

Partitioning schemes for quicksort and quickselect

Krzysztof C. Kiwiel*
December 20, 2003

Abstract

We introduce several modifications of the partitioning schemes used in Hoare’s quick-
sort and quickselect algorithms, including ternary schemes which identify keys less
or greater than the pivot. We give estimnates for the numbers of swaps made by
each scheme. Our computational experiments indicate that ternary schemes allow
quickselect to identify all keys equal to the selected key at little additional cost.

Key words. Sorting, selection, quicksort, quickselect, partitioning.

1 Introduction

Hoare’s quicksort {HoaG2] and quickselect (originally called FIND) [Hoa61b| are among
the most widely used algorithms for sorting and selection. In our context, given an array
z{l:n] of n elements and a total order <, sorting means permuting the elements so that
z; < x4y for i = l:n — 1, whereas for the simpler problem of selecting the kth smallest
element, the elements are permuted so that @; < 2 < g for 1 <i< Ak <j<n.

Both algorithms choose a pivot element, say v, and partition the input into a left array
z{l:a—1] < v, a middle array zfa: b] = v, and a right array z[b+1:n] > v. Then guicksort
is called recursively on the left and right arrays, whereas quickselect is called on the left
array if k < a, or the right array if £ > b; if o <k < b, selection is finished.

This paper introduces useful modifications of several partitioning schemes. First, we
show that after exchanging z; with z,, when necessary, the classic scheme of Sedgewick
[Knu98, §5.2.2] no longer needs an artificial sentinel. Second, it turns out that a simple
modification of another popular scheme of Sedgewick [BeM93, Prog. 3] allows it to handle
equal keys more efficiently; both schemes take n or n + 1 comparisons. Third, we describe
a scheme which makes just the n — 1 necessary comparisons, as well as the minimum
number of swaps when the elements are distinct. This should be contrasted with Lomuto’s
scheme [BeM93, Prog. 2], [CLRS01, §7.1], which takes n — 1 comparisons but up to n — 1
swaps. Hence we analyze the average numbers of swaps made by the four schemes when the
clements are distinct and in random order. The first three schemes take at most /4 swaps
on average, whereas Lomuto’s scheme takes up to n — 1. Further, for the pivot selected

*Systems Research Institute, Newelska 6, 01-447 Warsaw, Poland (kiwiel@ibspan.waw.pl)

as the median of a sample of 2¢ + 1 elements, the first three schemes make asymptotically
n/6 swaps for ¢ = 0, n/5 for t = 1, etc. (cf. §3.3.1), while Lomuto’s scheme takes (n—1)/2;
the swap counts are similar when the pivot is Tukey’s ninther [BeM93, CHT02, Dur03].

When equal keys occur, one may prefer a ternary scheme which produces a left array
with keys < v and a right array with keys > v, instead of < v and > v as do binary schemes.
Here only the Bentley-Mcllroy scheme {BeM93] looks competitive, since Dijkstra’s “Dutch
national ag” scheme [Dij76, Chap. 14] and Wegner’s scheines [Weg85] are more complex.
However, the four schemes discussed above also have attractive ternary versions. Our first
scheme omits pointer tests in its key comparison loops, keeping them as fast as possible.
Our second scheme improves on another scheme of Sedgewick [Sed98, Chap. 7, quicksort]
{(which ncedn’t produce true ternary partitions; cf. §5.2). Our third scheme is a simple
modification of the Bentley-Mcllroy scheme which makes n — 1 coinparisons; the original
version takes n — 1/2 on average (cf. Lem. 5.1), although n — 1 was assumed in [Dur03)].
Ternary versions of Lomuto’s schenic seeni to be less attractive. When many equal keys
oceur, the Beutley-MclIlroy scheme tends to make fewer swaps than the other schemes,
but it may swap needlessly equal keys with themselves and its inner loops involve pointer
tests. Hence we introduce hybrid two-phase versions which eliminate vacuons swaps in the
first phase and pointer tests in the second phase.

Ternary schemes, although slower than their simpler binary counterparts, have at least
two advantages. First, quicksort’s recursive calls aren’t made on the equal keys isolated by
partitioning. Second, quickselect can identify all keys equal to the kth smallest by finding
two indices k_ < k < ky such that z[l: k_ — 1] < zj = z[k_: k4] < z[ky + 1:n] on output.

Our fairly extensive computational tests with quickselect (we left quicksort for future
work) were quite suprising. First, the inclusion of pointer tests in the key comparison
loops didn’t result in significant slowdowns; this is in sharp contrast with traditional
recommendations [Knu98, Ex. 5.2.2-24], {Sed78, p. 848], but agrees with the observation
of [BeM93] that Knuth’s MIX cost model needn’t be appropriate for modern machines.
Sccond, the overheads of ternary schemes relative to binary schemes were quite mild.
Third, Lomuto’s binary schemie was hopeless when many equal keys occured, since its
running tinie may be quadratic in the number of keys equal to the kth smallest.

More information on theoretical and practical aspects of quicksort and quickselect can
be found in {BeS97, Gri99, HwT02, KMP97, MaR01, Mus97, Val00] and references therein.

The paper is organized as follows. The four bipartitioning schemes of interest are
described in §2 and their average-case analysis is given in §3. In §4 we present tuned
versions (cf. [MaRO01, §7]) for the case where the pivot is selccted from a sample of several
clements. Tripartitioning schemes arc discussed in §5. Finally, our computational results
are reported in §6.

2 Bipartitioning schemes

Each invocation of quicksort and quickselect deals with a subarray z[l: 7] of the input array
x[1: n}; abusing notation, we let n := 7 — [+ 1 denote the size of the current subarray. It is
convenient to asswine that the pivot v := w; is placed first (after a possible exchange with
another element). Each binary scheme given below partitions the array into three blocks,

with z,, <vforl<m<a,z,=vfora<m<br,>vforb<m<r,i<a<b<r.
We suppose that n > 1 (otherwise partitioning is trivial: set @ := b :=[).

2.1 Safeguarded binary partition

Our first modification of the classic schenie of Sedgewick [I{nu98, §5.2.2, Algorithm Q)]
proceeds as follows. After comparing the pivot v := x; to 2z, to produce the initial setup

[z=v]z<v]?[z>v]z=0]

2.1
l p i Joq r @1)
with i :={ and j :=r, we work with the three inner blocks of the array
z=vlz<v| 7 |z2v|z=v
l [e<v] ¥ [z2v]e=v] (2.2)
{ P i q r
until the middle part is empty or just contains an element equal to the pivot
r=vir<v|x=viTz>2Vv|T=v

{ p o j i g r
(i.e.,, j =i—1orj=1-2), then swap the ends into the middle for the final arrangement

I],lgulz:lele (2-4)

Scheme A (Safeguarded binary partition).

Al. [Initialize] Set i:=1,p:=i+1,j:=randqg:=j— 1. Ifv > z;, exchange z; © x;
and set p :=1; else if v < zj, set ¢ := j.

A2. [Increase ¢ until z; > v.] Increase ¢ by 1; then if z; < v, repeat this step.

A3. [Decrease j until z; < v.] Decrease j by 1; then if z; > v, repeat this step.

Ad. [Exchange.] (Here z; < v < a;.) If i < j, exchange z; «» z; and return to A2. If
i =7 (so that ; = z; = v), increase 4 by 1 and decrease j by 1.

A5, [Cleanup] Set a:=!+j—-p+1land b:=7—q+i—1 Ifl <p, exchange z; & z;.
If ¢ < r, exchange ; & z,.

Step Al ensures that z; < v < x5, so steps A2 and A3 don’t need to test whether ¢ < j.
In other words, while searching for a pair of elements to exchange, the previously sorted
data (initially, 2; < z,) are used to bound the search, and the index values are compared
only when an exchange is to be made. This leads to a small amount of overshoot in the
search: in addition to the necessary n — 1 comparisons, schemie A makes two spurious.
comparisons or just one (when ¢ = j + 1 or i = j at Ad respectively). Step A4 makes at
most n/2 index comparisons and at most n/2 — 1 swaps (since j —1 decreases at least by 2
between swaps); thus Al and A4 make at most 1/2 swaps. To avoid vacuous swaps, step

3

A5 may use the tests [< min{p, j} and max{q,¢} < r; on the other hand, A5 could make
unconditional swaps without impairing (2.4).

Of course, scheme A could be described in other equivalent ways. For instance, A1 and
A5 can be written in terms of binary variables 4, := p —{ and 4, := r — ¢; then A5 may
decrease § by 1if 4 = 1 and increase 4 by 1if i, =1tohavea =+ 1,0 =1—11in (2.4).

A more drastic simplification could swap z; < z, if v > z, at Al, omit the second
instruction of A4, set a :=0:=j at A5 and swap z; + z; if 2; = v, z; & 2, otherwise.

2.2 Single-index controlled binary partition

It is instructive to compare scheme A with a popular scheme of Sedgewick [BeM93, Progs.
3 and 4], based on the arrangements (2.2)-(2.3) with p:={+1, ¢:=r.
Scheme B (Single-index controlled binary partition).
B1. [Initialize.] Set ¢ :=1{ and j =7+ 1.
B2. [Increase ¢ until z; > v.] Increase i by 1; then if ¢ < r and z; < v, repeat this step.
B3. [Decrease j until z; < v.] Decrease j by 1; then if z; > v, repeat this step.
B4. {Exchange.] (Here z; < v < 2;.) If i < j, exchange z; + «; and return to B2.
B5. [Cleanup.] Exchange z; « z;.

The test 7 < r of step B2 is necessary when v is greater than the remaining elements. If
i =j at B4, a vacuous swap is followed by one or two unnecessary comparisons; hence B4
may be replaced by A4 to achieve the saine effect at no extra cost. With this replacement,
scheme B makes n+ 1 comparisons or n if 2 = 7 or ¢ = r+ 1 at B4, and at most (n+ 1)/2
index comparisons and (n—1)/2 swaps at B4. Usually scheme B is used as if a := b := j in
(2.4), but in fact B5 may set a := j, b:= i — 1 (note that the final arrangement of [BeM93,
p. 1252] is wrong when j = i — 2). Therefore, from now on, we assume that scheme B
‘incorporates our suggested modifications of steps B4 and B5.

2.3 Double-index controlled binary partition
The following scheme comparcs both scanning indices ¢ and j in their inner loops.

Scheme C (Double-index controlled binary partition).

C1. [Initialize.] Set ¢:={+ 1 and j :=r.

C2. [Increase ¢ until 2; > v.] If i < j and 2; < v, increase ¢ by 1 and repeat this step.

C3. [Decrease j until 2; < v.] If i < j and z; > v, decrease j by 1 and repeat this step.
Ifi > j,set j:=1—1and go to C5.

C4. [Exchange.] Exchange z; « «;, increase i by 1, decrease 7 by 1 and return to C2.

C5. [Cleanup.] Set a := b := j. Exchange z; & z;.

Thanks to its tight index control, scheme C makes just n — 1 comparisons and at most
(n —1)/2 swaps at C4. Suprisingly, we have not found this scheme in the literature.

4

2.4 Lomuto’s binary partition

We now consider Lomuto’s partition [BeM93, Prog. 2], based on the arrangements

{v|z<v]£2v| ? J .]1}[3:<UJ.1'21)]~
l D T l P r

Scheme D (Lomuto’s binary partition).
D1. [Initialize.] Set i:=1+4+1and p:=1
D2. [Check if done.] If ¢ > 7, go to D4,
D3. [Exchange if necessary.] If @; < v, increase p by 1 and exchange z, < a;. Increasc ¢
by 1 and return to D2.
D4. [Cleanup.] Set a:=b:= p. Exchange z; « z,.
At the first sight, scheme D looks good: it makes just the n — 1 necessary comparisons.

However, it can make up to n — 1 swaps (e.g., vacuous swaps when v is greater than the
remaining elements, or n — 2 nonvacuous swaps for z{l:r] = [n—1,n,1,2,...,n —2]).

2.5 Comparison of bipartitioning schemes
2.5.1 Swaps for distinct keys

When the elements are distinet, we have strict inequalities in (2.2)-(2.5), j = i—11in (2.3)
and ¢ = b in (2.4). Distinguishing low keys z,, < v and high keys z,, > v, let t be the
number of high keys in the input subarray z[l + 1:a]. Then schemes B and C make the
same sequence of ¢ swaps to produce the arrangement

[v]z<v]a>v]
l [/ T

(2.6)

before the final swap z; < ,, and their operation is described by the instruction: until
there are no high keys in z[l + 1:qa], swap the leftmost high key in z[{ + 1:a] with the
rightmost low key in z[a + 1:7]. Thus schemes B and C make just the necessary ¢ swaps.
Scheme A acts in the same way if . > v at Al. If 2, < v at Al, let ¢, be the number of
low keys in z[a: 7]; in this low case, after the initial swap z; < z,, scheme A makes t; — 1
swaps, each time exchanging the leftmost high key in z[{ + 1: a — 1] with the rightmost low
key in z[a:r — 1], to produce the arrangement

o

! a T

before the final swap z, < x,. Since the munber of low keys in x[a+ 1: T] cquals £, we have
L =t+1if z, <wv, otherwise t; = t. Thus, relative to schemes B and C, scheme A makes
an extra swap when both z, and 2, are low. Note that schemes A, B and C never swap
the same key twice while producing the arrangements (2.6)—(2.7). In contrast, scheme D

5

may swap the same high key many times while producing the arrangement (2.6) (usually
different from that of B aud C). In fact scheme D makes exactly tp := a — I swaps; this is
the total munber of low keys. Thus the number of extra swaps made by scheme D relative
to B and C, tp — ¢, equals the number of low keys in the initial 2{! 4+ 1: a].

2.5.2 Swaps for equal keys

When equal keys accur, schemes A, B and C perform similarly to Sedgewick’s scheme of
[Sed77, Prog. 1]; in particular, thanks to stoppiug the scanning pointers on keys equal to
the pivot, they tend to produce balanced partitions. For instance, when all the keys are
equal, we get the following partitions: for scheme A, @ = |(I4+r—1)/2], b = a+14(n mod 2)
after [(n + 1)/2} swaps; for scheme B, a = [({ +7)/2],b=a + 1 — (n mod 2) after [n/2}
swaps; for scheme C, a = b= [(I +7)/2] after [n/2] swaps. In contrast, scheme D makes
1o swaps, but yields a = b = [, the worst possible partition.

3 Average-case analysis of bipartitioning schemes

In this section we assume that the keys to be partitioned are distinct and in random order;
since the schemes depend only on the relative order of the keys, we may as well assume that
they are the first n positive integers in random order. For simplier notation, we suppose
that / = 1 and r = n. It is easy to see that when the keys in z{{ + 1: 7] are in random
order, each scheme of §2 preserves randomness in the sense of producing z{l:a — 1] and
afa + 1:7) in which the low and high keys are in randon: order (since the relative orders of
the low keys and the high keys on input have no effect on the scheme).

3.1 Expected numbers of swaps for fixed pivot ranks

For a given pivot v := x|, let 7, denote the number of low keys in the array z[2: n); then
a = j, + 1 is the rank of v. Once j, is fixed at j (say), to compute the average number of
swaps made by each scheme, it’s enough to assume that the keys in 2[2:n] are in random
order; thus averages are taken over the (n — 1)! distinct inputs. Our analysis hinges on the
following well-known fact (cf. [Chv02]).

Fact 3.1. Suppose an array r[l 7] contains 7t =7 — [+ 1> 0 distinct keys, of which j
are low and 7o — j are high. If all the ! permutations of the keys are equiprobable, then
J(h — 1)/ is the average number of high keys in the first j positions.

Proof. List all the 7! key permutations as rows of an A! X # matrix. In each column,
each key appears (7 — 1)! times, so the number of high keys in the first 7 columns is
A — (n — 1)t dividing by 7! gives the average number 3(i — 7)/n. O

Lemma 3.2. Suppose the number of low key equals j. Let T]-A, T]B, TjC, TJD denote the
average numbers of swaps made by schemes A, B, C and D, cxcluding the final swaps.
Then i 1-) 3 .
jn—1-jn-— J
TA = . n >3, 3.1
J n—1 7‘L—2+’I1—1 "= (3.1a)

6

TA = 2) =2 .
e L , (3.1b)
—1-j)
TB TC (71)
n—-1 "~ (32)
T =J. (3.3)

Proof. By assumption, the dlrangements (2.6)-(2.7) involve l =1, a = 7+ 1,7 = n. The
results follow from suitable choices of I, ', 7 in Fact 3.1

For scheme A, assuming n > 3, let [=2, 7 =n— 1. Depending on whether z,, > v or
x, < v, scheme A produces cither (2.6) or (2.7) from the initial configurations

[v] [[z>v] o [v] [[;L-<:u|- (3.4)

1 a n 1 a n

For z,, > v, take 7 = j = a — 1; then the average number of high keys in 2[2:a] (i.e., of
swaps) equals j(n — 2 — j)/(n - 2). For z,, < v, take j = j — 1; in this case f; — 1, the
number of low keys in 2]a: n — 1], equals the number of high keys in z{2: j], so the average
value of #; equals (j—1)(n—1—3)/(n—2)+1. Since there are j low keys and n—1—j high
keys which appear in random order, we have z,, > v with probability (n — 1 — j)/(n — 1)
and z, < v with probability j/(n — 1). Adding the contributions of these cases multiplied
by their probabilities yields (3.1a). For n = 2, Al makes 1 swap if § = 1, 0 otherwise, so
(3.1b) holds.

For schemes B and C, take [= 2, # =n, j = j to get (3.2) in a similar way.

Since scheme D makes tp := a — | = j swaps, (3.3) follows. []

To compare the average values (3.1)—(3.3), note that we have 0 < j <n —1,

=1 o s, =)
monm-7 ™ L =T e

‘TB =0 and TA T,D =jifn=2 Thus TP < TA + 1 (with equality iff there are no high
keys) WhLI‘Ld.b TD is much greater than T} when there are relatively many low keys.

T].A = TjB 4 ifn >3, (3.5)

3.2 Bounding expected numbers of swaps for arbitrary pivots

From now on we assume that the pivot is selected by an arbitrary rule for which (once the
pivot is swapped into z; if necessary) each permutation of the remaining keys is equiprob-
able. Let T, T, Tc, Tp denote the average numbers of swaps made by schemes A, B,
C and D, exciuding the final swaps. Of course, these numbers depend on details of pivot
selection, but they can be bounded independently of such details. To this end we compute
the maxima of the average values (3.1)--(3.3)‘

Lemma 3.3, Let TA , TE , TC , TP . denote the mazima of Th, TB TC T,D over
0<j<n. Then
n_ (n—5)(nmod 2) iFn>s,
TA, =< 4 4(n—1)n—-2) (3.6)
1 if n<d,

-1 {(n+1)mod?2
T8 =7C =" - _
max max 4 4(n _ 1) b (3 7)

TP =n-1 (3.8)

max

Proof. The maximum of (3.1) is attained at j = [n/2] if n > 4, j = n—1 otherwise. The
maxinmum of (3.2) is attained at j = |[n/2}. The rest follows by simple computations. [J

Corollary 3.4. The average numbers of swaps Ta, Ti, Tc, Tp made by schemes A, B,
C, D are at most TA , T2, TS ., T2 for the values given in (3.6)~(3.8). In particular,

max’ max? max?

Ta, Ts and T are at most n/4 for n > 3.

3.3 The case where pivots are chosen via sampling
3.3.1 Pivots with fixed sample ranks

We asswme that the pivot v is selected as the (p + 1)th element in a sample of size s,
0<p<s<n Thus pand q:= s —1- p are the numbers of low and high keys in the
sample, respectively. Recall that v has rank j, + 1, where 7, is the total number of low
keys. We shall need the following two expected values for this selection:

Ej, = B(n,s,p):=(p+ D{(n+1)/(s +1) - 1, (3.9)
Juln —1—7)] _ p+ D@+ D) (n+1)(n+2) n
B {T} =T(n,s.p) = (s+1)(s+2) n-—1 Ta-1 (3.10)

Here (3.9) follows from [FIR75, Eq. (10)] and (3.10) from the proof of [MaR01, Lem. 1].

Theorem 3.5. For E(n,s,p) and T(n,s,p) given by (3.9)~(3.10), the average numbers
of swaps Ta, Tp, Tc, Tp made by schemes A, B, C, D are equal to, respectively,

max{n — 3,0} 1
T, = 1 2 - .)
A(n,s,p) e — 1}T(n, 5,p) + —7En,s,p), (3.11)
TB(’”’S»P) = TC(n»SJ?) :T(TL,S,[)), (312)
Ti(n,s,p) = E(n,s,p). (3.13)

Proof. Take expectations of the averages (3.1)-(3.3) conditioned on 3, = j, and use
(3.9)-(3.10); the two “max” operations in (3.11) combine the cases of n = 2 and n > 3. 0

The average values (3.11)—(3.13) may be compared as follows. First, in the classic case
of s=1(p=4q=0), we have Ta = n/6 if n > 3 (else Tx = 1/2), Tg = (n — 2)/6,
Tp = (n — 1)/2; thus scheme D makes about three times as many swaps as A, B and C.
Sceond, for nontrivial samples (s > 1) one may ask which choices of p are “good” or
“had™ witlt respect to swaps. For schemes B and C, the worst case occurs if p is chosen to
maximize (3.10) (where g+ 1 = s — p); we obtain that for all 0 < p < s,
(n+ (n+2) n n—1 s+ 1

T, .1 < nls . < H . =)
(n,s,p) < K(s) p— iy with £(s) ——4(5 T2 (3.14)

8

where the first inequality holds as equality only for the median-of-s choice of p = (s —1)/2,
and the second one iff s = n. Since Ty < Tp + 1, (3.14) yields Ta < (n + 3)/4, but we
already know that T4 < n/4 (Cor. 3.4). For any median-of-s choice with a fixed s, Ty
and Tp are asymptotically £(s)n, whereas E(n,s,p) = (n — 1)/2; thus scheme D malkes
about 1/2k(s) > 2 times as many swaps as A, B and C (with x(3) = 1/5, s(5) = 3/14,
£(7) = 2/9, k(9) = 5/22). On the other hand, for the extreme choices of p=0orp=s—1
which minimize (3.10) (then v is the smallest or largest key in the sample), Tx and Ty arc
asymptotically ns/(s + 1)(s + 2), whereas Tp is asymptotically n/(s + 1) for p = 0 and
ns/(s+ 1) for p = s — 1. Thus scheme D can’t improve upon A and B even for the choice
of p = 0 which minimizes (3.9).

3.3.2 Pivots with random sample ranks

Following the general frainework of {CHT02, §1], suppose the pivot v is selected by taking
a random sample of s elements, and chioosing the (p + 1)th element in this sample with
probability 7,, 0 < p < s, Z;;(l, 7, = 1. In other words, for p, denoting the number
of low keys in the sample, we have Prip, = p] = m,. Hence, by viewing (3.9)-(3.13) as
expectations conditioned on the event p, = p, we may take total averages to get

Ej, = E[E(n,s,p.)] = E(n,s) == (Ep, + 1}{(n+ 1)/(s + 1) — 1, (3.15)
B {Mi_ll“_ﬂ)} = B[T(n,s,p)] =T(n,s) = 3 m,T(ns,p), (3.16)

and the following extension of Theorem 3.5.

Theorem 3.6. For E(n,s) and T(n,s) given by (3.15)—~(3.16), the average numbers of
swaps Ta, Ts, Tc, Tp made by schemes A, B, C, D are equal to, respectively,

Ty(n, 5) = %‘HT(H,)+ ﬁi—lE(n, 9, (3.17)
Ti(n, s) = Tc(n, s) = T(n, s), (3.18)
T(n,s) = E(n, s). (3.19)

Note that in (3.15)-(3.16), we have Ep, = Zocpesmpp < 8 — 1 and

T(n,s) = i(s) (n +n1)_(nl+ 2) _ ni [with R(s) = O<Z .Wi'%z%%’ (3.20)
where /(s) < x(s) (cf. (3.14)), and &(s) = &(s) ff m, = 1 for p = (s — 1)/2. Thus again

Ta and T are asymptotically i(s)n, whereas Ty can be much larger.

As an important example, we consider Tukey’s ninther, the median of three elements
eacl of which is the median of threc elements [BeM93]. Then s = 9 and 7, = 0 except for
7y = 75 = 3/14, w4 = 3/7 [CHT02, Dur(3], so E(n,9) = (n — 1)/2 and A(9) = 86/385 =
0.223. Thus, when the ninther replaces the median-of-3, T and Tj increase by about 12
percent, getting closer to n/4, whercas Tp stays at (n — 1)/2.

9

4 Using sample elements as sentinels

The schewes of §2 can be tuned [MaR01, §7.2] when the pivot v is selected as thie (p+1)th
clement in a sample of size s, assuming 0 <p<s<nandg:=s—1-—p > 0.

First, suppose the p sample keys < v are placed first, followed by v, and the remaining
¢ sample keys > v are placed at the end of the array z[{:+]. Then, for [:=1+pand
7= — g, we only need to partition the array xz[l: 7] of size A := n — s + 1. The schemes
of §2 are modified as follows.

In step Al of scheme A, set i :=1{and j:=7 + 1, in step A5 set a:=j, b:=1— 1 and
exchange 27 < x,;. This scheme makes 7 4 1 comparisons, or just 7 if 4 = j at A4, The
same scheme results from scheme B by replacing [, r with [, 7, B4 with A4, and omitting
the test “ < +” in B2. Similarly, I, 7 replace I and 7 in schemes C and D, which make
7 — 1 comparisons.

To extend the results of §3 to these modifications, note that for 7 = 1 these schemes
niake no swaps except for the final ones. For A > 1, schemes A, B and C swap the same
keys, if any. Therefore, under the sole assumption that the keys in x[l 4 1:7] are distinct
and in random order, Lemma 3.2 holds with (3.1)—(3.3) replaced by

A __ B __ c_(.j—T’)(n~1—q—.7)
=T =1 = n—s

ki ; and T]-D =j—p, (4.1)

using [=1+1,7=1 , J=j—pin Fact 3.1; further, Lemina 3.3 and Corollary 3.4 hold with
n replaced by 71, (3.6) omitted and A, = T8, in (3.7). Next, (3.9)-(3.10) are replaced
by

Ejy —p=FE(n,s,p):=(p+1)(n-s)/(s+1), (4.2)
(G P 1—g=3)] DD, i
E - =T(n,s,p) = (s+1)(s+2)(1), s<mn, (4.3)

where (4.3) is obtained similarly to (3.10) [MaR01, §7.2]. In view of (4.1)-(4.3), Theorem
3.5 holds with £(n,s,p), T(n,s,p) replaced by E(n, s,p), ’f"(n,s,p), (3.11) omitted and
Ta(n, s,p) = Ta(n,s,p) in (3.12). Finally, (3.14) is replaced by
T(n,s,p) < k(s)(n—s—1) < %—1— with k(s) := 4(53—:12)-, (4.4)

where the equality holds iff p = (s — 1)/2, in which case £(n,s,p) = (n — s)/2.

Randomness may be lost when the sample keys are rearranged by pivot selection, but
it is prescrved for the median-of-3 selection with p = ¢ = 1. Then the sample keys usually
are g, g1, o (after exchanging .,y with the middle key 2y ¢4ry/2))- Arranging the sample
according to Figure 4.1 takes 8/3 comparisons and 7/6 swaps on average for distinet keys.
(These counts hold if, for simpler coding, ouly the left subtrce is used after exchanging
a « ¢ when @ > ¢; other trees [BeM93, Prog. 5] take 3/2 swaps for such simplifications.)

Even if pivot selection doesn’t rearrange the array (except for placing the pivot in z;),
scheme A may be simplified: in step Al, set 7 :=1 and j := 7+ 1; in step A5 set a := 7,
b =14~ 1 and exchange x; < ;. The same scheme results from scheme B by replacing
B4 with A4, and omitting the test “¢ < »” in B2. This simplification is justified by the

10

Lagbgel IaSc<b| [b§c<a’ |c<b<a]

Figure 4.1: Dccision tree for median of three

presence of at least one key > vin z [/ +1:7], wluch stops the scanning index 7. Hence the
msults of §3 remain valid (with (3.1), (3.5), (3.6), (3.11), (3.17) omitted, T} = T} in (3.2),
=178 in (3.7), Ta(n, s,p) = Tu(n, s,p) in (3 12), Ta(n, 8) = Tp(n, $) in (3.18)).

n 1 ax max

5 Tripartitioning schemes

While bipartitioning schemes divide the input keys into < v and > v, tripartitioning
schemes divide the keys into < v, = v and > v. We now give ternary versions of the
schemes of §2, using the following notation for vector swaps (cf. [BeM93]).

A vector swap denoted by z[a: b] « z[b+1: ¢] means that the first d := min(b+1—a, c—b)
elements of array z{a: ¢] are exchanged with its last d elements in arbitrary order if d > 0;
e.g., we may exchange Z,; & To—; for 0 <4 < d, or Zys; © Te—ay144 for 0 <i < d.

5.1 Safeguarded ternary partition

QOur ternary version of scheme A employs the following “strict” analogs of (2.2)-(2.4):

[z=v]a<v] 7 Tz>v io=v]
! P i g q T

(6.1)

L{:u{z<1{]x:v—ﬁ‘>ﬂlzzvl, (5.2)
l P 7 toq r

II<U|3;:'UIJ,‘>’U|. (5.3)

14 a b r

Scheme E (Safeguarded ternary partition).

E1. {Initialize.] Set i:=1, p:=i+1,j:=r and ¢:=j— 1. If v > 2, exchange z; & z;
and set p:=1; else if v < @y, set ¢ 1= j.

E2. [Increase ¢ until z; > v.] Increase ¢ by 1; then if @; < v, repeat this step.

E3. [Decrease j until z; < v.] Decrease j by 1; then if a; > v, repeat this step.

11

E4. [Exchange] (Here x; < v < z;.) If ¢ < j, exchange z; < xj; then if z; = v, exchange
a; & 2, and increase p by 1; if ; = v, exchange z; < z, and decrease ¢ by 1; return
to BE2. If i = j (so that 2; = »; = v}, increase ¢ by 1 and decreasc j by 1.

E5. [Cleanup.] Set a :=[4+j—p+1and b:=r—~¢+7— 1. Exchange z[l:p — 1] — z[p: j]
and xfi: q] & z{g + 1:r].

Similarly to scheme A, scheme E makes n or n 4+ 1 key comparisons, and at most n/2
index comparisons at E4. Let nc, n=, n. denote the numbers of low, equal and high keys
(here j—p+1,b—a+ 1, g—i+1). Step E4 makes at most n/2 — 1 “usual” swaps
2 x5, and n= — 1 or n_ — 2 “equal” swaps when 2; = v or x; = v. Step E5 makes
min{p — I, n<} + min{r — ¢,n-} swaps; in particular, at most min{n., n< + n.} swaps.

5.2 Single-index controlled ternary partition
Our ternary version of scheme B also employs the arrangements (5.1)—(5.2).

Scheme F (Single-index controlled ternary partition).

F1. [Initialize.] Set ¢:=1{, p:=i+1,j:=r+land ¢g:=j— L

F2. [Increase ¢ until z; > v.] Increasc ¢ by 1; theu if ¢ < 7 and z; < v, repeat this step.
F3. [Decrease 7 until z; < v.] Decrease j by 1; then if 2;; > v, repeat this step.

F4. [Exchange.] (Here z; <wv < u;.) If 4 < j, exchange z; < z;; then if z; = v, exchange

z; & 1z, and increase p by 1; if 2; = v, exchange x; < z, and decrease ¢ by 1; return
to F2. If ¢ = j (so that z; = z; = v), increase ¢ by 1 and decrease j by 1.

F5. {Cleanup.] Sct a:=1+j—p+1and b:=r—qg+i— 1. Exchange z[l:p— 1] © z[p: j]
and i ¢] & z{g+ L]

The comparison and swap counts of schemne F are similar to those of scheme E; in
particular, step F5 makes min{p—{,nc} +min{r — ¢, n.} swaps, whete p—{+7—¢ =n-
or n- — 1. In contrast, a similar schemne of Sedgewick [Sed98, Chap. 7, quicksort] swaps all
the ne equal keys in its last step. More importantly, Sedgewick’s scheme needn’t produce
true ternary partitions (e.g., for z = [0,1,0] and v = 0, it doesn’t change the array).

5.3 Double-index controlled ternary partition

We now present our modification of the ternary scheme of [BeM93], described also in

[BeS97, Prog. 1] and [Knu98, Ex. 5.2.2-41]. It employs the loop invariant (5.1), and the

cross-over arrangement (5.2) with j = ¢ — 1 for the swaps leading to the partition (5.3).

Scheme G (Double-index controlled ternary partition).

G1. [Initialize.] Set ¢ :=p =1+ 1and j:=q:=7.

G2. [lncrease ¢ until @; > v.] If ¢ < j and @7 < v, increase ¢ by 1 and repcat this step. If
i < jand x; = v, exchange x, < x;, ncrease p and ¢ by 1, and repeat this step.

12

I3. [Decrease j until ©; # v.] If i < j and z; = v, decrease j by 1 and repeat this step.
Set q:=j. Ifi=j,seti:=j+1ifa; <w, j:=14—1 otherwise, and go to [12.

I4. [Decide which steps to skip.] If z; < v and z; < v, go to I5. If 2; > v and z; > v, go
to I6. If z; > v and z; < v, go to I7. If z; < v and z; > v, go to I8.

I5. [Increasc i until z; > v.] Increase ¢ by 1. If i < j and z; < v, repeat this step. If
i< j and z; = v, exchange z, < x;, increase p by 1, and repeat this step. (At this
point, 2; < wv.) If i < 7, go to I7. Set i := j 4 1 and go to 112.

16. [Decrease j until x; < v.] Decrease j by 1. If ¢ < j and z; > v, repeat this step. If
i < j and z; = v, exchange z; «— z,, decrease ¢ by 1, and repcat this step. (At this
point, z; > v.) If i = j, set j := 1 — 1 and go to I12.

I7. [Exchange.] (At this point, ¢ < 7 and z; > v > z;.) Exchange z; & z;.

I8. [End of first stage.] (At this point, z; < v < z; and p <i < j < q.)

I9. [Increase ¢ until z; > v.] Increase 7 by 1. If z; < v, repeat this step. If z; = v,
exchange z, < z;, increase p by 1, and repeat this step.

I10. [Decrease 7 until z; < v.] Decrease j by 1. If z; > v, repeat this step. If z; = v,
exchange z; < 14, decrease g by 1, and repeat this step.

I11. [Exchange.] If ¢ < j, exchange z; < z; and return to I9.

I12. [Cleanup] Set a:=1+7~pand b:=r — g+ j. Exchange z[l:p ~ 1] & z[p: j] and
zli g & zlg + 1:7).

Scheme [makes n + 1 comparisons, or just n — 1 if it finishes in the first stage before
reaching step I9. The two extraneous comparisons can be eliminated by keeping the
strategy of scheme G in the following modification.

Scheme J (Extended double-index controlled ternary partition).
Use scheme [with steps I8 through 111 replaced by the following steps.

I8. [End of first stage.] Increase i by 1 and decrease j by 1.

19. [Increase ¢ until z; > v.] If ¢ < j and z; < v, increase 1 by 1 and repeat this step. If
¢ < j and z; = v, exchange z, < 2;, increase p and ¢ by 1, and repeat this step.

I10. [Decrease j until #; < v.] If { < j and 2; > v, decrease j by 1 and repeat this step.
Ifi < j and x; = v, exchange z; < ,, decrease j and ¢ by 1, and repeat this step.
Ifi > 4, set j:=4— 1 and go to I12.

I11. [Exchange.] Exchange z; < =, increase i by 1, decrease j by 1, and return to I9.

Schemes [and J are equivalent in the scuse of producing identical partitions via the
sawne sequences of swaps. Further, barring vacuous swaps, scheme G is equivalent to
schemes I and J in the following cases: (a) all keys are equal; (b) z, # v (c.g., the keys are
distinet); (c) there is at least onc high key > v. In the remaining degenerate case where
the keys aren't equal, z,, = v and there are no high keys, scheme G produces ¢ = r 41 and
7 =r on the first pass, whereas step I3 finds j < r, and either 13 or I5 produce i = j + 1
(i.e., scheme G swaps r — j wmore equal keys to the left end).

15

Figure 5.1: Decision tree for median of three

in F2. Similarly, in step G1 of scheme G, set 4 1= p and 7 := q; in step G5 replace I, r by [,
7. Steps 11 and 111 of schemes I through L are modified in the same way. Finally, in step
H1 of scheme H set 7 :=p and p := p := i — 1; in step H2 replace r by ¢; in step H4 sct
a:=1+p—p,b:=p—g+7 and exchange z[l: o] & z[f+ 1:p} and zlp+ 1: ¢] & z[g+ 1: 7).

When the keys are distinct, we have [= 4+p, p=_+ L and ¢ =7 =r —§ in (5.6), so
that schemes E, F, G, H are equivalent to schemes A, B, C, D as modified in §4 (where p,
q correspond to the current p, §).

For the median-of-3 selection (p = ¢ =1, p =1+ 2, ¢ =7 — 1), we may rearrange the
sample keys 2, 711, 2, and find [, ¥ according to Figure 5.1. (For simplicity, as with Fig,
4.1, the left subtree may be used after exchanging ¢ — ¢ when a > ¢.)

As in §4, even if pivot selection doesn’t rearrange the array except for placing the pivot
in z;, scheme E may be simplified by replacing step E1 with step F1; the same scheme is
obtained from scheme F by owitting the test “¢ < r” in F2.

6 Experimental results

6.1 Implemented algorithms

We now sketch the algorithms used in our experiments, starting with a nonrecursive version
of quickselect that employs a random pivot and one of the ternary schemes of §5.

Algorithm 6.1 (QUICKSELECT(z,n, k) for sclecting the kth smallest of z([1:n]).
Step 1 (Initialize). Set [:=1 and r :=n.

Step 2 (Handle small file). If I < r, go to Step 3. If { > r, set k- :=r+1and k. :=1—-1.
If i =r, set k_:=ky :=k. Return.

Step 3 (Sclect pivot). Pick a random integer ¢ € (I, 7], swap x; « z; and set v 1= ;.

Step 4 (Partition). Partition the array z{l:r] to produce the arrangement (5.3).

Step 5 (Update bounds). If a < k,set {:=b+ 1. If k < b, set 7:=a — 1. Go to Step 2.
Steps 2 and 5 ensure that on exit z[l:h_ — 1] < zlk_:ky] < @fky + Linj, ko <k < kg

The median-of-3 version works as follows. If =7 — 1 at Step 2, we swap z; < z, if
x> X, set ko = land &y = if @y = x,, k- := ky := k otherwise, and return. At

17

Step 3, we swap 41, ©, with random keys in z[l + 1: 7] and z[l + 2: 7], respectively. After
sorting the sample keys 2y, T141, 2, and finding I, 7 for (5.6) according to Fig. 5.1, we set
v:= zp41. Then Step 4 uses one of the modified ternary schemes of §5.7.

When a binary scheme is employed, we omit £ and k,, use Fig. 4.1 instead of Fig.
5.1, and the modified schemes of §4 with [:= [+ 1, 7 := 7 — 1 for the median-of-3.

Our implementations of QUICKSELECT were programmed in Fortran 77 and run on a
notebook PC (Pentium 4M 2 GHz, 768 MB RAM) under MS Windows XP. We used a,
double precision input array z[1:n], in-line comparisons and swaps; future work should
test tuned comparison and swap functions for other data types (cf. {[BeM93]).

6.2 Testing examples

We used minor modifications of the input sequences of [Val00], defined as follows:

random A randomn permutation of the integers 1 through n.

mod-m A random permutation of the sequence ¢ mod m, i = 1:n, called binary (ternary,
quadrary, quintary) when m = 2 (3, 4, 5, respectively).

sorted The integers 1 through n in increasing order.
rotated A sorted sequence rotated left once; i.e., (2,3,...,n,1).
organpipe The integers (1,2,...,n/2,n/2,...,2,1).

ma3killer Musser’s “median-of-3 killer” sequence with n =47 and k =n/2:

12 3 4 ... k-2 k-1%k k+1 ... 2k—-2 2k—1 2k
1 k+1 3 k+3 ... 2k-3 k-1 2 4 ... 2k-2 2k—1 2)

twofaced Obtained by randomly permuting the elements of an m3killer sequence in po-
sitions 4|logy n| through n/2 — 1 and n/2 + 4{log,n] — 1 through n - 2.

For each input sequence, its (lower) median element was selected for k := [n/2].

These input sequences were designed to test the performance of selection algorithms
under a range of conditions. In particular, the binary sequences represent inputs con-
taining many duplicates [Sed77]. The rotated and organpipe sequences are difficult for
many implementations of quickselect. The ma3killer and twofaced sequences are hard for
implementations with median-of-3 pivots (their original versions [Mus97] were modified to
become difficult when the middle element comes from position & instead of k + 1).

6.3 Computational results

We varied the input size n fron1 50,000 to 16,000,000. For the random, mod-m and twofaced
sequences, for each input size, 20 instances were randomly gencrated; for the deterministic
sequences, 20 runs were made to measure the solution time.

Table 6.1 summarizes the performance of four schemes used in QUICKSELECT with
median-of-3. The average, maximum and minimun: solution times are in milliseconds (in

18

Table 6.1: Performance of schemes A, E, G, I with median-of-3.

Scheme Sequence Size Time [msec] Comparisons [n] Pay Swg Shg Sav
n avg max win avg max_ min [lnn] [n] [n] [Cavg
A random 8M 252 360 170 259 3.96 178 1.64 055 0.00 0.21
16M 494 641 371 2.57 346 1.93 1.57 0.53 0.00 0.21
organpipe 8M 173 250 111 2.64 4.10 177 153 0.57 0.00 0.22
16M 355 460 270 2.61 3.49 194 1.62 0.60 0.00 0.23
binary 8M 254 271 250 2,73 292 268 186 1.00 0.00 0.37
16M 506 521 500 2,70 2.79 268 187 100 0.00 0.37
ternary 8M 246 321 171 244 327 175 133 0.82 0.00 0.34
16M 452 620 360 2.22 311 175 1.29 076 0.00 0.34
quadrary 8M 277 340 230 278 3.44 226 183 0.86 0.00 0.31
16M 537 671 460 2.65 3.37 226 185 0.84 0.00 0.32
quintary 8M 231 350 180 2.31 356 1.85 134 0.69 0.00 0.30
16M 486 671 330 244 349 167 136 071 0.00 0.29
E random 8M 284 391 201 259 396 178 164 0.55 0.00 0.21
16M 550 711 411 257 346 193 157 0.53 0.00 0.21
organpipe 8M 232 321 120 273 527 184 1.54 057 0.00 0.21
16M 421 571 320 2.92 4.62 190 158 0.59 0.00 0.20
binary 8M 205 231 170 1.28 1,50 1.00 0.10 141 0.61 1.11
16M 381 471 350 1.13 1,50 1.00 0.08 1.19 0.46 1.06
ternary 8M 259 281 240 1.47 2.00 1.00 0.12 137 037 0.93
16M 505 500 480 1.37 200 1.00 0.0 125 0.28 091
quadrary 8M 262 331 210 1.60 250 1.00 0.12 133 0.28 0.83
16M 559 661 410 1.66 225 1.00 013 1.35 031 0.81
quintary 8M 283 370 210 1.52 240 1.00 013 1.14 0.14 0.75
16M 582 731 420 1.55 240 1.00 0.14 1.13 0.14 0.73
G random 8sM 301 411 2100 259 396 1.78 1.64 055 0.00 0.21
16M 587 761 430 2.57 346 193 157 0.53 0.00 0.21
organpipc 8M 186 250 110 2.88 4.20 1091 1.55 0.61 0.00 0.21
16M 378 511 270 277 393 197 159 0.59 0.00 0.21
binary 8M 293 331 250 1.27 1.50 1.00 0.10 127 0.27 1.00
16M 549 671 500 1.12 150 1.00 0.08 112 0.13 1.00
ternary 8M 340 420 250 1.47 2.00 1.00 0.12 121 0.10 0.82
16M 646 811 501 1.53 2.00 1.00 0.11 1.26 0.10 0.82
quadrary 8M 311 450 220 1.42 225 1.00 0.12 1.02 0.07 0.72
16M 665 972 440 1.55 250 1.00 013 1.13 0.09 0.73
quintary 8M 319 451 220 147 200 100 0.13 096 0.07 0.65
16M 644 1021 440 1.61 280 1.00 0.13 097 0.04 0.60
I random 8M 275 381 190 259 396 178 1.64 055 0.00 0.21
16M 536 681 391 257 346 193 1.57 0.53 0.00 0.21
organpipc 8M 183 240 110 2.88 4.20 191 1.55 0.61 0.00 0.21
16M 357 461 260 277 3.93 197 159 059 0.00 0.21
binary SM 245 261 230 1.27 150 1.00 0.10 1.00 0.00 0.78
16M 500 530 480 1.12 150 1.00 0.08 1.00 0.00 0.89
ternary 8M 323 391 230 1.47 2.00 100 0.12 1.11 0.00 0.76
16M 620 761 470 1.53 2.00 1.00 0.11 1.16 0.00 0.76
quadrary SM 292 440 200 143 225 1.00 0.2 095 0.00 0.66
16M 630 922 420 155 250 1.00 0.13 1.04 0.00 0.67
quintary 8M 207 431 200 147 200 100 013 0.89 0.00 0.60
16M 614 1042 411 1.61 2.80 1.00 0.13 0.93 0.00 0.58

19

general, they grow linearly with n, and can’t be measured accurately for small inputs;
hence only large inputs are included, with 1M := 10%). The comparison counts are in
multiples of n; e.g., column seven gives Cm,g/n, where Ciyy is the average number of
comparisons made over all instances. Further, P,,, is the average number of partitions in
units of Inn, S,y and Sf,’vg are the average nimnbers of all swaps and of vacuous swaps in
units of n, and the final column gives the average number of swaps per comparison. Notc
that for random inputs with distinct keys, quickselect with median-of-3 takes on average
2.75n + o(n) comparisons and 2 nn + o(n) partitions [Grii99, KMP97}, and thus about
0.55n swaps when there are 1/5 swaps per comparison; e.g., for schemmes A, E and G.

For each scheme (and others not included in Tab. 6.1}, the results for the twofaced and
m3killer inputs were similar to those for the random and organpipe inputs, respectively.
The sorted and rotated inputs were solved about twice faster than the random inputs.

Recall that in tuned versions, scheme B coincides with A and scheme F with E.

The run times of schemes C and J were similar to those of schemes A and I, respectively;
in other words, the inclusion of pointer tests in the key comparison loops didn’t result in
significant slowdowns. Also their comparison and swap counts were similar,

Due to additional tests for equal keys, the ternary schemes were slower than their
binary counterparts on the inputs with distinct keys. Yet the slowdowns were quite mild
(e.g., about ten percent for scheme E vs. A) and could be considered a fair price for being
able to identify all keys equal to the selected one. On the inputs with multiple equal keys,
the numbers of comparisons made by the binary schemes A and C were similar to those
made on the random inputs, but the numbers of swaps increased up to n. In contrast, the
ternary schemes E and G took significantly fewer comparisons and more swaps. Scheme E
produced the largest numbers of swaps, but was still faster than schemes G and J, whereas
scheme J was noticeably faster than scheme G due to the elimination of vacuous swaps.

On the inputs with distinct keys, Lomuto’s scheme D was about sixty percent slower
than scheme A, making about half as many swaps as comparisons (cf. §§3.3.1 and 4). On
the inputs with multiple equal keys, scheme D was really bad: once the current array
‘z[l: 7] contains only keys equal to the kth smallest, each partition removes two keys, so
the running time may be quadratic in the number of equal keys. For instance, on a binary
input with k = n/2, at least n{n + 20}/16 — 2 comparisons are used (if the first v = 1, we
get [=1, r =k, and then [increases by 2 while r = k; otherwise the cost is greater).

Our results were similar while using the classic random pivot instead of the median-of-3.
Then, for random inputs with distinct keys, quickselect takes on average 2(1+1n 2)n+o(n)
comparisons [Knu98, Ex. 5.2.2-32], and thus about 0.564n swaps when there are 1/6 swaps
per comparison. Hence, not suprisingly, the running times and comparison counts on the
inputs with distinct keys increased by between 14 and 20 perceut, but all the schemes had
essentially the same relative merits and drawbacks as in the median-of-3 case above.

References

[BeM93] J.L. Bentley and M. D. McIlroy, Engineering a sort function, Software-Practice and Experience
23 (1993) 1249-1265.
[Ben98} J. L. Bentley, Programming Pearls, Addison-Wesley, Reading, MA, 1998.

20

[Bes97]

[BFP*72)
[CHTO2)
{Chv02]
[CLRYO]
[CLRS01]

[Dij76]
[Dur03]

[FIR7S)
[Grii99]

[Hoab1a]
[Hoa61b]
{Hoa62]

[HwT02]

[KMP97|
[Knu97
[Knu9g}
[MaR01]
[Mus97]
[Pre00]
[Sed77)
[Sed78]
[Sedos]
[Val00]

[Weg85]

J. L. Bentley and R. Sedgewick, Fust algorithms for sorting end scarching strings, in Proceed-
ings of the 8th Annual ACM-SIAM Symposimn on Discrete Algorithins (SODA'97), SIAM,
Philadelphia, 1997, pp. 360~-369.

M. R. Bluni, R. W. Floyd, V. R. Pratt, R. L. Rivest and R. E. Tarjan, Time bounds for
selection, J. Comput. Systemn Sci. 7 (1972) 448-461.

H.-H. Chern, H.-K. Hwang and T.-H. Tsai, An asymptotic theory for Cauchy-FEuler differential
equations with applications to the analysis of algorithms, J. Algorithms 44 (2002) 177-225.
V. Chvital, Average-case analysis of quicksort, Lecture notes, Dept. of Computer Science,
Rutgers Univ., New Brunswick, 2002.

T. H. Cormen, C. E. Leiserson and R. L. Rivest, Mntroduction to Algorithms, MIT Press,
Cambridge, MA, 1990.

T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to Algorithms, sccond
cd., MIT Press, Cambridge, MA, 2001.

E. W. Dijkstra, A Discipline of Programming, Prentice-Hall, Englewood Cliffs, NJ, 1976.

M. Durand, Asymptotic analysis of an optimized quicksort algorithm, Information Proc. Letters
85 (2003) 73-77.

R. W. Floyd and R. L. Rivest, Ezpected time bounds for selection, Comm. ACM 18 (1975)
165-172.

R. Griibel, On the median-of-k wersion of Hoare’s selection algorithm, Theor. Inform, Appl.
33 (1999) 177-192.

C. A. R. Hoare, Algorithm 63: PARTITION, Comm. ACM 4 (1961) 321-322.

., Algorithm 65: FInD, Comm. ACM 4 (1961) 321-322,

o, Quicksort, Computer J. 5 (1962) 10-15.

H.-K. Hwang and T.-H. Tsai, Quickselect and Dickman function, Combinatorics, Probability
and Computing 11 (2002) 353-371.

P. Kirschenhofer, C. Martinez and H. Prodinger, Analysis of Hoare’s FIND algorithm with
median-of-three partition, Random Stuctures and Algorithms 10 (1997) 143-156.

D. E. Knuth, The Art of Computer Progranming. Volume I: Fundamental Algorithms, third
cd., Addison-Wesley, Reading, MA, 1997.

, The Art of Computer Programming. Volume III: Sorting and Secarching, second ed.,
Addison-Wesley, Reading, MA, 1998.

C. Martinez and S. Roura, Optimal sampling strategies in quicksort and quickselect, SIAM J.
Comput. 31 (2001) 683-705.

D. R. Musscr, [ntrospective sorting and selection algorithms, Software-Practice and Experience
27 (1997) 983--993.

B. R. Preiss, Data Structures and Algorithms with Object-Oriented Design Patterns in Java,
John Wiley & Sons, Chichiester, 2000.

R. Sedgewick, Quicksort with equal keys, SIAM J. Comput. 6 (1977) 240-287.

, Implementing quicksort programs, Comm. ACM 21 (1978) 847-857.

, Algorithms in C++, Parts 1-4: Fundamentals, Data Structure, Sorting, Searching,
third ed., Addison-Wesley, Reading, MA, 1998,

J. D. Valois, Introspective sorting and selection revisited, Software-Practice and Experience 30
(2000) 617-638.

L. M. Wegner, Quicksort for equal keys, IEEE Trans. Computers C-34 (1985) 362-367.

21

