e-292/s _ 

Since 4gn/s::; ,SJ(n), fis increasing, and J(n) = </>(n)n above, we get 

EC,-,k::; 6gn/s + "ff(,5/(n)) + [ 1.5 + 1</>(n)] 4ne- 292/ s_ 

Add the costs (4.9), (4.10) and (4.11) to get 

C„k::; 3s - 1.5 + 21/(s) +n+ min{ k, n - k} - s + 2gn/s + 2ne- 292I• 

+ 6gn/s + "ff(,5/(n)) + [ 1.5 + 1</>(n)] 4ne-292/• 

::; n+ min{ k, n - k} + [ 2s + 8gn/ s + 8ne-292I•] 

+ "f [ 2/(s) + J(,5/(n)) + 4ne-292l•4>(n)]. 

( 4.11) 

( 4.12a) 

(4.12b) 

By (4.3)- (4.6), the bracketed term in (4.12a) is at most 0.051/(n) due to (4.8), and that 
in (4.12b) is at most 0.95/(n) from (4.7); thus (4.2) holds as required. O 

We now ind i ca te briefly how to adapt the preceding proof to severa! variations on ( 4.1); 
choices similar to (4.13) and (4.17) are used in [MehOO] and [FIR75a], respectively. 

Remarks 4.2. (a) Theorem 4.1 holds for the following modification of (4.1): 

s := min{ra/(n)l,n-1} and g := (,Bsln0s) 112 with J(n) := n 213 ln113 n, (4.13) 

provided that (3 2'. 1/4, where 0 > O. Indeed, the analogue of (4.5) (cf. (4.1), (4.13)) 

gn/s = ((3/&.) 112J(n)(ln0s/lnn) 112 ::; ((3/a) 112J(n)(ln0s/lnn) 112 (4.14) 

·works like (4.5) for large n (since lim,._00 
1{,',~ = 2/3) , whereas replacing (4.6) by 

ne-292!• = n(0s)- 2f3::; J(n)(a0)-2f3n(l-4f3)!3 111-(1+2f3)!3 n, (4.15) 

we rnay rep lace n 1!3- 2f3 by ( a0)-2f3n(l- 4f3)/3 in ( 4. 7)- ( 4.8). 
(b) Theorem 4.1 holds for the following modification of (4.1): 

s := min U af (n)l, n - l} and g := ((3s In'' n) 112 with J(n) := n213 Jn',/3 n, (4.16) 

provided either E1 = 1 and (3 2'. 1/6, or E1 > 1. Indeed, since (4.16)=(4.1) for E/ = 1, 
suppose Et > 1. Clearly, (4.3)-(4.5) hold with </>(t) := J(t)/t. For fJ 2'. 1/6 and n large 
enough, we have g2/ s = (3111'1 n 2'. fJ In n; hence, replacing 2(3 by 2/3 and 111- 1/ 3 by 111-,,/3 

in (4.6)- (4.8), we may use the proof of Thm 4.1. 
(c) Theorem 4.1 remains true if we use (3 2'. 1/6, 

s := min{fan213l ,n-1}, g := ((3slnn) 1/ 2 and f(n) := n213 Jn112 n. (4.17) 

Again (4.3)- (4.5) hold with </>(t) := J(t)/t , and 111-112 replaces ln- 113 in (4.6)- (4.8). 
(d) None of these choices gives J(n) better than that in (4.1) for the bouncl (4.2). 
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Table 4.2: Relative sample sizes <I>,(n) and probability bounds e-2"'. 

<J>,(n) := (t'/lnt) 113 exp(-2n') 
n 105 106 5 · 106 107 105 lOG 5 · 106 

1/4 1.16 1.32 1.45 1.52 3.6 · 10-!G 3.4. 10-28 8.4 · 10-•2 

f 1/6 .840 .898 .946 .969 1.2 · 10-G 2.1 · 10-0 4.4 · 10- 12 

1/9 .678 .695 .711 .719 7.6 · 10-4 9.3 · 10-5 1.5 · 10-5 

4.2 Reischuk's samples 

For positive constants a and /3, consider using 

s := min { r an'•l, n - 1} and g := ( f]sn' )112 with 

TJ:= max { 1 + (E - Es)/2, E,} < 1 for some fixed O< E < Es, 

101 

1.4. 10-49 
1.8. 10-12 

6.2 · 10-G 

(4.18a) 

(4.18b) 

Theorem 4.3. Let Cnk denote the expected number of comparisons made by SELECT for 
s and g chosen as in ( 4.18). There exists a positive constant % such that for all k ~ n 

Cnk~n+min{k ,n-k}+,11 f,1(n) with f 11 (n):=n11 • (4.19) 

Proof. The function f 11 (t) := t11 grows to oo on (O, oo), whereas qy11 (t) := f 11 (t)/t = t11- 1 

decreases to O, so f 11 and </J'I may replace f and </J in the proof of Thm 4.1. Indeed, 
picking ii 2 1 such that an'' ~ ii - 1, for n 2 n we may use s = an'' ~ iif11 (n) with 
a ~ a ~ ii := 1 + 1/fi.'• to get analogues ( 4.3)-( 4.4) and the following analogue of ( 4.5) 

gn/s = (f3/a) 1l2n1+<,-,,J12 ~ (f3/a) 112 f 11 (n). ( 4.20) 

.Since g2/s = f]n' by (4.18), and te - 2(j11/t'1 decreases to o fort;::: t,, := (~)11', we may 
replace ( 4.6) by 

( 4.21) 

Hence, with n1- 11e- 2(J"' replacing n1/ 3 - 2(J ln- 1/ 3 n in (4.7)-(4.8), the proof goes through. O 

Remarks 4.4. (a) For a fixed EE (O, 1), minimizing TJ in (4.18) yields the optima[ sample 
size parameter 

Es := (2 + E)/3, ( 4.22) 

with TJ= Es> 2/3 and f'l(n) = n(2+<)/3 ; note that if s = cm'' in (4.18), then g = (af3) 112n'• 
with E9 := (1 + 2c)/3. To compare the bounds (4.2) and (4.19) for this optima! choice, Jet 
<I>,(t) := (t'/ In t) 113, so that <I>,(t) = f,,(t)/ f (t) = qy11 (t)/<p(t). Since lim,.-00 <I>,(n) = oo, 
the choice (4.1) is asymptotically superior to (4.18). However, <I>,(n) grows quite slowly, 
and <I>, (n) < 1 even for fairly large n when E is small (cf. Tab. 4.2). On the other hand, 
for small E and /3 = 1, the probability bound e-292/• = e-2n' of ( 4.18) is weak relative to 
e-292/• = n- 2 ensured by (4.1) . 
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(b) Consider using s := min {f cm'• l, n - 1} and g := f] 112n'9 with E„ E9 E (O, 1) such 
that E := 2t9 - Es > O and T) := max{ 1 + Eg - Es , Es} < 1. Theorem 4.3 covers this choice. 
Iudeed, the equality 1 + E9 - E8 = 1 + ( E - Es) /2 shows that ( 4.186) and ( 4.20) remain valid , 
and we have the following analogue of ( 4.21) 

(4.23) 

so compatible modifications of ( 4. 7)- ( 4.8) suffice for the rest of the proof. Note that 
11 2". (2 + E)/3 by (a); for the choice Es=½, E9 = i'1i of [Rei85], E = ~ and TJ=~-

4.3 Handling small subfiles 

Since the sampling efficiency decreases when X shrinks, consider the following modifica­
tion. For a fixed cut-off parameter ncut 2". 1, !et sSelect(X, k) be a "small-select" routine 
that finds the kth smallest element of X in at most Ccut < oo comparisons when IXI :'S'. ncut 
(even bubble sort will do). Then SELECT is modified to start with the following 

Step O (Small.file case). If n:= IXI :'S'. ncut, return sSelect(X, k). 
Our preceding results remain valid for this modification. In fact it suffices if Ccut 

bounds the expected number of comparisons of sSelect(X, k) for n '.S'. ncut· For instance, 
(4.2) holds for n '.S'. ncut and, 2". Ccut, and by induction as in Rem. 2.2(c) we have Cnk < oo 
for all n, which suffices for the proof of Thrn 4.1. 

Another advantage is that even small ncut ( 1000 say) limits nicely the stack space for 
recursion . Specifically, the taił recursion of Step 7 is easily eliminated (set X:= X, k := k 
and go to Step O), and the calls of Step 3 deal with subsets whose sizes quickly reach ncut · 
For example, for the choice of (4.1) with a = 1 and ncut = 600, at most four recursive 
levels occur for n '.S'. 231 ;::::; 2.15 • 109. 

5 Analysis of nonrecursive versions 

Consider a nonrecursive version of SELECT in which Steps 3 and 7, instead of SELECT, em­
ploy a linear-time routine (e.g., PICK [BFP+72]) that finds the ith smallest of m elements 
in at most 1pm comparisons for same constant ,P > 2. 

Theorem 5.1. Let Cnk denote the number of comparisons made by the nonrewrsive ver­
sion of SELECT for a given choice of s and g. Suppose s < n - 1. 

(a) For the choice of ( 4.1) with f (n) := n 213 In1/ 3 n, we have 

P [Cnk '.S'. n+ min{ k,n- k} + "'fpf(n)] 2". 1- 4n-2/J with 

"'fp:= (41p + 2)(/3/a) 112 + (2,p - 1) [a+ 1/ f(n)] , 

(5.la) 

(5.lb) 

also with f(n) in (5.lb) replaced by f(3) > 2 (since n 2". 3). Moreover, if /3 2". 1/6, then 

ECnk '.S'. n+ min{ k, n - k} + ("'fp+ 41 p + 2) f(n). (5.2) 
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(b) For the choice of ( 4.13), if 0s :S: n, then (5. la) holds with n-2f3 replaced by 
(a0)- 2f3n- 4f3!3 1n-2f3!3 n_ Moreover, if {3 2". 1/4, then (5.2) holds with 4-yp + 2 replaced 
by (4-yp + 2)(a0)-2f3. 

(c) For the choice of (4.18), (5.1) ho/ds with f(n) replaced by f,1(n) := n'1 and n-2f3 
by e-2f3n'. Moreover, if n 1-,,e-2f3n' :S: 1, then (5.2) holds with f replaced by f,1. 

Proof. The cost c„k of Steps 3, 4 ami 7 is at most 2-yps + c + -ypn. By Cor. 3.6, the event 
C := { c :S: c, n < 4gn/ s} has probability P[C] :::O: 1 - 4e-292/•. If C occurs, then 

c,,k :S: n+ min{ k,n - k} - s + 2gn/s + 2-yps +-ypl4gn/sj 

:S: n +min{k,n- k} + ( 4-yp + 2)gn/s+ (2-yp - l)s. 

Similarly, since Ecnk :S: 2-yps +Ee+ -ypEn, Lems. 3.4-3.5 yield 

(5.3) 

Ec,,k :S: n+ min{ k,n - k} + ( 4-yp + 2)gn/s + (2-yp -1) s + ( 4-yp + 2)ne-292I• _ (5.4) 

(a) Since e-292/• = n-2 f3, s = r af(n)l :s: iif(n) from s < n - 1 and (4.3), and gn/s is 
bounded by (4.5), (5.3) implies (5.1). Then (5.2) follows from (4.6) and (5.4). 

(b) Proceed as for (a), invoking (4.14)- (4.15) instead of (4.5) and (4.6). 
(c) Argue as for (a), using the proof of Thm 4.3, in particular (4.20)-(4.21). D 

Corollary 5.2. The nonrecursive version of SELECT requires n+ min{ k , n - k} + o(n) 
comparisons with probability at least l - 4n- 2f3 for the choice of (4.1), at least 1 -
4(a0)-2f3n- 4f3!3 for the choice of (4.13), and at least l - 4e-2f3n' for the choice of (4.18). 

Remarks 5.3. (a) Suppose Steps 3 and 7 simply sort S and X by any algorithm that 
takes at most 'Ys(s In s + n In n) comparisons for a constant 'Ys - This cost is at most 
(s + n)'Ys In n, because s, n < n, so we may replace 2-yp by 'Ys In n and 4-yp by 4-ys In n in 
_(5.3)-(5.4), and hence in (5.1)-(5.2). For the choice of (4.1), this yields 

P [Cnk :S: n+ min{k,n - k} + i'sf(n) Inn] 2". l -4n-2f3 with 

i's := (4-ys + 2 ln- 1 n)(f3/a) 112 + ('Ys - ln-1 n) [a+ 1/ f(n)], 

ECnk :S:n+min{k,n-k}+ (i's+4-ys+2In- 1 n)f(n)lnn, 

(5.5a) 

(5.5b) 

(5.6) 

where ln-1 n may be replaced by ln- 1 3, and (5.6) still needs {3 2". 1/6; for the choices (4.13) 
and (4.18), we may modify (5.5)-(5.6) as in Thm 5.l(b,c). Corollary 5.2 remains valid. 

(b) The bound (5.2) holds if Steps 3 and 7 employ a routine (e.g., FINO [Hoa61], 
[AHU74, §3.7]) for which the expected number of comparison8 to find the ith smallest of 
m elements is at most -ypm (then Ecnk :S: 2-yps +Ee+ -ypEn is bounded as before). 

(c) Suppose Step 6 returns to Step 1 if i,, 2". 4gn/s. By Cor. 3.6, such loops are finite 
wp 1, and clon't occur with high probability, for n large enough. 

(cl) Our results improve upon [GeS03, Thrn l], which only gives an es.tirnate like (5.la), 
but with 4n-2 f3 replacecl by O(n1- 2f3/:l), a much weaker bound. Further , the approach of 
[GeS03] is restricted to distinct elements. 
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We now comment briefly on the possible use of sampling with replacement. 

Remarks 5.4. (a) Suppose Step 2 of SELECT employs sampling with replacement. Since 
the taił bound (3.1) remains valicl for the binomial distribution [Chv79, Hoe63], Lemma 
3.3 is not affectecl. However, when Step 4 no longer skips comparisons with the elements 
of S, -s in (3.3) and (4.10) is replacecl by O (cf. the proof of Lem. 3.4), 2s in (4.12a) by 
3s and 2& in (4.8) by 3&. Similarly, aclcling s to the right sides of (5.3)- (5.4) boils clown 
to omitting -1 in (5.lb) and -111- 1 n in (5.5b). Hence the prececling results remain valid. 

(b) Of course, sampling with replacement neecls adclitional storage for S. This is 
inconvenient for the recursive version, but tolerable for the nonrecursive ones because the 
sample sizes are relatively small (hence (3.3) with -s omitted is not too bad). 

(c) Our results irnprove upon [MoR95, Thm 3.5], corresponcling to (4.18) with E = 1/4 
and /3 = 1, where the probability bouncl 1 - O(n-114) is weaker than our 1 - 4e-2n'1•, 

sampling is clone with replacement and the elernents are distinct. 
(ci) Our results subsume [Meh00, Thm 2], which gives an estimate like (5.2) for the 

choice (4.13) with /3 = 1, using quickselect (cf. Rem. 5.3(b)) and sampling with replacement 
in the case of distinct elements. 

6 Ternary and quintary partitioning 

In this section we discuss ways of implementing SELECT when the input set is given as an 
array x[l: n]. We need the following notation to describe its operations in more detail. 

Each stage works with a segment x[ł: r] of the input array x[l: n], where 1 '.S ł '.Sr '.Sn 
are such that Xi < X1 for i= l:ł - 1, Xr < X; for i= r + l:n, and the kth smallest 
element of x[l: n] is the (k - l + l)th smallest element of x[ł: r]. The task of SELECT is 
extended: given x[ł:r] and ł '.S k '.Sr, SELECT(x,l,r,k,k_,k+) permutes x[ł:r] and fincls 
l '.S k_ '.S k '.S k+ '.S r such that Xi < Xk for all ł '.S i < k_, Xi = Xk for all k_ '.S i '.S k+, 
_x; > Xk for all k+ < i '.Sr. The initial call is SELECT(x, 1, n, k, k_, k+)-

A vector swap denotecl by x[a: b] <--> x[b+l: c] means that the first d := min(b+l-a, c-b) 
elements of array x[a: c] are exchangecl with its last d elements in arbitrary order if d > O; 
e.g., we may exchange Xa+i <--> Xe-i for O '.Si < d, or Xa+i <--> Xc-d+l+i for O '.Si < d. 

6.1 Ternary partitions 

For a given pivot v := Xk from the array x[ł: r], the following ternary scherne partitions 
the array into three blocks, with Xm < v for ł '.S m < a, Xm = v for a '.S m '.S d, Xm > v for 
d < m '.Sr. The basie idea is to work with the five inner parts of the array 

lx<vlx=vlx<vl ? lx>vlx=vlx>vl 
l l p i j q f r 

until the middle part is empty or just contains an element equal to the pivot 

lx=vlx<vlx=vlx>vlx=vl 
l p j q f 
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(i.e., j = i - 1 or j = i - 2), then swap the ends into the middle for the finał arrangement 

I x<v I x=v I x>v I 
l a d f 

(6.3) 

Al. [Initialize.] Set v := Xk and exchange x, +-> Xk- Set i := l := l , p := l + l, q := r - l 
and j := f := r. If v < Xr, set f := q. If v > x,., exchange x, +-> Xr and set I:= p. 

A2. [Increase i until x; 2: v.] Incrcasc i by l ; then if x; < v, repeat this step. 

A3. [Decrease j until Xj :"'.'. v.] Decrease j by l; then if Xj > v, repeat this step. 

A4. [Exchange.] (Here Xj :"'.'. v :"'.'. x,.) If i< j, exchange x, +-> xi; then if x, = v, exchange 
x; +-+ Xp and increase p by l; if .xi = v, exchange Xj +-> Xą and decrease q by l; return 
to A2. If i= j (so that x; = Xj = v), increase i by 1 and decrease j by 1. 

A5. [Cleanup.] Set a:= l + j - p + l and eł:= f - q + i - l. Exchange x[l: p- l] +-> x[p: j] 
and x[i: ą] +-> x[ą + 1: f]. 

Step Al ensures that x, :":'. v :"'.'. Xr, so steps A2 and A3 don't need to test whether i:-:; j; 
thus their loops can run faster than thosc in the schemes of [BeM93, Prog. 6] and [Knu97, 
Ex. 5.2.2--41] (which do need such tests, since, e.g., there may be no element x, > v) . 

6.2 Preparing for quintary partitions 

At Step 1, r - l + l replaces n in finding s and g. At Step 2, it is convenient to place the 
sample in the initial part of x[ł: r] by exchanging X; +-> x,+rand(r-i) for l :"'.'. i :":'. T8 := l+s - 1, 
where rand(r - i) denotes a random integer, uniformly distributed between O and r - i. 

Step 3 uses k,, := max{fł -1 + is/m - g l, ł} and kv := min{fł - 1 + is/m + g l, r,} with 
i := k-l+ 1 and m := r-l + 1 for the recursive calls. If SELECT(x, ł, rs, k,,, k;;, k;;) returns 
k";; 2: kv , we have v := u := Xk., so we only set k;; := kv, k"t := k;; and reset k;; := kv - l. 
'Otherwise the second call SELECT(x,k;; + l,rs,kv , k;;,k"t) produces v := xk.· 

After u and v have been founcl, our array looks as follows 

lx<ul x=u lu<x<vl x=v lx>vl? 
l k;; k";; k;; k"t T 8 T 

(6.4) 

Setting I:= k;;, fi := k;; + l, f := r - r, + k"t, ff:= f - k"t + k;; - l, we exchange 
x[k"t + 1: r.] +-+ x[rs + 1: r] and then x[k;;: k"t] +-> x[k"t + 1: f] to get the arrangement 

lx<ulx=ulu<x<vl ? lx=vlx>vl 
l l fi fj f T 

(6.5) 

The thircl part above is missing precisely when u= v; in this case (6.5) reduces to (6.1) 
with initial p := fi, q := ff, i := p - l and j := q + l. Hence the case of u = v is hanclled 
via the ternary partitioning scheme of §6.1, with step Al omitted. 
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6.3 Quintary partitions 

For the case of k < l(r + ł)/2 J and u < v, Step 4 may use the following quintary scheme 
to partition x[ł: r] into five blocks, with Xm < 1.t for ł ::::; m < a, Xm = u for a ::; m < b, 
·u < x,.. < v for b ::; m ::::; c, x,,. = v for c < m ::::; d, Xm > v for d < m ::; r. The basie idea 
is to work with the six-part array stemrning from (6.5) 

I x=u I u<x<v I x<u I 
l fi P i j q i' 

until i and j cross 

lx=uiu<x<vlx<ulx>vlx=vl_ 
[ fi pjiq r' 

we may then swap the second part with the third one to bring it into the middle 

I x= ·u I x<u I u<x<v I x>v I x=v I 
l fi b ci q r' 

(6.6) 

(6.7) 

(6.8) 

and finally swap the extreme parts with their neighbors to get the desired arrangement 

I x<u I x=u I u<x<v I x=v I x>v I 
[ a b c d i' 

(6.9) 

Bł. [Initialize.] Set p := k;;, q := ij, i := p - 1 and j := q + 1. 

B2. [Increase i until X; 2 v.] Increase i by 1. If X; 2 v, go to B3. If x; < 1.t, repeat this 
step. (At this point, u::; x; < v.) If X; > u, exchange x; +-+ xp; otherwise exchange 
X; +-+ Xp and Xp <-> x;; and increase p by 1. Increase p by 1 and repeat this step. 

B3. [Decrease j until Xj < v.] Decrease j by 1. If Xj > v, repeat this step. If Xj = v, 
exchange Xj +-+ Xą, decrease q by 1 and repeat this step. 

B4. [Exchange.] If i 2 j, go to B5. Exchange x; +-+ Xj- If x; > u, exchange x; +-+ Xp and 
increase p by 1; otherwise if x; = u, exchange x; +-+ Xp and Xp +-+ Xp and increase p 
and p by 1. If Xj = v, exchange Xj +-+ Xą and decrease q by 1. Return to B2. 

B5. [Cleanup.] Set a:= [+i - p, b :=a+ p - l, d := i' - q + j and c := d - i'+ q. Swap 
x[p: p - l] +-+ x[p: j), x[l: p - 1] +-+ x[p: b - 1), and finally x[i: q] <-> x[q + 1: r]. 

For the case of k 2 l(r+ł) /2 J and u < v, Step 4 may use the following quintary scheme, 
which is a symmetric version of the preceding one obtained by replacing (6.6)-(6.8) with 

Jx=ul x<u/ ? /x>v/u<x<v/x=vl 
[ p i j q ij i' 

(6.10) 

I x=u / x<u / x>v / u<x<v / x=v I 
[ pjią iJ r' 

(6.11) 

I x=u / x<u I u<x<v / x>v / x=v I 
[ p j b c ij i' 

(6.12) 
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Cl. [Initialize.] Set p := p, q := q - k;; + k;; + 1, i := p - 1 and j := q + 1, and swap 
x[p: k;; - l] ....., x[k;;: ą]. 

C2. [Increase i until X; > ·u.] Increase i by 1. If x; < 1i, repeat this step. If x; = u, 
exchange x; ....., Xp, increase p by 1 and repeat this step. 

C3. [Decrease j until Xj ::; u.] Decrease j by 1. If Xj ::; u, go to C4. If Xj > v, repeat this 
step. (At this point, u< Xj ::; v.) If Xj < v, exchange XJ <-> xq; otherwise exchange 
XJ <-> Xą and Xą <-> Xą and decrease q by 1. Decrease q by 1 and repeat this step. 

C4. [Exchange.] If i 2': j, go to C5. Exchange X; <-> Xj- If X; = u, exchange X; <-+ Xp 

and increase p by 1. If Xj < v, exchange Xj <-> Xą and decrease q by 1; otherwise if 
Xj = v, exchange Xj <-> Xą and x" <-> Xą and decrease ą and q by 1. Return to C2. 

C5. [Cleanup.] Set a:= T + i - p, b := a+ p - T, d := f - q + j and c := d - f + q. Swap 
x[T: p - 1] <-> x[JJ: j], x[i: ą] <-> x[q + 1: ą] and finally x[c + 1: ą] <-> x[ą + 1: f]. 

To make (6.3) and (6.9) compatible, the ternary scheme may set b := d + 1, c := a - 1. 
After partitioning I and r are updated by setting I := b if a :S k, then I := d + 1 if c < k; 
r := c if k :S d, then r := a - 1 if k < b. If I 2': r, SELECT may return k_ := k+ := k 
if I = r, k_ := r + 1 and k+ := I - 1 if I > r. Otherwise, instead of calling SELECT 
recursively, Step 6 may jump back to Step 1, or Step O if sSelect is used (cf. §4.3). 

A simple version of sSelect is obtained if Steps 2 and 3 choose u := v := xk when 
r - l + 1 :::; ncut (this choice of [FIR75a] works well in practice, but more sophisticated 
pivots could be tried); then the ternary partitioning code can be used by sSelect as well. 

7 Experimental results 

7.1 lmplemented algorithms 

An implementation of SELECT was programmecl in Fortran 77 and run on a notebook 
PC (Pentium 4M 2 GHz, 768 MB RAM) under MS Windows XP. The input set X was 
specified as a double precision array. For efficiency, the recursion was removed and small 
arrays with n ::; ncut were hanclled as if Steps 2 and 3 chose u := v := xk; the resulting 
version of sSelect (cf. §§4.3 and 6.3) typically required less than 3.5n comparisons. The 
choice of (4.1) was employed, with the parameters °' = 0.5, /3 = 0.25 and ncut = 600 as 
proposed in [FIR75a]; future work should test other sample sizes and parameters. 

For comparisons we developed a Fortran 77 implementation of the RISELECT algorithm 
of [ValO0]. Briefly, RISELECT behaves like quickselect using the median of the first, middle 
and last elements, these elements being exchangecl with randomly chosen ones only if the 
file doesn't shrink sufficiently fast. To ensure O(n) time in the worst case, RISELECT may 
switch to the algorithm of [BFP+72], but this never happenecl in our experiments. 

7.2 Testing examples 

'vVe used minor modifications of the input sequences of [ValO0], clefined as follows: 

random A random permutation of the integers 1 through n. 
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onezero A random permutation of r n/21 ones and l n/2 J zeros. 

sorted The integers 1 through n in increasing order. 

rotated A sorted sequence rotated left once; i.e., (2, 3, ... , n, 1). 

organpipe The integers (1, 2, ... , n/2, n/2, ... , 2, 1). 

m3killer Musser's "median-of-3 killer" sequence with n = 4j and k = n/2: 

( 1 2 3 4 . . . k - 2 k - 1 k k + 1 . . . 2k - 2 2k - 1 2k ) 
1 k + 1 3 k + 3 . . . 2k - 3 k - 1 2 4 . . . 2k - 2 2k - 1 2k . 

twofaced Obtained by randomly pennuting the elements of an m3killer sequence in po­
sitions 4 l log2 n J through n/2 - 1 and n/2 + 4 l log2 n J - 1 through n - 2. 

For each input sequence, its (!ower) median element was selected for k := f n/21-
These input sequences were designed to test the performance of selection algorithms 

under a range of conditions. In particular, the onezero sequences represent inputs con­
taining many duplicates [Sed77]. The rotated and organpipe sequences are difficult for 
many implementations of quickselect. The m3killer and twofaced sequences are hard for 
implementations with median-of-3 pivots (their original versions [Mus97] were modified to 
become difficult when the middle element comes from position k instead of k + 1) . 

7.3 Computational results 

We varied the input size n from 50,000 to 16,000,000. For the random, onezero and 
twofaced sequences, for each input size, 20 instances were randomly generated; for the 
deterministic sequences, 20 runs were made to measure the solution time. 

The performance of SELECT on randomly generated inputs is summarized in Table 7.1, 
where the average, maximum and minimum solution times are in milliseconds, and the 
'comparison counts are in multiples of n; e.g., column six gives Cavg/n, where Cavg is the 
average number of comparisons made over all instances. Thus "/avg := (Cavg - l.5n)/f(n) 
estimates the constant 'Yin the bound ( 4.2); moreover, we have Cavg ,::;; 1.5Lavg, where Lavg 
is the average sum of sizes of partitioned arrays. Further, Pavg is the average number of 
SELECT partitions, whereas Navg is the average number of calls to sSelect and Pavg is the 
average number of sSelect partitions per call; both Pavg and Navg grow slowly with In n. 
Finally, Savg is the average sum of sample sizes; Savg/ f (n) drops from 0.68 for n= 50K to 
0.56 for n = 16M on the random and twofaced inputs, and from 0.57 to 0.52 on the onezero 
inputs, whercas the initial s/ f (n) ,::;; a = 0.5. The average solution times grow linearly 
with n (except for small inputs whose solution times couldn't be measured accurately), 
and the differences between maximum and minimum times are fairly small ( and also partly 
due to the operating system). Except for the smallest inputs, the maximum and minimum 
numbers of comparisons are quite close, and Cavg nicely approaches the theoretical !ower 
bound of 1.5n; this is reflected in the values of "/avg· Note that the results for the random 
and twofaced sequences are almost identical, whereas the onezero inputs only highlight 
the efficiency of our partitioning. 
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Table 7.1: Performance of SELECT on randomly generated inputs. 

Scqucncc Size Time [msec) Comparisons [n) /nvg Lavg P,w,;. JV,wg Pavg Snvg 

n avg max min ,wg ma, .. x min [n) [lnn) [lnn) [%n) 
random 50K 3 10 o 1.81 1.85 1.77 5.23 1.22 0.46 1.01 7.62 4.11 

lOOK 4 10 o 1.72 1.76 1.65 4.50 1.15 0.45 0.99 8.05 3.20 
500K 13 20 10 1.62 1.63 1.60 4.14 1.08 0.59 1.27 7.59 1.86 

lM 24 30 20 1.59 1.60 1.57 3.93 1.06 0.64 1.35 8.18 1.47 
2M 46 50 40 1.57 1.58 1.56 3.73 1.04 0.76 1.59 7.67 1.16 
4M 86 91 80 1.56 1.56 1.55 3.61 1.03 0.94 1.94 7.21 0.91 
SM 163 171 160 1.54 1.55 1.54 3.45 1.03 0.98 1.99 7.45 0.72 

16M 316 321 310 1.53 1.54 1.53 3.44 1.02 0.99 2.02 7.55 0.57 
onezero SOK 2 10 o 1.51 1.52 1.50 0.24 1.02 0.28 0.27 1.17 3.41 

IOOK 3 10 o 1.51 1.51 1.50 0.23 1.01 0.26 0.25 1.14 2.72 
500K 15 20 IO 1.51 1.51 1.51 0.26 1.01 0.23 0.23 1.17 1.61 

IM 29 31 20 1.51 1.51 1.51 0.26 1.01 0.22 0.22 1.20 1.29 
2M 52 60 50 1.51 1.51 1.50 0.26 1.01 0.28 0.27 1.14 1.03 
4M 110 111 110 1.50 1.50 1.50 0.26 1.00 0.33 0.26 1.16 0.83 
8M 214 221 210 1.50 1.50 1.50 0.26 1.00 0.38 0.25 1.11 0.66 

16M 426 431 420 1.50 1.50 1.50 0.26 1.00 0.36 0.24 1.11 0.53 
twofaced 50K 1 10 o 1.80 1.85 1.74 4.99 1.21 0.46 1.01 7.53 4.11 

!DOK 3 IO o 1.73 1.76 1.69 4.67 1.16 0.43 0.96 8.23 3.20 
500K 13 21 IO 1.62 1.63 1.61 4.07 1.08 0.61 1.30 7.85 1.87 

IM 24 31 20 1.59 1.60 1.58 3.82 1.06 0.67 1.40 7.86 1.47 
2M 46 51 40 1.57 1.58 1.56 3.66 1.04 0.75 1.58 7.98 1.16 
4M 86 91 80 1.56 1.56 1.55 3.60 1.03 0.95 1.96 7.36 0.92 
SM 164 171 160 1.54 1.55 1.54 3.48 1.03 0.96 1.98 7.48 0.72 

16M 319 321 311 1.53 1.54 1.53 3.38 1.02 1.00 2.06 7.74 0.57 

Table 7.2 exhibits similar features of SELECT on the deterministic inputs. The results 
for the sorted and rotated sequences are almost the same, whereas the solution times on the 
organpipe and m3killer sequences are between those for the sorted and random sequences. 

The performance of RISELECT on the same inputs is described in Tables 7.3 and 7.4, 
where Nrnd denotes the average number of randomization steps. On the random sequences, 
the expected value of Cavg is of order 2.75n [KMP97], but Table 7.3 exhibits significant 
fluctuations in the numbers of comparisons made. The results for the onezero sequences 
confirm that binary partitioning may handle equal keys quite efficiently [Sed77]. The 
results for the twofaced, rotated, organpipe and m3killer inputs are quite good, since same 
versions of quickselect may behave very poorly on these inputs [Va!O0] (note that we used 
the "sorted-median" partitioning variant as suggested in [Va!O0]). Finally, the median-of-3 
strategy employed by RISELECT really shines on the sorted inputs. 

As always, limited testing doesn't warrant firm conclusions, but a comparison of SE-
LECT and RISELECT is in order, especially for the random sequences, which are most 
frequently used in theory and practice for evaluating sorting and selection algorithms. On 
the random inputs, the ratio of the expected numbers of comparisons for RISELECT and 
SELECT is asymptotically 2.75/1.5 ~ 1.83; incidentally, the ratio of their computing times 
approaches 553/316 ~ 1.75 (cf. Tabs. 7.1 and 7.3). Note that SELECT isn't just asymp-
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Table 7.2: Performance of SELECT on cleterministic inputs. 

Scqucnce Size Time [rnsec] Comparisons [n] /nvg Lavg Pavg N,wg Pavg Savg 

n avg max min avg max min [n] [Inn) [Inn] [%n) 
sortecl 501( 2 10 o 1.80 1.88 1.71 4.92 1.21 0.44 0.98 7.80 4.08 

lOOK 2 10 o 1.73 1.76 1.71 4.76 1.16 0.44 0.97 7.83 3.21 
500K 9 11 o 1.62 1.63 1.61 4.09 1.08 0.60 1.27 7.91 1.86 

lM 14 20 10 1.60 1.61 1.58 4.02 1.06 0.63 1.34 8.05 1.46 
2M 25 30 20 1.57 1.58 1.57 3.75 1.04 0.77 1.60 7.46 1.16 
4M 47 51 40 1.56 1.56 1.55 3.59 1.03 0.95 1.95 7.45 0.91 
8M 86 91 80 1.54 1.55 1.53 3.50 1.03 0.99 2.03 7.55 0.72 

16M 160 161 160 1.53 1.54 1.53 3.37 1.02 1.00 2.04 7.65 0.57 
rotated 50K 2 10 o 1.80 1.91 1.71 4.99 1.21 0.44 0.98 7.90 4.08 

lOOK 2 10 o 1.74 1.76 1.70 4.83 1.16 0.44 0.96 7.91 3.21 
500K 8 10 o 1.62 1.63 1.61 4.09 1.08 0.60 1.28 8.01 1.86 

lM 14 20 10 1.60 1.60 1.59 4.03 1.06 0.64 1.35 8.14 1.47 
2M 25 30 20 1.57 1.58 1.56 3.74 1.04 0.76 1.59 7.54 1.16 
4M 48 60 40 1.56 1.56 1.55 3.59 1.03 0.94 1.93 7.26 0.91 
8M 84 90 80 1.54 1.55 1.53 3.47 1.03 0.99 2.02 7.43 0.72 

16M 161 171 151 1.53 1.54 1.53 3.35 1.02 1.00 2.04 7.61 0.57 
organ pipe 50K 1 10 o 1.80 1.84 1.70 5.04 1.21 0.46 1.01 7.59 4.11 

lOOK 2 11 o 1.74 1.76 1.71 4.88 1.16 0.45 0.98 8.03 3.22 
500K 8 10 o 1.62 1.63 1.60 4.04 1.08 0.62 1.32 7.75 1.87 

lM 16 20 10 1.59 1.60 1.57 3.87 1.06 0.66 1.39 7.72 1.47 
2M 30 40 20 1.57 1.58 1.56 3.69 1.04 0.74 1.56 7.66 1.16 
4M 54 60 50 1.56 1.56 1.55 3.57 1.03 0.97 1.99 7.22 0.92 
BM 101 111 100 1.55 1.55 1.54 3.58 1.03 0.97 1.99 7.38 0.72 

16M 194 201 190 1.53 1.54 1.53 3.39 1.02 0.99 2.02 7.68 0.57 
m3killer 50K 2 11 o 1.84 2.27 1.76 5.61 1.23 0.47 1.04 7.69 4.21 

lOOK 3 10 o 1. 74 1.77 1.70 4.83 1.16 0.44 0.97 7.79 3.21 
500K 9 10 o 1.63 1.64 1.61 4.24 1.08 0.58 1.23 7.79 1.86 

lM 18 20 10 1.59 1.60 1.58 3.92 1.06 0.67 1.40 7.87 1.47 
2M 32 40 30 1.57 1.58 1.56 3.67 1.04 0.75 1.57 7.85 1.16 
4M 57 61 50 1.56 1.56 1.55 3.64 1.03 0.96 1.96 7.33 0.92 
8M 107 111 100 1.54 1.55 1.54 3.51 1.03 0.96 1.97 7.39 0.72 

16M 204 221 200 1.53 1.54 1.53 3.37 1.02 0.97 1.98 7.64 0.57 

totically faster; in fact RJSELECT is about 40% slower even on miclclle-sizecl inputs. A 
slow-down of up to 19% is observed on the onezero sequences. The performance gains of 
SELECT over RISELECT are much more pronounced on the remaining inputs, except for 
the sortecl sequences on which SELECT may be twice slower. (However, the sortecl input is 
quite special: increasing k by 1 (for the upper median) doubled the solution times of RIS-

ELECT without influencing those of SELECT; e.g., for n = 16M the respective times were 
169 and 158). Note that, relative to RJSELECT, the solution times and comparison counts 
of SELECT are much more stable across all the inputs. This feature may be important in 
applications. 

Acknowledgment. I woulcl like to thank Olgierd Hryniewicz, Roger I<oenker, Ronald 
L. Rivest and John D. Valois for useful cliscussions. 
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Table 7.3: Performance of RISELECT on randomly generatecl inputs. 

Sequence Size Time [111sec] Comparisons [n] Lavg Pavg Nrnd 

n avg max min avg 1nax min [Inn] [n] 
random 50K 2 10 o 3.10 4.32 1.88 3.10 1.63 0.45 

lOOK 4 10 o 2.61 4.19 1.77 2.61 1.60 0.20 
500K 17 20 10 2.91 4.45 1.69 2.91 1.57 0.25 

lM 33 41 20 2.81 3.79 1.84 2.81 1.57 0.40 
2M 62 90 40 2.60 3.57 1.83 2.60 1.61 0.35 
4M 135 191 90 2.86 4.38 1.83 2.86 1.65 0.55 
8M 249 321 190 2.60 3.48 1.80 2.60 1.58 0.40 

16M 553 762 331 2.99 4.49 1.73 2.99 1.58 0.40 
onezcro SOK 1 10 o 2.73 3.22 2.68 2.73 1.73 O.DO 

100K 3 10 o 2.72 2.88 2.68 2.72 1.80 O.DO 
500K 15 20 10 2.74 2.88 2.68 2.74 1.82 0.40 

lM 31 41 30 2.72 2.85 2.68 2.72 1.84 0.55 
2M 62 70 60 2.71 2.99 2.68 2.71 1.82 0.75 
4M 126 131 120 2.73 2.85 2.68 2.73 1.85 1.00 
8M 251 261 240 2.72 2.88 2.68 2.72 1.87 1.00 

16M 505 521 491 2.72 2.85 2.68 2.72 1.85 0.95 
twofaced 50K 2 10 o 7.77 8.84 6.88 7.77 1.99 1.25 

lOOK 8 10 o 7.76 9.63 6.65 7.76 2.07 1.30 
500K 29 40 20 7.59 9.09 6.69 7.59 1.91 1.10 

lM 58 70 50 7.50 9.19 6.63 7.50 1.95 1.30 
2M 123 141 110 8.07 9.05 7.26 8.07 2.04 1.45 
4M 232 281 200 7.64 8.86 6.79 7.64 1.93 1.25 
8M 458 530 401 7.62 8.54 6.96 7.62 1.93 1.35 

16M 905 1132 771 7.56 9.10 6.79 7.56 1.94 1.30 
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