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Abstract. The paper is concerned with the unique global solvability of a three-dimensional
(3 — D) nonlinear thermoelasticity system arising from the study of shape memory ma-
terials. The system consists of the coupled evolutionary problems of viscoelasticity with
nonconvex elastic energy and nonlinear heat conduction with mechanical dissipation.
The present paper extends the previous 2 — D existence result of the authors {7} to 3 ~ D
case. This goal is achieved by means of the Leray-Schauder fixed point theorem using
technigue based on energy arguments and DeGiorgi method.
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1. Introduction

In the present paper we study the issue of existence of solutions to a three-dimensional
(3— D) nonlinear thermoelasticity system arising as a model of structural phase transitions
in shape memory materials. The system consists of the coupled evolutionary problems of
viscoelasticity with nonconvex elastic energy and nonlinear heat conduction with mechan-
ical dissipation.

In the previous paper [7] we have investigated such system in 2 — D case applying
the Leray-Schauder fixed point theorem and the technique based on energy methods. The
main difficulty we have been faced with comes from the nonlinear coupling of mechanical
and thermal effects. The key issue to solve the problem has been concerned with deriving
Leo-norm and then Holder-norm estimates for temperature.

In 2 — D case this has been accomplished with the help of technical energy estimates
and theorems of Sobolev’s imbeddings. In 3 — D case such procedure is not sufficient and
additional methods are required.

The goal of the present paper is to extend the existence result of [7] to 3 — D case.
This is achieved by combining the procedure of recursive improvement of energy estimates
with DeGiorgi method employed to derive Hélder-norm estimate on temperature. The
existence result applies to 2 — D and 3 — D problems.

The place of our study in the present theory of thermoviscoelasticity systems with non-
convex energy is discussed in the previous paper [7].
'The problem under consideration has the following form:

Wy — vQuy + ?Q"’u =V-Fe(e,0)+b in Q7 =Qx(0,T),

(1'1) u|t=0=ug, u,ltzozul in Q,
u=0 Qu=0 on §T=25x(0,T),
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coe, )8, — koA = 0F pe(£,8) i €0+ v(Ae) e +g in QT

(1.2) 8],_, = 6o in Q,
n-V8=0 on ST,

where

(1.3) co(€,8) = cy — OF g9(e, 8).

Here Q C R™, n = 2 or 3, is a bounded domain with a smooth boundary S, representing
the material points of a solid body with coustant mass density p = 1; T > 0 is an arbitrary

fixed time.
The vector field u : 7 — R”™ is the displacement and 6 : QT — Ry is the absolute

temperature. The second order tensors
1
e=¢e(u)= é(V'u. +(Vu)T) and ey =e(u,) = E(Vm +(Vu,)7)

denote respectively the linearized strain and the strain rate.

The elastic energy F(e,6) is a multiwell function of € = (g;;) with the shape strongly
depending on 8; a physical example is given below.

The fourth order tensor A = (A4;j11) represents the elasticity tensor given by

e(u) — Ae(u) = Mre(u) + 2pe(u),

where I = (6;;) and A, p are Lamé constants with values within elasticity range (see
assumption (A2)). Furhermore, Q stands for the second order linear elasticity operator
defined by

u Qu =V (Ae(u)) = pAu+ A+ p)V(V - u).

Correspondingly, the operator Q2 = QQ is given by
u - Q¥u = V. (Ae(Qu)) = pA(Qu) + (A + p)V(V - (Qu)).

The remaining quantities in (1.1), (1.2) have the following meaning: co(e, 8) is the specific
heat coefficient, ¢,, ko, and s are positive numbers representing respectively thermal
specific lieat, heat conductivity, viscosity and strain-gradient energy coeflicient. The ficlds
b: 927 — R" and ¢ : 9T — R are external body forces and heat sources.

System (1.1), (1.2) represents balance laws of linear momentum and energy. The associated
free energy density has the Landau-Ginzburg form

(1.4) F(e(u), Ve(u),8) = —c,Blog 6 + F(e(u), 8) + —’g’—|Qu|",

where the three terms represent respectively thermal, elastic and strain-gradient energy.
For physical background of the model we refer to {7}, [8].
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To motivate the structural assumptions of our existence result we recall here the model of
the elastic energy for 3 — D CuAlNi shape memory alloy, proposed by Falk-IKonopka {4]:

2

3 5
(1.5) Fe,0) =Y al(0)J2(e) + D al(6)T(e) + ) al(6)TF(e),
1=1 =1

i=1

where Jf(e) are crystal invariants given by k-th order polynomials in £;5, and a¥(6) are ex-
perimentally determined coefficients which in the vicinity of phase transition temperature

8. > 0 have the form

(1.6) af(0) = af +a5(6-0.), k=24 a}(8)=qf,
where of, &F are constants, with of > 0.
We note that (1.5) generalizes the well-known Falk model for 1 — D shape memory alloy

F(E,G) = (!1(6 — 9,:)52 —_ (:!254 —+ (Y;Es,

where a; > 0, 6, > 0 are constant parameters.

Similarly as in 2 — D case studied in [7] our main structure hypotheses concern the
function F(e,8). We require the non-negativity of F(e,6) and its concavity with respect
to 8. Such requirements are obviously satisfied by the model (1.5), (1.6).

We point on two important from mathematical point of view consequences of the concavity
assumption. Firstly, in view of definition (1.3), it implies that the specific heat coefficient
remains bounded from below by positive constant ¢, (see (2.4)).

Secondly, it implies that the elastic part of the internal energy is nonnegative (see (2.7))
what is of importance in derivation of the first energy estimate.

We do not require any convexity assumptions on F' with respect to &, only growth condi-
tions which are imposed by Sobolev’s imbeddings.

The most restrictive is the condition on the growth of F with respect to 6. From the
technique used to get temperature estimates (see Lemma 4.3) it follows that 6-growth
exponent s has to satisfy condition s < 3/4if n =2 and 5 < 2/3ifn = 3.

At this point we stress that in 2 — D case a technically different method applied in [7] has
admitted less restrictive condition s < 7/8.

Clearly, in view of growth conditions our existence result has physical relevance only in
a finite range of strains and temperatures.

We add also that to remove the growth condition s < 1 and to admit the linear growth of
F in 6 seems to be a serious niathematical obstacle.

The content of the paper is as follows.

In Section 2 we present the assumptions and state the main results for problem (1.1),
(1.2) on global in time existence and unigueness of solutions in 2 — D and 3 — D cases.
The proof of the existence theorem is presented in Sections 3 + 6.

In Section 3 we prepare the setting for the application of the Leray-Schauder fixed point
theorem. In particular, following [8] and {7}, we introduce the parabolic decomposition
of elasticity system (1.1) and define the solution niap. Furthermore, following closely the
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arguments of 7], we check the complete continuity and the uniform equicontinuity of the
solution map.
A central new part of the proof constitute a priori bounds for a fixed point. Their derivation
is for clarity partitioned into the distinct pieces which appear in Sections 4 + 6. Section
4 contains lemmas on positivity of temperature, energy estimates and the procedure of
recursive improvement of energy estimates. In Section 5 we prove the crucial Le(Q27T)
- norm estimate on §. The idea of the proof consists in deriving a bound in L.(QT) -
norm and passing to the limit with » — oo. In Section 6, applying DeGiorgi method in
a way presented in [5], we prove that 8 € By(Q7, M, y,7,6,3) and consequently that it
is Holder continuous. Furthermore, in Section 6 we establish the final a priori estimates
which complete the existence proof.

We use the following notations:

o . d
fi= Bxi," i=1...,m fi=—, &= (Egi=tm
_ [ 9F(e,0) _ OF(e,8)

where space and time derivatives are material. For simplicity, whenever there is no danger
confusion, we omit the arguments (e, §). The specification of tensor indices is omitted

as well. Vector - and tensor-valued mappings are denoted by bold letters.

The summation convention over repeated indices is used. Moreover, for vectors a = (¢;),

d = (@;) and tensors B = (B;;), B = (Bi;), A = (Aijut), we write

a-a=a;a;, B:B:B,‘J-B,'j,
AB = (AijuBu), BA = (BijAiju), la|=(aia;)'/?, |B| = (Bi;By;)'/?,

i/p
”a’”L,,(ﬂ) = (/ |a‘l’dz> , etc.,
2

the corresponding L,,(£) - norms of tensor-valued functions.
The symbols V and V- denote the gradient and the divergence operators. For the divergence
we use the convention of the contraction over the last index, that is,

and denote by

V- e(z) = (6i5,5(%))i=1,...n-

We use the Sobolev spaces notation of [5].

Throughout the paper ¢ and ¢(T') denote generic constants, different in various instauces,
depending on the data of the problem and domain 2. The argument T indicates time
horizon dependence which is always of the form T%,a € Ry.



2. Assumptions and main results

Throughout the paper we impose the following assumptions.
(A1) Domain @ C R", n = 2 or 3, with the boundary of class C*. The C* - regularity is
needed to apply the classical regularity result for parabolic systems (see estimate (4.38)).
(A2) The coeflicients of the operator Q satisfy

w >0, nA+2p > 0.

These conditions assure the following properties:
(i} Coercivity and boundedness of the operator 4

(2.1) ce]? < (Aeg): e < gel?,

where ¢ = min{nA + 2x,2p}, & = max{nA + 24, 2u};
(i) Strong ellipticity of the operator Q (see {8], Sec.7). Thanks to this property the fol-
lowing estimate due to Necas [6] holds true

(22) lwllwi < 1Qulnyey for {w € W) ul, = 0};

(iii) Parabolicity in general (Solonnikov) sense of systems in the form (3.1}, (3.2) (see [8],
Sec. 7).

The next assumption concerns the structure of elastic energy.

(A3) Function F(e,8) : §% x [0,00) — R is of class C3, where S§% denotes the set of

symmetric second order tensors in R*. We assume the splitting

F(e,0) = Fi(e,6) + Fi(e),

where Fy and F; are subject to the following conditions:
(A3-1) Conditions on F(e,6)
(i) concavity with respect to €

(2.3) —F1,00(e,0) >0 for (g,6) € S? x [0,00).
(ii) Nonnegativity
Fi(e,0) >0 for (£,0) € 5% x [0,00).
(iii) Boundedness of the norm ‘
|[F1 ”C"(Six[o,oo)) < 00.

(iv) Growth conditions. There exist a positive constant ¢ and numbers s, K € (0, 00) such
that i
[F1(e,0)] < (1 +6°[e]),

|Fye(e,0)] < (1 +6°e)r71),
|Fyee(e, 8)] < e(1 + 6°]e]™1~2),
|7y 6e(e,0)] <c(1+ gs-1 lsllc,_l),
Py 0(e,0)| < (1 +6°2fe|I),
| Fi,00e (€, 0)] < (14 QS—ZIEII\',_1)
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for large values of 8 and €;;, where admissible ranges of s and Iy are given by

. —o
0<S<11+1:{3/4 if n=2

on 2/3 if n=3,

any finite number if n=2

- {15/4 if n=23.

2 | 2n + n(n+1)

Moreover, in case &7 > 1 the numbers s and R are linked by the equality

. 4 2 1
0<i <1+ nt J

2sn n(K, - 1) _ 2
n+l ' gqu(n+2) (n+1)(n+2)

Here g, is the Sobolev exponent for which the imbedding of W3 (§2) into L, (Q) is
continuous, i.e., g, = 2nf(rn — 2} for n > 3 and g, is any finite number for n = 2.
Concernig the part F»(e) we impose:
(A3-2) Conditions on Fp(e)
(i) Nonnegativity
Fy(e)>0 for e € S

(ii) Boundedness of the norm
||F2“Cz(sz) < oc.

(i) Growth conditions

[Fy(e)] < (1 + |e?),
[Fpe(e) < (1 + e’ ),
|Fzee(e)] < c(1+ |e|*7?)

for large values of ¢;;, where

0< Ky <1+

gn{n+4) [ any finite numberif n=2
4n T 19/2 if n=3.

Before formulating regularity requirements on the data we note some consequences of
assumption (A3-1) which are of importance in further considerations.

In view of (A3-1) (i), by definition of cy(e, 8),
(2.4) 0 < ¢y < cofe, ) for (,8) € 5% x [0, ).
Moreover, (A3-1) (iii) and (iv) imply the bounds

(2 5) ICO(E:G)L ICo,g(E, 0)' < C(l + Iell(.l)v
' lco,e (e, 8)] < e(1 + el {0H1-1)) for (e,6) € 8% x [0, c0).

From (A3-1)(i) and (ii) it follows that

(2.6) Fi(e,8) — F, 4(c,0) >0 for (e,8) € S* x [0, 00),
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and owing to (A3-2) (i),
(2.7) (Fi(,8) — 0F 4(e,8)) + F2(e) 20 for (e,0) € S* x [0,00),

what means that the elastic part of the internal energy is nonnegative.

The later bound is of importance in derivation of energy estimate (see Lemma 4.2).
Concerning the data we assume:

(A4) Source terms satisfy

be LP(QT), n+2<p<oo,
gE€LNT), n+2<g<oo, and g0 ae in Q7.
Initial data satisfy
ug € WI‘,‘_Z/”(Q) uy € W}—z/”(ﬂ), n+2<p< oo,
by € W;—2/4(Q), n+2<g<oo, and 6, = m(%n gy >0,
Moreover, the initial data are supposed to satisfy compatibility conditions for the classical

solvability of parabolic problems.
For further use we note that, by imbeddings,

2

8 € C1(Q) 0 < ao <_1—";r ,
. 2

€0 € CB75(Q) 0<m:,<1—";L .

We shall give now an example of the function Fj(e,§) which satisfies the structure
assumptions (A3-1) (i}~(iv). This example is motivated by the Falk-Konopka energy model

(1.5), (1.6).
Example. Let

N
Fi(e,0) =) Fri(0)Fai(e),
i=1
with functions Fy; € C3([0,00)) given by
6 for0 <6< 6,

ﬁ']l(e) = {ﬂﬂ;(o) for 91 << 92
g% for 8; < 8 < oco.

Here N € NV, 0 < 5; < s < 1, 64,0 are numbers satisfying 0 < 6; < 6, 505~ < 1, and
functions ; are nondecreasing, concave such that Fy; € C*([0,00)). Moreover, functions
Fyi € C*($?) are supposed to satisfy

Fyi(e) 2 0,

() < oL+ 1el"),

|Fpie(e)] < e(1+ |e[ax(0.81=1)),
| Faiee(e)] < e(1 4 |e|maxtobi-2]y

for all € € 52, where numbers s and I are subject to conditions specified in (A3-1) (iv).
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For the presentation convenience the above example is used in the proof of pointwise
estimates on temperature (see Lemmas 5.1, 5.2).
The main result of the paper is the following existence theorem.

" porem 2.1. Let assumptions (A1)-(A4) be satisfied and the coefficients »y, 1 fulfil the
condition

(2.8) 0< /3 <.

Then for any T > 0 there exists a solution (., 8) to problem (1.1), (1.2) in the space
(29)  V(p,a) = {(u,0)] we WHQT), e WIH(QT), n+2<p < q< o)

such that

(2.10) lellwszary < (T M6llwz: @y < o(T),

with a positive constant ¢(T) depending on the data of the problem and T*, a € R,.
Moreover, there exists a positive finite number w, satisfying

[g + v(Aey) : €] exp(wt) + [weo(e, ) + Foe(e,8) : €8, >0 in QT
such that
(2.11) 9> f,exp(—wt) in QT

The proof of this theorem is presented in Sections 3 <+ 6.
We add here some comments concerning the solution space.
The condition n42 < p, ¢ is implied by the required regularity of solutions. More precisely,
from Sobolev’s imbeddings it follows that solutions in the space V(p, ¢) enjoy the following
properties:

(2.12) u,u,€, Ve, Ve, 4,0, V8

are Holder continuous in Q7 and satisfy the corresponding a priori bounds with constant
¢(T). The continuity of €, and e, is used in the proof of Lemnma 4.1.
The relation p < q is needed in the proof of the complete continuity of the solution map
(see Section 3).

For completeness we recall also the uniqueness result which follows by repeating the
arguments of the 2 ~ D proof presented in [7). In this proof the continuity of £, aud V@ is
required.

Theorem 2.2. Let the assumptions of Theoremn 2.1 be satisfied and in addition suppose
that

(A5) F(e,0) : 82 x [0,00) is of class C*, and ¢ € Lo (Q7).

Then the solution (u,0) € V(p,q) to problem (1.1), (1.2) is unique.



3. The proof of Theorem 2.1. Application of the Leray-Schauder fixed point
theorem

First we recall (see [8]) that system (1.1); admits the following decomposition into
two parabolic systems, for vector field w:

wy—PQuw =V Fe(e,0) +b in Q7,
(31) wlt:(l =wy = Uy — OfQu(] in Q,

w=0 on ST,

and vector field u:

u, —aQu=w in Q7,
(3.2) ul,_, =0 in Q,
u=0 on ST,

where «, f are numbers satisfying
3.3) a+f=v, aff = %’-.

We assume that the viscosity and capillarity coefficients, v and s, satisfy relation (2.8).
Under such condition a, 3, € R4. Systems (3.1) and (3.2) are coupled with problem (1.2)
for 6.
We apply the following formulation of the Leray-Schauder fixed point theorem (see
[3]):
Theorem 3.1. Let B be a Banach space. Assume that T : [0,1] x B — B is a map with
the following properties:
(i) For any fixed 7 € [0,1] the map T(r,-): B — B is completely continuous.
(ii) For every bounded subset C of B, the family of maps T(-,x) : [0,1] — B,x € C, is
uniformly equicontinuous.
(iii) There is a bounded subset C of B such that any fixed point in B of T(7,-),0 <1 < 1,
is contained in C.
(iv) T(0,-) has precisely one fixed point in B.
Then T(1,-) has at least one fixed point in B.

In order to define the corresponding solution map we extend the definition of Fj (e, )
to all § € R in such a way that it is of class C?, and that

Fie6(e,8) 20 forall (e,0)€S*x(—00,0).

With such extension the lower bound (2.4) on cp(e, §) remains valid for all (£,8) € §? x R.
The solution space is V(p, ¢) defined by (2.9). The solution map

(3'4) T(T") . (ﬂ'aé) € V(Pv Q) — (u,G) € V(p, q)a TE [Ov 1]-:
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is dlefined by means of the following initial-boundary value problems:

wy — fQuw =T[{V-Fe(g,8)+b] in 07,

(3.5) w‘[=0 = Twp n Q,
w=10 on §7,
u —aQu=w in QF,

(3.6) ul,_, =Tuo in Q,
uw=20 on ST,

cn(e,G_,T)Gt — koA = T[G_F:gg(s,g) rertv(Aeg)eq+g] in QT
(3.7) 8],_p =60 in €,
n-v=0 on ST,

where ~
co(e,0,7) = ¢, — T8Fg9(e,8), & =e(@).

Clearly, a fixed point of T(1,-) in V(p, ¢) is equivalent to a solution (u, ) of the decomposed
system (3.1), (3.2), (1.2), and thereby constitutes a solution to problem (1.1}, (1.2) in
V(p,q). Therefore, the proof of Theoremn 2.1 reduces to checking that the solution map
T'(r,-) satisfies properties (i)-(iv) of the Leray-Schauder fixed point theorem.
Here we check properties (i), (ii) and (iv). The property (iii) will be proved in Sections 4+ 6.
The property (i) follows by showing that for any fixed 7 € [0,1],T(r,-) maps the
bounded subsets into precompact subsets in V(p,g). Let (@",0") be a bounded sequence
in V(p,q) such that for n — oo

i"™ — 4 weakly in W;'z(QT), n+2<p<oo,

3.8 = =
(3.8) 0" — 6 weaklyin WH'(2T), n+2<q<o0.

Our aim is to show that for the values of T(7, ) given by

(3.9)

(un,en) — T(T, -ﬁ", gn)

the following convergences hold for n — oo

(3.10)

(3.11)

u" — ¥ strongly in VV,‘,"Q(QT), n+2<p<oo,

" — 8 strongly in T’V:'I(QT), n+2<¢<oo,
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\\'llere
(3.12) (u,8) = T(r,u,0).
With the help of compact imbeddings theorems [1] it follows from (3.8) that for n — co

#” — 1 strongly in VV,‘:"S/Z(QT), n42<p<oo,
(3.13) " -84 strongly in W;'I/Z(QT), n+4+2<q<oo.
This, by virtue of continuous imbeddings, implies that
(3.14) E" & VE" 5 VE 0" 8
strongly in spaces of Holder continuous functions in Q7 where
" =e(&t"), &=e(q).
Thanks to the above convergences, it follows that

V. Fe(E",8") = Fee(e",0")VE™ + Feo(z",8")VO"
(3.15) — Fee(8,0)VE + Feg(E,0)V0 = V- Fe(E,0)
strongly in L,(27) for n4+2<p<g< oo

Consequently, by the theory of parabolic systems [9],
w" — w strongly in W2'(QT),

where w™ and w are the corresponding solutions to problem (3.1). In tun, owing to the
latter convergence, for solutions of problem (3.2) it holds (3.10). Furthermore, we note
that, by (3.10),

(3.16) e” — e, €} oy
strongly in spaces of Holder continuous functions in 27, where
e =e(u"), e} =e(u}), €=¢e(u), e =ce(u,).
In order to prove convergence (3.11) we consider the difference
n=406"—4a.
By definition, 5 satisfies the following problem

co(e, 8, 7)n — koAy™ = P"(e™, 8™, 7) — P(s,é,‘r)

- (CD(En'ﬁ 0—",7-) - CU(Ea é) T))Gll in QT,
(3.17) , .
N mp =0 in 2,
n-Vy' =0 on ST,
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where _ ~ ~
Pe™ 0" 1) =7T[0"Fpe(",0") : ] +1(Ae}): e} + 4],

P(e,8,7) = T[0F pe(e,8) : e + v{Ae,) 1 e¢ + g).

In view of Holder continuity of the coefficient eo(e, 8, 7), in order to prove that for n — oo
"™ — 0 strongly in W'qz'l(QT),

it is sufficient, by virtue of the classical parabolic theory, to show that the right-hand side
of (3.17); converges to 0 in Lq(QT)—norm. Indeed, we have

“P"(Eu7§"1 T) - P(Er g:T)"Lq(QT)

< C(Il 16" ~ 811 F0e(e™,8"leF 2, cam) + 11 Blel(le™ — el + 18" — 8] I, cam)

181 e (e, )] — 4l llycary + e — edl(led] + edl) uL,mn)

—0 as n-0,

where we have used uniform with respect to n Holder bounds on €, e?, 8" and the
convergences (3.14), (3.16). Furthermore

l(eo(e™, 8", 7) — co(e, B, )0 | L (am)

< supgr|co(e”, 8%, 7) — co(, 0, T)[ 167 | L, (am) = O as n — oo

This shows (3.11) and thereby the complete continuity of T(r,-).

The uniform equicontinuity property (i) follows by direct comparison of two solu-
tions (w,u,6) and (-&J,ﬂ,é) to problemn (3.5)-(3.7) corresponding to parameters 7 and 7,
respectively, and applying the classical regularity theory (see {7] for details).

The property (iv) is obvious, by definition of T(7, ).

4. Energy estimates and recursively improved estimates

In this section we begin the derivation of a priori bounds for a fixed point of the so-
lution map T'(r, -). Without loss of generality we may set T = 1. Let then (u,8) € V(p,q)
be a fixed point of T(1,-), i.e., a solution to problem (1.1), (1.2). Our goal is-to obtain
estimates (2.10). To this end we follow the procedure described in (7). First of all, before
establishing the energy estimates, we prove that for solutions (u,8) € V(p, ¢) temperature
0 stays positive what is in accordance with thermodynamics. This is proved under suffi-
cient regularity of solutions. The regularity requirements are satisfied for solutions in the
space V(p,q), where €,8 and e, are Hélder continuous in Q7. By repeating the proof of
Lemma 3.1 [7], we have the following
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Lemma 4.1. Let
g. Eu}zineo >0, g>0 in Q7

and (u,8) be a solution to (1.1), (1.2) such that €,e; € Loo(027), 8 € Loo(7), 6, €
Li(0,T;Ly()), 1 < g < o0.

Then there exists a positive finite number w satisfying

lg + v(Ae,) : €] exp(wt) + [weo(e,8) + Foe(e,8) : €)0. >0 in 07,
such that
(4.1) 0> 6. exp(—wit) in QT

In the next step, due to (4.1) and the bound (2.7), we can establish physical integral
estimates. Repeating the proof of Lemma 3.2 in [7] we have the following:
Lemma 4.2. Let
ug € WHQ), wu € La(R), 6 € L:i(Q),
(Fi(g0,60) — 00 F1,6(€0,80)) + Fy(eo) € L1(R),
b€ Ly(0,T; Ly(Q7)), g € Li(QT).

Assume that § > 0 in QT and the bound (2.7) holds. Then a solution (u,8) to (1.1), (1.2)
satisfies estimate

1 Mo
Cvllellbm(o,T;L,(ﬂ)) + Z""fnim(o,ﬂbz(ﬂ)) + —é_llqu”ico(O,T;Lz(ﬂ))
+I(F1(e,8) — 6Fi,0(e,0)) + Fo€) Lo o,700(2)) S €

(4.2)

with the constant c given by

; :
e = collbollz, o) + SllwalZ,ca) + I(F1(€0, 60) — b Fio(<0, 60)) + Fo(€0)ll Loy
bedi]
+ ‘B—HQUO 12202 + I3 0, miza02y) + 1901y

We note the following implications of energy estimate (4.2). In view of property (2.2)
of the operator @, it follows that

(4.3) el 0. wza)) <
Consequently,
lel Lo riwian S €

so, by Sobolev’s imbedding,

any finite number if n =2,

44 e . <e, for 1< <,,={ :
(4.4) lellLeo,mipo ) <e for T<q 6 ifn =3

14




Moreover, (4.2) implies the bound
(4.5) ““”w,’;{‘\,(nf) Sec

Hence,
”EH W;";“(QT) .<. C,

s0, in view of imbedding,

gu(n+2) [ any finite number if n = 2,
(4.6) Jellp, @ e for 1<o<IRBTZ - {10 =2

Our further procedure will consist in iterative improvement of energy estimates. Similarly
as in [7], the main tool is the regularity theory of parabolic systems.
Applying Lemmas A2, A3 [7] to problems (3.1), (3.2) we obtain at first estimates on w:
(4.7) lwllpppirgry < c(I1Fe(e, 0L, @y + IbllL,@ry + 1Qwollz, (o)) »
and next on u:

”EHWF’"(HT) < C”u”W:-“/’(nT) < c(”w”wyl-‘/’(nr) + ”ul)”W:—WP(n))v 1<p<oo.

With the help of these estimates we prove now additional bounds on temperature. To
achieve this we have to impose appropriate growth restrictions on F{(e, ).

Lemma 4.3. Suppose that s, K1 and K, satisfy conditions

n+1 ¢ n+2 -1
- ¢ 14 1% -
0<s< . 0< K < +2 on n(n+1)],
4
0<K251+2’}_(ﬁ+_)_
4n

In case Ky > 1 the nunbers s and K; are linked by

2sn 4An(K; —-1) 2
n+1 mn+2) (n+1)(n+2)

Moreover,

up € Wa—(u+4)/2(n+2)(g), Qu, € L4(11+2)/(1)+4)(Q)) o € Ly(82),

4(n+2)/(nt+4)
fo
G(eo,00) = —03F; o(e0,60) + 200 Fi(€0,60) ~ Z/Fl(eo’f)df € Li(Q),
)

b € Lagusay,(nt0(Q7), 9 € Louaayymsa(7).

15



Then there exists a constant ¢(T) depending on the data and T*, a € Ry such that

(4.8) 181107y = 10l Lo 0. T5L200)) + I VOliLyam) < (T).

Proof. Multiplying (1.2); by € and integrating over 1 we get

%'{%‘/szl‘ — /(ngl,ﬁﬁgl + OZFI‘QE : E()dil) + L‘,O/|V€[2d:c
(49) Q iy Q
= u/O(As,) s egdr + /ngn:.
Q Q

Now we introduce the function

(4.10) G(e,8) = —67Fy o(e,8) + 20F (e, 8) — 2E4(e, ),
where
o
F](E96) = Fl(eyf)df
/

It is seen that G(e, §) is the primitive of —62F; g(e, 6) with respect to 8 such that
G(e,0) =0 and Gg(e,8) = ~6°F go(e,8) > 0,

s0

(4.11) G(e,8) >0 for (e,6) € S? x [0,00).

Furthermore, according to (4.10),

(4.12) Ge(e,0) = —6F) ge(e,0) + 20F) e(e,8) — 2F) (e, 6).

In view of (4.10) and (4.12), identity (4.9) takes on the form

cy d 2 d . 2
Q a2 1]

= 1//6(A5,) tedz + 2/(6F1,5 - 13‘],5) tedz + /Ogd:v.

Q Q Q

(4.13)
Integrating (4.13) with respect to time and using (4.11) we get
XAt < 6—2"—/9211:1: +k0/|V9|2dzdt’
Q aQ
(4.14) < 1//9(Ast:) tegpdzdt + 2/(9F1'E — F‘l'g) s egpdudt
Qt a
+ /ng:cdt' + %/ng.r + /G(Eo,gg)d.’t, 0<t<T,
at T h Q

16



where

X(t) = (Hgl,iw(o,f;L,(ﬂ)) + valli,(nt))l/2~

We proceed now to estimate the terms on the right-hand side of (4.14). To this end first

we note that by virtue of the imbedding of the space 4(Q7) in Lg(n+2)/"(QT], it holds

(15) 0NlL 30 i) (27 < €lBllvsgar)

4.15 "
1/2 .

< (6. o, tacan + 1V om) ' = eX(T).

In view of (4.15) the first term on the right-hand side of (4.14) is estimated as follows

@16) v [o(Aee): evdedt < clfl oy @rilled o = T
n nya
Qt

To find bounds on {[e4]|z,, , 1)/ (u1s) (@) We make use of estimate (4.7). From now on we set

_ Hn+2)
T on44

In view of assummptions, by the Holder inequality, it follows that

1
P
I1Fe(e, 0L, ary < c(/0”‘!5]"’““(0”"“‘)dzdt+ / |€|""’“x(o"'""l)dw(lt> + ¢,
QT a7

e o

PAL Pra

< c(/G”")“dzdt) (/[s[")""'“(o"(‘_”dzdt>
ar ar

1
t 4
+ C(ﬂ/ |sl"m"(°”"‘”’)dzdt) +e,
T

where 1/A; + 1/A; = 1. Now we set

gn(n +4)
Ao = { 4n(XK, — 1)
any number from the interval (1,00} if K; < 1.

if I\’] >1

Then, by virtue of the bound (4.6),

1

PAg
(/ Ie|'**2"'“‘“""l—mzmdt> <el

NnT

17



Moreover, in view of (A3-2) (iii),

1
5
</IEI'“““(O'K’_l)a'.z'rlt> <ec.

0T

Consequently,
|1 Fe(e, )z, ) < c(lOllL,.,, @m) +1)-

We examine now the term

s
s s A -
161 .0, m) = ( / 161522 o ) =5

To this end we make use of the interpolation inequality .
16112,05, @) < el VO ) 11ty + ML, o,

wlere parameter ¥, is determined by the relation

n n n 2n 1
=(1-— — 49 (=—-1 9y = ——(1 - ——).
Psiy @ 191)1 + l(2 ) o 4 n+2( ps)q)

Then

T Ay
X (1—9 psA
n< | [Avell Iomts = + uanz,umdt]
0

T s
( [ivenziz ™ ”dt) FTAT =,
4]

where in the last inequality we have used estimate (4.2). Imposing the condition

ZnZ(PS/\I ~1)=2,

equivalent to
_(n+ 1)(n +4)
2ns(n+2) ’

it follows that
-2z
L < (T) (||v0||£'linr) + 1> .

In the case psA; < 1, by virtue of energy estimate (4.2), /1 < c.

18




In view of the above estimates, we obtain
2
Evy
I£e(e 0z, 0m < DIV ar, +1).
so, by virtue of (4.7),
2

(4.17) ”E”wpz.l(nr) < (T) (HVG”I”,:EQT) + 1).
Consequently, using the above estimate in (4.16) gives

e

A

Yy < (D6l 400 @) (nvan;z;m) + 1) < o(T)X(T) (X(T)»T\T + 1) .

Now we assume the condition

4
4.18 14— <2,
( ) p/\1
implying that
P +-4
! n+2
Hence, in view of expression for A,
n+1
A .
(4.19) §< 5=

Moeover, we note that the equality 1/A; +1/A2 = 1 can be always satisfied in case K; < 1,

whereas in case K7 > 1 it imposes an additional conditon between s and K, namely
2sn{n + 2) dn(K, —1) 1

(n+)(n+4)  qun+4)

(4.19")

In view of (4.18), by Young’s inequality,
Vi < a1 X(T) 4 c(e1)e(T), €1 = const > 0.

Therefore, for sufficiently small €1 the term £1.X (T')? can be absorbed by the left-hand side
of (4.14).
The second integral on the right-hand side of (4.14) is handled as follows:

z/(em,E — P ¢): epdzdt’ < c/0(1 + 6%)|e|max {0 K1) ig, |dedt
ot Qr

5 pYY
(/0(]+“)’\“dxdf> +c(T)} (/lel’\‘"‘“x(u""‘_l)d:v(lt> (/[e,
nT QT QT

5Y2=

£
A

5
A5 dt

<c

19



where 1/A3 + 1/X\g + 1/A; = 1. In view of the previous considerations we set

g(n+2)
Ay = ¢ (&~ 1)

any number from the interval (1,00} if Iy <1,

if Ky>1

4(n+2)

Ay = .
5 n+4

In that case, utilizing estimates (4.6) and (4.17),
14 P
s 14
Y2 S C(T) (Ilell[‘(l+a)/\3(nr) + 1) (”vellllzznr) + 1) :

Similarly as I3, the term

+
a

143 (1+s)As —
” ”L(H,,)“ QT) — (/” "L(l-;..)xa(n) > =1

is examined by means of the interpolation inequality
1-3
N0HLsgupng @) < IVONE2 0y IOIIL 6 + llly o0,

where ¥3 is determined by the relation

).

n n n 2n 1
(1 T S)/\a (1 l92)1 +l92(2 ), 50 192 2+n( (1 +S)/\3

Then

<c

1
by)
142) A3 1+sA11’ 1432
(Hoegtay 2= aSiiah ="+ naniah™) dt]

—

0
T _l._
1+3)A3—1
Sc( [ivag ) rer =1,
0

where in the last inequality we have used estimate (4.2). Here we set

2n
n+2

(148)A3 -1) =2,

what implies that
2(n+1)

2= n(l+s)

20




Then
I < o(T) (uveuL,(m) +1).

Combining estimates on the terms f3 and I, we arrive at

¥ < o) (1813 +1) (1901 5far, + 1) < o7) (X(@)5 +1) (X077 41).

Now we assune the condition
2 ,
(4.20) — 4+ — <2

Consequently, by Young’s inequality,
Yz < &2 X(T) + c{e2)e(T), €2 = const > 0,

so for sufficiently small €5, the term e, X(T)? can be absorbed by the left-hand side of
(4.14). Using expressions for p, A; and A3, condition (4.20) takes on the form

ns n(l +s)
2(n+1)  2(n+1)

<1,

that is 9
n
< -+

o2n
Clearly, the latter condition is less restrictive than (4.19).
In case K; > 1 the equality 1/A;3 + 1/As + 1/As = 1 imposes the condition

(I1+s8)n  n(K;—1) n+4
2n+1)  qu(n+2)  4(n+2)

(4.21) =1,

that is,

2sn(n + 2) n(IG ~1) (n+1)(n4+2)+2
(n+Dn+4) " gu(n+4)  (n+1)(n+4)

Obviously, since
(n+D(n+2)+2
(n+1)n+4)

condition (4.21) is more restrictive than (4.19").
In case I{; <1 it is seen, in view of

<1,

2sn(n+2) n+2
(n+)(n+4) n+4

that the condition between A3, Aq and As can be always satisfied.

21



Summarizing restrictions, we see that s and K have to satisfy (4.19) and (4.21).
Finally, the third integral on the right-hand side of (4.14) is bounded by

/Hgdn:(lt' <9l (ary < e3.X(T)* + ¢es), €3 = const > 0,

(11

2(n42) (27) ||g”l‘7("+i71
n n+4

so again the term e3 X (T)? can be absorbed by the left-hand side of (4.14).
In this way, recalling assumptions ou initial data, it follows from (4.14) that

X(T)* < <(T),

what completes the proof. 0

We note some additional estimates resulting from the above lemma. From (4.15) it
follows that

(4.22) |l€|[L2 ni? (QT) S C(T),

and from (4.17),

(4.23) "E”W;‘[ll_ﬁ"_’l(nT) <T).

n

Thus, by imbedding, & is Holder continuous in 27, and
(4.24) lellgareiraary < e(T) with 0<ag <1 - g

Consequently,

1Fee,0)llz,m) < eT) (1811, ary +1) &

and, with the help of (4.7), we conclude that

. 2(n+2)
(425)  llellwzoary < (@) (61, ry +1) S e(T) for p= T2
We note also that, by virtue of (4.24), the bounds (2.5) imply
(4.26) lea(e,8)] + |co,e(€,8)] + |eo,6(e,0)] < «(T) in QT

In the next lemma we obtain an estimate for ;.
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Lemma 4.4. Suppose that

n+41
0<s< )
2n

g € Ly(Q7), Vbp € L(R), and
NOIL pu iy 07y S S(T),  Mellgororragary < o(T),
2
p= —-(”+2) > 2.

ns

ledlz,@ry < o(T) for
Then there exists a constaut ¢(T) > 0 such that

(4-27) [0cll £acam) + N0l oo 0,720y S T

Proof. Multiplying (1.2); by 8; and integrating over 2* we obtain

t
k d
co / 02 dzdt’ + -2-‘1 / o / [VO|*dzdt'
ot 0 Q

< c/(l + §°Je|nax 0001}y 2 110, |dzdt’ + 6/|5u|2|9¢r|dzdt' + / lg)|6e|dzxdt’.
ot Qt ot

Hence, in view of assumptions, by Young's inequality it follows that

Cy k
60 ey + LN 5200

4.28
(4.28) < c/(l+02’)[sy|2d.1:dt'+c/|st:|4da:dt'+/gzdzdt'+ %/lv%lzdz.
Qt Q Qt 2

For the first term on the right-hand side of (4.28) we have

Iz [(140)er Pdadt < e + 101, oo il a0
a
2 2
< C(T)“a“L’,(,‘" ,l(nT)”ﬁ”Ln,s,;_?‘)' (or)

<ATY(1 + Jledl? apn @)

where we have applied the Holder inequality with
M ={n+2)/(ns), Ar=(n+2)/(n+2—ns)

Since,0<.s<1<"+t2-,1</\,,x\2 < oo.



Furthermore, in view of

n+1 n+2
n 2n

(4.29)

)

it follows that
2(n+2) < 2(n+2)

n+2-—ns ns

Hence, by virtue of the bound on €,
I<(T).

Similarly, since

2 2
4<_,(_n'_-:_l,

n

the second integral on the riéht-ha.nd side of (4.28) is bounded by

/ lew|*dzdt’ < lled|},qr) < o(T).
nt

Consequently, (4.28) implies
1822 (27) + VOl w0, 752200 < (T,

what together with (4.8) shows the assertion. 0

By virtue of imbedding, it follows from (4.27) that
(4.30) 18]l Leu 0, 75L00)) S e(T) for 1< a < g

We indicate more consequences of the estimates obtained so far.
Let us write equation (1.2); in the form

(4.31) ~koA8 = —cy(g,0)0; + 0F g (€,8) : e, + v(Aey) 1 e, + g.
Recalling the arguments used in the proof of the previous lemma we see that
”017.95(5,9) I E¢ -+ ll(Aet) tEY + g”L;(ﬂT) S C(T)

Also, by (4.26), (4.27), we have ||co(e,8)0:]|1,ar) < ¢(T). Therefore, by virtue of the
classical elliptic theory, it follows from (4.31) that

(4.32) N0l L0, wziay) S €(T), so 10|, Loy < o(T).
Furthermore, (4.32) and (4.27) imply that
(4'33) ||9”w;-1(n1~) < C(T)w ”VGHW;"“(QT) < C(T)v
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so, by Sobolev’s imbeddings,
(4.34) N0ll2 oy gy 0y S (T, V6, 12421 (27) < e(T).

Thus, repeating estimate (4.25), in view of (4.34), we arrive at
(4.35) ”EHW: Yamy = C(T)(”B”LN(DT) +1) < ¢(T),
”VEUWP‘»‘/’(QT) <e(T)

for p = gn(n + 2)/(ns) > ga. Hence, by imbedding,

(4.36) [Vellgazazrzary < o(T) with 0 < az <1-— Z—q.

We close the sequence of estimates by the one resulting directly from the regularity
theory of parabolic systems. Namely, in view of assumptions,

(4.37)
IV FE(E 9)' < c(1+galslmax(0 I(.—2)+|Elmnx(0 I(;—-z))lvsl_{_c(l_{_gs I(E'mnx(o G — 1))|V0|

recalling bounds (4.24), (4.34) and (4.36), we get

V- Fe(e,0)lc a7y < (T).

2(n42}
n

Therefore, owing to the classical regularity result for parabolic systems (see e.g. [7],
Lemma A1), it follows that

(438) ”u"w4 : NI < C(T)

Consequently, by imbedding,

(4'39) ”Et”vp';’:‘/z nr) = < C(T)
Hence, in particular, since W},.,,)(2) € Loo($2), it follows that

(4.40) lleell ago,m; Loy < o(T).

The latter estimate will be crucial for obtaining Leo(Q7) - norm bound for 8 (sce
Lemma 5.2).




5. Pointwise estimate on temperature

In this section we prove the crucial Leo(27) - norm estimate on §. Here we assume
that the hypotheses (A1)-(A4) are satisfied and, for the presentation convenience, suppose
that function F(e, @) has the form specified in Example in Section 2. The idea of the proof
consists in deriving an uniform bound in L-(Q7) - norm and then passing to the Hmit with
r — o0.

First we establish that § € L(Q7) for 1 < r < o0. In 2 — D case this is assured by
estimate (4.34). In 3 — D we have the following

Lemma 5.1. Let function Fy(e,0) be defined as in Example in Section 2. Moreover,

suppose that estimates (4.24), (4.35) hold, and

n41
om

0<s< gEL#(QT),

o€ L(Q7), 1<r< oo,
Ao
G0, 00;7) = —057 F p(€0,00) + (r + 1)85 Fi(£0,60) — (v + 1)/5“11‘_'1(5075)(15 € Li(Q).
0

Then 6 € L.(QT) for 1 < r < oo, and
(5.1) 1811 L. gy ) < (),

where ,

c(r) = c(T)J"r%rl-' — 00 as r — oo.

Proof. Without loss of generality we can assume that 8 > 8; a.e. in QT Multiplying
equation (1.2); by 7, r > 1, and integrating over § we get

Cv/grgldl‘ — /(9r+lF],009" + 9r+]F1'gg- : Et)d:t
1

(5.2) a

+rko /9"—1|V9]2dz = 1//0'(Ast) tegde + /9'g(l:z:.
Q Q Q

Similarly as in the proof of Lennna 4.3, we introduce the function

(5.3) G(e,8;7) = =01 Fy o(e,0) + (r + )07 Fy(e,0) — (v + 1) F1(e, 8;7),
where
]
Fi(ebir) = [¢ File e
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Clearly, we have

(5.4) G(e,0;0) =0,  Gole,6;r) = =01 F gq(c,6) 2 0,
so that
(5.5) G(e,0;7) > 0

for all arguments. Besides,
(5.6) G.e(e,8;7) =~V F ge(e,60) + (r + 1)0"Fr (€, 8) — r(r + 1)Ey g(e,6; 7).

In view of (5.4) and (5.6) we can express identity (5.2) in the form

Cy d +1 41 l\,g / 2
" v
T Td /9 dz + — /G(e 6;r)dz + i) |V Pda

(5.7)
=(r+1) /[9TFL5(E,9) —rEy e(e,0;7)] : erde + u/&'(As,) - /G'gdn:.
] Q Q

Integrating (5.7) with respect to time, using (5.5) and noting that 2r/(r+1) > 1 forr > 1,
we obtain

—S Xt < S 2ds /ve dzdt’
,+1X(t)—r+1/( Yo+ 20 [196 4 e
¢

<(r+ 1)/[9'F1,5(5,6') - 1'15’1'5(5,0; )] : epdzdt’

(5.8) B .
+ U/GT(AE,:) s epdzdt’ + /H'gdzdt' + ;—I"—l/ﬁgﬂd:z:
¢ O 1]
+/G(so,00;r)dz, 0<t<T,
where

5
X@) = (1071 gy + 190 F W) -

In view of the imbedding of the space V2(§!) in Lz(n+2)/n(Q‘)7

X

il 2 6 s @) = Il ”Li..i,,;,i.,m')
Therefore, for the left-hand side of (5.8) we have

[+ +1 2
(5.10) m” ”Z[" e ,,(m) = _|_1)‘ (t).
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Having this in mind we proceed now to estimate the integrals on the right-hand side of
(5.8). Turning to the first integral, a direct calculation shows that for the assumed form of
Fi(e,0),

0" K\ e(e,0) — rF’l‘E(s,H; )

N
Z{, e I*‘—1/5f— PHlE)E + B Prie(e)

for 62 €8 < co.

Therefore, using estimate (4.24) and the bounds (r + 1)s; /(r + si) < 2, 8; < s,

73
r / € pi(€)de < (65 — 65)65",
9

it follows that
r+ 1)/ [3'F1,5(e,0) - rﬁ'l,g(e,ﬂ;r)] : eydzdt’
[+

(5.11)
o(T) / 67 ey|dzdt + " = R+ c".

Next, by means of Hélder inequality,

R< (D60 @nletlls ogan)-

By virtue of (4.35), since

n+2 < q::(n+2) < qn(n+2),
2 n ns

it follows that "51”L(.‘+,),,(n‘r) < ¢(T'). Hence, applying Young’s inequality

M
1
5.12 ab<filghy L
( ) - /\1 /\260’\2
with g9 = , e=const >0, A\ = —j_%, Ag = , we obtain

—a
[

R<c(T)<7 +1>1 16 IIZ“ZJL_,JH_M(QT)‘”(T)(} )( )_L

r

._‘11
€ r+1 i A
S el 7 IIGIIL("i,nMrm(m) + C(T)( )
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Consequently, iu view of (5.10), the ¢-term in the above inequality can be absorbed by the

left-hand side of (5.8).
For the second integral on the right-hand side of (5.8) we get

1//0'(/15,:) B Etld.'l?({f’ S C”€||Z 42y (ﬂT)IIEC]’%n+z(ﬂ7) < C(T)Hellz,,,“), (QT)

ﬂl
r € ! r+1\"
< 9 r+1 T
‘C(T)(1-‘+1>r+1" I g ary <t )(r+1>( € )

€ . r+1\"

where on the way we have used estimate (4.35) and inequality (5.12) with A; = (» + 1)/r,
Ay =r+1, g =(/(r+ 1))7“1— Again, the first-term in the above inequality can be
absorbed by the left-hand side of (5.8).

The third integral on the right-hand side of (5.8) is treated similarly. Namely,

r [ € r+1 r+1 ’
/0 gd.’tdt < ”0“2 “"ZF(nr)llgllL"__zﬂ.(nT) SCr+1||0|[L N 3"" H(ar) +C( : .
0

Combining the above estimates it follows that

¢ 41 41
r+ 1”0”;’-*—]:11)(1'11) o) < C(T)C‘” (1' + 1) -
what provides the assertion. a

We indicate the consequences of the above lemma concerning regularity of e. Recalling
estimate (4.25), in view of (5.1), it follows that

(5.13) ”":”W,,’"(ﬂ’r) <T,p) for 1<p<oo,

where ¢(T, p) — 0o as p — co.
In the next lemma, with the help of estimate (4.40), we prove Loo(227) - norm bound
on 6.

Lemma 5.2. Let function Fy(e,f) be defined as in Example in Section 2. Moreover,
suppose that

0o € Loo(), ¢ € L1(0,T; Lo()), and  fee|lL 0,750 < ()

Then the following estimate holds

agy  lem e ()T Hledl o080
5.
: (l'Ei”},,(o,T;Lm(ﬂ)) +llglheio.rLaiay + HBOIILN(m) <oT).
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Proof. Without loss of generality we assume that 8 > 8, a.e. in Q7. We proceed as in
Lemma 5.1 by multiplying (1.2); by 67,7 > 1, and integrating over §2. As a result we
arrive at the identity (5.7). Now the idea is to find additional information from the term
G(e,0;7). A direct calculation shows that

(6.15) Gle,8;r) = 07 ale,0;r) for 8, <8 < oo,
where
o(e,6;7)
si(1 —s4) " 7 r—t rir+1) a1 -
= Z[ o+ )8~ +<‘ 6 —r(r + 1)/C wi(¢)d¢ + —;_‘F';i—ﬁz )@Tﬁ] Fy;(e).
6,

We note that by virtue of (5.5), a(e,8;7) > 0 for all arguments.
Then, recalling estimate (5.11), we conclude from identity (5.7) that

Cy r+1
1+1dt/9 1+

< c(T)/G"""[stldm+c/9'|s¢|2d:1:+ /6"|g|d:c.
Q Q Q

a(s 9; 1))(11

(5.16)

Let us introduce now the new function

(5.17) o =o6(1+" a(s 6, r)) A

We note that ' > §. We can also see that
(5.18) 6 —af as r— oo,

where @ is some constant from the interval {1,2]. The latter convergence follows from the
following estimates

=+ a(e,b;r Ea 1
(l'l" lX(E 9; 1)) Sl-"- (-——-,—,—) (1‘+1)r+l
Cy

and

(29" <o) s [ () ],

which in view of the convergences

1\ 7 \
(—) I 11 (7‘ + :l):iT - 11

r
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imply (5.18). Then, with the help of Hélder inequality, (5.16) yields

cu d 1 +
e =[O s < (DO, ety
Q

T el el o + 1O s ]

Lega(R)-
Therefore, in view of the equality

c

d ) . d
o [ e =l G 1o
Q

”
taking into account that ¢’ > 8 and s < 1, it follows that

d
(5.19) o 2 llllpu () < C(T)H”'”Lm(n)llftﬂnr_f_.(n) +ellediZ,g oy + Mol yi-

Now we apply a standard procedure by multiplying both sides of (5.19) by

exp (— o(T) fot |[s,:(t’)||LLﬂ(g)dt') . This leads to the inequality
1—2e

¢
d
[ A P (—c(T) / x|eﬂ(t')||L;_ﬂ<mdt')
0

t
< (el pycey + ol ex0 ( — @) [ el ;_g(n)dt'>,
0

which in tum implies that

1

t 2
16 (Bl 4o () < cexp [C(T)té (O/ ”Et'(t')”%{_.f_:(n)dt) ]

(5.20) ,
: [ / (w2 iy + N9E L0 )t + IIG'(O)IIL,+.(9)}

for all ¢t € [0,T] and r > 1. In view of (5.18) and the L;(0, T; Lo (§2))-norm estimate on
£y, we can pass in (56.20) to the limit with r — oo to conclude the assertion. O
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6. Holder continuity of temperature. Completing the preof of Theorem 2.1

In this section we shall apply the method of [5], Chap.IL7, to prove that 8 is Holder
contimious. The essential for the procedure is Leo(Q7)-norm estimate on 6, proved in
Lemma 5.2, and L,(27)-norm estimate (5.13) on ;. For reader’s convenience we record
here the definition of the space B5(0Q7T, M,v,7, 8, ») (see [5], Chap. IL 7).

The function u € Bo(Q7, M, 7, 7,6, 5), where @7 = Q x (0,T), and M, v, 7,8, » are positive
numbers, if the following conditions are satisfied:
(i) u € V;*°(7) = C(0,T; Lo(R)) N Lz (0, T; WE(R)),
(ii) esssupgr|u| < M,
(ili) the function w(z,t) = tu(e,1) satisfies the following inequalities

W dREX, N(w = E)ll1a(B, -0 s man) < 100 ~ E) (5 20)| LB, (20))

+7 [(‘71 P)_2 ”(w - k)’*‘”i;(Q(p,r)) + I"'r(1+,‘)(k Py T)]

l(w = E)+ 11 (@(p—01pr~o2e))
<7{[012) + () w = B4l ooy + 1Tk 0,7 }
Here the notation is as follows:
(w — k)4 = max{w — k,0} — the truncation of w,
By(wo)={x €| |z —zo|] <o} —aballin,
Q(o,7) = By(xq) X (toyto + 7) = {(2,8) € Q) |z —zo] <o, to <t <tp+7} —

a cylinder in 27, where p, 7 are arbitray positive numbers, o1, 09 are arbitrary munbers
from the interval (0,1), k is an arbitrary number satisfying condition

ess 5uPg(g,r) W(w,t) —k < 4.

Moreover,
Ak o(t) = {z € By(wo)| w(z,t) > k},
tot+7
wk,o,7) = / meass Ay, o(t)dt,
to
where positive numbers ¢ and » are linked by the relation

1 n _n
with the admissible ranges

2
q € (2, ——11-2], r €{2,00) forn >3,
n—

¢ € (2, 00), r € (2,00) forn=2,
¢ € (2,00], r€[4,00) forn=1.
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Furthermore,
Va(27) = Loo(0, T; La(£2)) N L2 (0, T W3 (£2)).

We have the following
Lemma 6.1. Suppose that
lel <e(T) nQ7, ez, ory S e(T), 1 <p< oo,
1Bt (my S M =c(T),
leo(&,0)| + |co,e(e,8)] + lco,6(e, )] < o(T) in QT
g€L,0T), 1<p<oo, GecC™f), 1<a<]l.
Furthermore, let k be a positive number such that
(6.1) k > suppbo(x),

and
M ~k<d withsome §>0.

Then _
(6.2) 0 € By(Q7, M, 7,1,6, %),
where
rme= 221 e0,d), =

Proof. We check that ¢ satisfies conditions (i)-(iii) in the definition of the space
B3(QT, M, y,r,6, ). By virtue of (4 33), 6 € W l(QT) Hence, by the imbedding theoremn
(see [5] Lemma II 3.4),

§€CO,T;W21(Q), 1<q<2,

so condition (1) is clearly satisfied.

Furthermore, thanks to Lemma 5.2, condition (i) is also satisfied with constant M = ¢(T).
We proceed now to check that & satisfies the second inequality in condition (iii). To

this end, first we recall that by Lemma 4.1, 6(z,¢) > 0 in Q7.

Let Q(g,7) = By(z¢) % (fo,t¢ +7) be an arbitrary cylinder in 27, and ¢(=,t) be a smooth

function such that supp {(=,t) C Q(g,7) and ((z,t) =1 for (=,t) € Q(¢ — o1 9,7 — 027),

where 01,07 € (0,1). Moreover, let

Ar,o(t) = {z € By(zo)| 8(z,t) > k).
Multiplying equation (1.2); by ¢*(8 — k)+ and integrating over 2 we get
% /coczgt-(e — k)2dz + ko / V(8 ~ k)4 |¢2dx
2 2

(6.3)
ko [ (0~ k) V0 = )y Veda = [ 10~ )y,
1] 0

33



where for simplicity we have denoted the right-hand side of (1.2); by f,
f=0F¢c(e,0): e+ v(Aey) e +g.
The first term on the left-hand side of (6.3) is rearranged as

d 1d .
/Cg(za(e - k)_zi_d'l, = EE/CD(H — k)z_i_(zdl
Q Q

SR

1 1
- '2— / (Co‘g N El)(€ - k)’ic2d:l: ot E / co,oG,(G Ead k)'i('zd;r
A, (1) Ae,g (1)
bl / Co(e _ k)i((tdx.

Ak.e(‘)

(6.4)

The third integral on the right-hand side of the above inequality requires special technical
treatment because of the presence of §;. We rearrange it in a similar way as in Lemma 4.3.
To this end we first observe that on the set Ag ,(t) it holds

CD(Ere) = co(e, (8 - k)+ + k)’

50
co,0(€,8) = co,o-r), (6, (0 — k)1 + k) on Ag,().
Now, restricting considerations to the set Ag (1), we define the function
(0~k) 4
(6.5) Gle@-B) = [ coclert + R

Clearly, it satisfies the conditions

G(e,0) =0,

(66) G io-1),(6,(8 — k)+) = co (0-k) 4 (£, (8 — k)4 + K)(6 — E)S.

Then the third mentioned above integral transforms as follows (further on for simplicity
we omit functions arguments):

1 1 d
- 5 / 00_99;(9 - k)iczdz = _E / Cu,(g__k)_,_(e - k)ia(e - k)+<2(l.’l:
Ak, (1) Ag,o(1)
1 d
6.7y =73 / G o-r)y (6~ k)4+¢*dz
Ar,o(t)
— 1 d 2 1 . 2
=-3 / <EG) (“dxr + 3 / (G e :e)(dz.
A, o(l) Ar,e(1)
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Setting
{ G(e, (0 —k)y) for 6>k,

0 for <4,
we rewrite the first integral in the last equality as

1/ (9)es

A, (8)
- 1/ 4oy) Cde= 124 /G(2d+/G((d
- e TET@ ) T oL
2

Summarizing, in view of (6.4), (6.7) and (6.8), identity (6.3) takes the form

;:t /Lg(0 L)+<2d.‘b+kn/lV(g-—L)+| Czd.l:

Q

2dt/G+<2dz—/G+<C‘dz__ / (Ge : e:)¢?dx
Ar,o(t)
+ / Co(a - k)icctd.‘l: + % / (Cu,e : 51)(9 — k)iczd.’ﬂ
Ak,q(t) Ak.e(t)
~ 2k / (0 - K)s V(8 — k)s - Vda + / £CX(8 - k)4 da.
Ak, (8} Ar,o(t)

(6.8)

(6.9)

Integrating (6.9) with respect to ¢, and taking into account that (8o — k)4 =0, and
G(eo, (80 — k)4) = 0, we obtain

& [0 kpcz+ / (V{6 k)4 P2 dzdt
]

[ [164ictaa + [ 1Galiceldzdt + [1G. ol I asa
Q £t at

(6.10)
+ [leal(® = B3 [Goldzdt' + [ feoel leel(6 - 1) ¢Paact
o at

+ [ 1510~ RslcPdsat + / (0= B4 |9(8 = k)4 | IC] [V¢|dud
Q Qt

Now we observe that owing to the boundedness of functious cg,g, cg,se, it follows that

(6.11) G (e, (6~ k)4 ) +]Goe (e,(0 = k)1 )] < (6 - B




Moreover, by the assumption on k,
(6.12) IG(e, (8 = k) )| < cb(8 — 1)}
Therefore, choosing § appropriately, the first integral on the right-hand side of (6.10) can

be absorbed by the left-hand side. The last integral on the right-hand side of (6.10) is
estimated by use of the Young inequality as follows

[J@= 02196~ a1 1) 19 ¢ldact
Q¢

(6.13) E 1
<5 / [V(0 ~ k)4 | (*dwdt’ + 5~ / (6 ~ kY3 V(P dzdt’,
0
e ot

so the first integral on the right-lhand side of above inequality is absorbed by the left-hand
side of (6.10). Combining (6.11)(6.13) in (6.10) we arrive at

/ (60— k)2 (Pdz + / V(0 — k)4 [2C2ddt’
Q feld
(6.14) < 6[/(9 = B3 (¢* + V¢ + (G| )ddt!
Qt

+ / (le)(6 — k)2 + [£1(6 — k)+)42dzdt’} =L +1,

Q¢

Clearly, the integral I; is estimated by

L <cf(o10)™? + (027)7] / (6 — k)% dzdt'.
Qle,7)

For the integral I3, using the boundedness of # and applying Holder inequality, we obtain

ne [ [ (eol+ s
o Ag,.(t)
to+7 'Xll_ to+r f;
Sc(/ / ([eul'\‘+]f|'\‘)dult'> (/measAk'L,(t')dt') ,
fo AuL(1) io
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with 1/ +1/A; = 1. We set now

2 2n +2
— = =(14+ %) and r:q:—(ﬁ-j_—z,
. T n
where  is arbitrary number from interval (0, 2). Then
n+42 n+2
PUL - VN L ) N T

2—mx’ P n(l+x)

Clearly, r, q satisfy conditions in definition of Bo(Q2T, M, 7,7, 8, 3). Consequently,
1 < (lleellza, @y + 1 llza, cam ) 155 (ky 0,7).
Taking into account that by assumptions
1lzaycam < ¢ (ledlna, @r) + ledE, @r) + lglls, @m) < oT),

1t follows that .
I, < c(T)yr(H")(k, 2,7)-

Combining estimates on I1,77 in (6.14) leads to

”(0 - k)+||%/;(Q(g—01 0,7T—027))
= ess S0pyepp / (0 — k)2C%dz + / V(0 — k) [ Cdadt
2 QT

<oAT) {[(010) +(2m) " IO = B}l cqomyy + 170+ (By 0,7}

Since > 0, this shows that the second inequality in condition (iii) is satisfied with constant
v =¢T).

The first inequality in (iii) can be proved by multiplying (1.2); by (#(f — k)4, where
Co{=) is a smooth function such that supp (o(®) C By(®o), (o(z) = 1for @ € B,_s, (x0),
and next integrating over Q x (tp,tp + 7). In this case, repeating the above arguments,
inequality (6.14) is replaced by

[e-picass [ 90~k
Q Q(e,m)

(6.15) SC[ / (6(ta) — k)i (o dz + / (8 — kA(G + IV Gol? )dwdt
B, (zo) Q(e,m)

+ / (lecl(8 — B)31F1(6 - k)+)C§dIdtJ~
Qle,7)
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Since the last two integrals on the right-hand side of (6.15) are estimated as above, this
leads to the required inequality. The proof is completed. O

By virtue of (6.2) we can apply the imbedding result of [5}, Theorem I1.7.1, to conclude
that 6 is Hélder continuous in 27, and

(6.16) [[6’”0,.,,./:(“1-) S C(T),
with Hélder exponent 0 < o < 1 depending on M = ¢(T),v = ¢(T),r,§ and .
Thanks to Hoélder continuity of e and 8, in view of a priori bounds (4.36), (5.13), we can

obtain the final estimates for a solution (u,6) to problem (1.1), (1.2) in V(p,¢) - norm
and thereby complete the proof of Theorem 2.1.

Lemma 6.2. Suppose that € and 8 are Hélder continuous in Q7, and

lel+ 1] < «(T) in QF,
IVellg, @ry + ledic, @@ry < e(T) for 1< o< oo

Moreover, suppose that

be L,QT), g¢eL, 07T,
ug € Wi~2/7(Q), wup € W2H(Q), 6y € WPTP9(Q), n+2<pg<oo,

and compatibility conditions. Then

(6.17) ”"”w;"(QT) <e(T)y, n+2<p<oo,
(6.18) 1Ollwz1@ry S e(T); n+2<g< oo,

Proof. Owing to the bound on €y, the right-hand side of equation (1.2); is bounded in
Ly(QT) — norm for 1 < ¢ < co. Therefore in view of the Holder continuity of the coefficient
co(€, 8), the classical parabolic theory {5] assures bound (6.18). Consequently, by virtue of
imbeddings, (6.18) implies that

||V6"w""/’(nr) < T,
so in case ¢ > n + 2,
(6.19) Vol ary S e(T) for 1< o <oo.
Hence, recalling estimate (4.37), it follows that
(6.20) IV Fele, ), @m < o(T), 1< p< oo
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By the regularity theory of parabolic systems, (6.20) implies (6.17).
Finally, we observe that the bounds n 4+ 2 < p, ¢, by virtue of imbeddings, are compatible

with assumptions of the lemma. O

Lemma 6.2 completes the derivation of a priori bounds for a fixed point of the map
T(1,-), and thereby proves property (iii) of the Leray-Schauder fixed point theorem.
Summarizing, we have shown that the solution map (3.4) satisfies assumptions (i)-{(iv)
of the Leray-Schauder theorem. i
Thus, T(1,-) has at least one fixed point in V(p,q) which is equivalent to a solution
(u,6) € V(p,q) to problem (1.1), (1.2). Now, in view of bounds (6.17), (6.18) and (4.1),
the proof of Theorem 2.1 is completed.
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