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Abstract. The paper is concerned with the unique global solvahility of a three-dimensional 
(3 - D) nonlinear thenuoelasticity system arising from the study of sha.pe memory ma­
teria.Is. The system consists of the coupled evolutionary problems of viscoelasticity with 
nonconvex elastic energy and nonlinear lieat concluction with medmnical clissipation. 
The present paper extencls the previous 2 - D existence result of the authors [7] to 3 - D 
ca.se. This goal is achievecl by means of the Leray-Schaucler fixecl point theorem using 
teclmique based on energy arguments and DeGiorgi method. 
Keywords: nonlinear thermoelasticity, nonconvex energy, globa.l existence, energy esti­
mates 
AMS Subject Classification: 35K50, 35K60, 35Q72, 74B2 

1. Introduction 

In the present paper we study the issue of existence of solutions to a three-dimensional 
(3-D) nonlinear thermoelasticity system arising as a model of structural phase transitions 
in shape rnernory materials. The system consists of the coupled evolutionary problerns of 
viscoelasticity with nonconvex elastic energy and nonlinear heat conduction with rnechan­
ical dissipation. 

In the previous paper [7] we have investigated such system in 2 - D case applying 
the Leray-Schauder fixed point theorem and the technique based on energy methocls. The 
ma.in difficulty we have been faceci with comes from the nonlinear coupling of mechanical 
and thermal effects. The key issue to salve the problem has been concerned with deriving 
L 00-norm and then Holder-norm estimates for temperature. 
In 2 - D case this has been accomplished with the help of technical energy estimates 
and theorems of Sobolev's imbeddings. In 3 - D case sucl1 procedure is not sufficient and 
additional methods are required. 

The goal of the present paper is to extend the existence result of [7] to 3 - D case. 
This is acl1ieved by combining the procedure of recursive improvement of energy estimates 
with DeGiorgi method employed to derive Holder-norm estimate on temperature. The 
existence result applies to 2 - D and 3 - D problems. 
The place of our study in the present theory of thermoviscoelasticity systems with nu11-
convex energy is discussed in the previous paper [7]. 

· The problem under consideration has the following form: 

(1.1) in n, 
u= O, Qu = O on sT = s x (o,T), 
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co(e,0)01 - l.0 t:,.0 = 0F,oe(e,0): e1 + 11(Aet): e1 + g m nr, 
(1.2) 0/ l=O = 0o ll1 n, 

n. V0 = o 

where 

(1.3) co(e,0) = Cv - 0F,oo(e,0). 

Here n CIR", n= 2 or 3, is a bounded domain with a smooth boundary S, representing 
the materia! points of a solid body with constant mass density p = 1; T > O is an arbitrary 
fixed time. 
The vector field u : nr --+ ]Rn is the displacement and 0 : nr --+ R+ is the absolute 
temperature. The second order tensors 

denote respectively the linea.rized strain and the strain rate. 
The elastic energy F(e,0) is a multiwell function of e = (ci;) with the shape strongly 
depending on 0; a physical example is given below. 
The fourth order tensor A= (A;;kl) represents the ela.sticity tensor given by 

e(u) H Ae(u) = >.tre(u)I + 2µe(u), 

where I = ( Óij) and >., µ a.re Lame constants with values within elasticity range (see 
a.ssumption (A2)). Furhermore, Q sta.nds for the second order linea.r elasticity operator 
defined by 

u H Qu =V• (Ae(u)) =µfm+(>.+ µ)V(V · u). 

Correspondingly, the operator Q2 = QQ is given by 

u H Q2 u =V• (Ae(Qu)) = µD.(Qu) + (>. + ,,)\l(V · (Qu)). 

The remaining quantities in (1.1), (1.2) have the following meaning: co(e, 0) is the specific 
heat coefficient, cv, k0 , v and x 0 are positive numbers representing respectively thennal 
specific heat, heat conductivity, viscosity and strain-gradient energy coefficient. The fields 
b: nr--+ IR" and g: nr--+ IR a.re external body forces and heat sources. 
System (1. 1 ), (1.2) represents ba.lance la.ws oflinear momentum and energy. The associated 
free energy density has the Landau-Ginzburg form 

(1.4) X'Q 2 
f(e(u), Ve(u),0) = -cv0log0+ F(e(u),0) + 8 1Qul , 

where the three terms represent respectively thermal, elastic and strain-grndient energy. 
For physical background of the model we refer to [7], [8]. 
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To motivate the structural assumptions of our existence result we reca.ll here the model of 
the elastic energy for 3 - D CuA!Ni shape memory aUoy, proposed by Falk-I(onopka [4]: 

J 5 2 

(1.5) F(e:,0) = I>f(0)Jl(e:)+ I:>1(0)J;'(e:)+ La1(0)J;6(e:), 
i=l i=I i=] 

where Jf ( e:) are crystal invariants given by k-th order polynomials in E ij, and a} ( 0) are ex­
perimentally determined coefficients which in the vicinity of phase transition temperature 
Be > O have the form 

(1.6) 

w herc at, cif are constants, with a1 > O. 
We note that (1.5) generalizes the well-known Falk ·model for 1 - D shape memory alloy 

where O/i > O, Be > O are constant parameters. 
Similarly as in 2 - D case studied in (7] our main structure hypotheses concern the 

function F(e:,B). We require the non-negativity of F(e:,B) and its concavity with respect 
to 0. Such requirements arc obviously satisfied by the model (1.5), (1.6). 
We point on two important from mathematical point of view consequences of the concavity 
assumption. Firstly, in view of definition (1.3), it implies that the specific heat coefficient 
remains bounded from below by positive constant Cv (sec (2.4)). 
Secondly, it implies that the elastic part of the interna! energy is nonnegative (see (2.7)) 
what is of importance in derivation of the first energy estimate. 
We do not require any convexity assumptions on F with respect to e:, only growth condi­
tions which arc imposed by Sobolev's imbeddings. 
The most restrictive is the condition on the growth of F with respect to 0. From the 
teclmique used to get temperature estimates (sec Lemma 4.3) it follows that B-growth 
exponent s has to satisfy condition s < 3/4 if n= 2 and .s < 2/3 if n= 3. 
At this point we stress that in 2 - D case a teclmically different method applied in [7] ha5 
admitted less restrictive condition s < 7 /8. 
Cleal'ly, in view of growth conditions our existence result ha5 physical relevance only in 
a finite range of strains and temperatures. 
We add also that to remove the growth condition s < 1 and to admit the linear growth of 
F in 0 seems to be a serious mathematical obsta.cle. 
The content of the paper is as follows. 

In Section 2 we present the a5sumptions and state the main result,H for problem (1.1), 
(1.2) on global in time existence and uniqueness of solutions in 2 - D and 3 - D ca5es. 
The proof of the existence theorem is presented in Sections 3 ..;.. 13 . 
In Section 3 we prepare the setting for the application of the Leray-Schauder fixecl point 
t.heorem. In particular, following [8] and [7], we introduce the parabolic decomposition 
of elasticity system (1.1) and define the solution map. Furthermore, folluwing clo~dy the 
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arguments of [7], we check the complete continuity and the uniform equicontinuity of the 
solution map. 
A central new part of the proof constitute a. priori bouncls for a. fixecl point. Their derivation 
is for clarity partitionecl into the distinct pieces which appear in Sections 4 7 6. Section 
4 conta.ins lemmas on positivity of temperature, energy estima.tes a.ncl the procedure uf 
recursive improvement of energy estima.tes. In Section 5 we prove the crucial L 00 (Q.T) 
- norm estimate on 0. The idea of the proof consists in cleriving a bouncl in Lr(flT) -
norm and passing to the limit with 1· -+ oo. In Section 6, applying DeGiorgi methocl in 
a way presented in [5], we prove that 0 E B2(f1.T,M,-y,1·,li,x) and consequently that it 
is Holder continuous. Furthermore, in Section 6 we establish the fina.I a priori estimates 
which complete the existence proof. 

We use the following notations: 

DJ 
f,; = ,,-, 

UXi 
i= 1, ... ,11, df 

!1 = dt' 

F ( 0) _ (łJF(e:,0)) 
,ee, - aei· . . ' 

J t,J=l , ... ,n 

F ( O)= łJF(e:,0) 
•0 e:, ao ' 

where space and time deriva.tives are materia.I. For simplicity, whenever there is no danger 
of confusion, we omit the arguments ( E:, 0). The specification of tensor indices is omitted 
as well. Vector - and tensor-va.lued ma.ppings a.re denoted by bold letters. 
The summati01) convention over repeated indices is used. Moreover, for vectors a= (a;), 
ii= (a;) and tensors B = (Bij), iJ = (Bij), A= (Aijkl), we write 

a. a= a;a;, B; iJ = BijB;;, 

AB= (AijklBki), BA= (B;;A;;k1), lal= (a;ai) 112, IBI= (B;;B;;) 1l 2 , 

and denote by 

( ) 

1/p 

llallL,(n) = J lal''dx , 
n 

etc., 

the corresponding Lp(fl) - norms of tensor-valued functions. 
The symbols V and V• clenote the gradient and the divergence opera.tors. For the c!ivergence 
we use the convention of the contraction over the last index, that is, 

V· e:(:v) = (e;;,;(:i:))i=l, ... ,n• 

We use the Sobolev spa.ces notation of [5]. 
Throughout the paper c and c(T) denote generic constants, clifferent in various instauces, 
depending on the data of the problem and dama.in n. The argument T indicates time 
horizon dependence which is always of the form T", a E IR+ . 
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2. Assumptions and main results 

Throughout the paper we impose the following assumptions. 
(Al) Dorna.in n CIR", n= 2 or 3, with the bounda.ry of class C 4 • The C 4 - regula.rity is 
needed to apply the cla.ssica.l regula.rity result for para.bolic systems ( see estima.te { 4.38) ). 
( A2) The coefficients of the operator Q sa.tisfy · 

/I> 0, n>.+ 2µ > O. 

These conditions assure the following properties: 
(i) Coercivity and boundedness of the operator A 

{2.1) 

where f. = min{ n>.+ 211, 2µ }, c = max{n>. + 2µ, 2/L }; 
(ii) Strong ellipticity of the operator Q {see [8), Sec. 7). Thanks to this property the fol­

lowing estimate due to Nefas [6) holds true 

{2.2) cllullw;(fl) ś !IQullL,{fl) for { u E Wł (11)1 ul, =O}; 

(iii) Parabolicity in generał (Solonnikov) sense of systems in the form (3.1), (3.2) {see [8), 
Sec. 7). 

The next assumption concerns the structure of elastic energy. 
(A3) Function F( e, B) : 5 2 x [O, oo) --+ IR is of class C3 , where 5 2 denotes the set of 
symmetric second order tensors in IR". We assume the splitting 

where F1 and F2 are subject to the following conditions: 
{ A3-1) Conditions on F1 ( e, B) 
(i) concavity with respect to(} 

{2.3) -F1,ee(e,B) 2". O for (e,B) E S2 x [O,oo). 

{ii) Nonnegativity 
Fi(e,0)2".0 for (e,0)ES2 x[O,oo). 

{iii) Boundedness of the norm 

IIF1 llc•(S2 x(O,oo)) < 00 . 

(iv) Growth conditions. There exist a positive const.ant c and num bers s, [(1 E (O, oo) such 
that 

IF1 (e, B)I ś c(l + O'lell(' ), 

IF1,e(e,O)I ś c{l+O'lelK,-I), 

IF1,ee(e, B)I ś c(l + 0'/ell(' - 2 ), 

IF1,ee(e,O)I ś c{l +0•-1 1e/1(1 - 1 ) , 

IF1,ee(e,O)I Ś c(l + 9•-2 je/ 1'' ), 

IF1,eee(e,O)I Ś c(l + 0•-2 jel 1' 1 - 1 ) 
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for large values of 0 and e;j, where ac\missible ranges of s and J(l are given by 

<s<--= . O n+ 1 { 3/4 if n= 2 
2n 2/3 1f n = 3, 

O } ., q" [n+ 2 1 ] { a.ny finite number if 
< lJ <l+- --+--- = r- • 

2 2n n(n + 1) lv/4 1f 
n=2 
n= 3. 

Moreover, in case 1(1 > l the numbers s and 1(1 are linked by the equality 

2sn 4n(I<1 - 1) 1 2 --+~-,-----,~= +-,--c-c---~. 
n+l q,.(n+2) (n+l)(n+2) 

Here q„ is the Sobolev exponent for which the imbeddiug uf W] (H) inLu L 9,. (11) is 
coutinuous, i.e., q,. = 2n/(n - 2) for n 2': 3 and q„ is a.ny finite number for n= 2. 

Concernig the part F2 ( e) we impose: 
(A3-2) Conditions on F2(e) · 
(i) Nonnegativity 

(ii) Boundedness of the norm 

(iii) Growth conditions 

for large va.lues of €ij, where 

IF2(e)I :=:; c(l + lelK2 ), 

IF2,e(e )I :=:; c(l + lelK2 - 1 ), 

IF2,ee(e)I :=:; c(l + lelK2 - 2) 

O I( < l qn(n + 4) = { a.ny finite number if 
< 2 - + 4n 9/2 if 

n=2 
n= 3. 

Before formulating regularity requiremeń.ts on the data we note same consequences of 
assumption (A3-l) which a.re of importance in further considerations. 
In view of (A3-1) (i), by definition of ca(e,0), 

(2.4) O<c.:=:;co(e,0) for (e,0)ES2 x[O,oo). 

Moreover, (A3-1) (iii) and (iv) imply the bounds 

lca(e,0)1, Jco,o(e,0)1 :=:; c(l + JelK'), 

lco,e(e,0)J :=:; c(l + lelmax{O,K,-l}) for (e,0) E 5 2 X [O,oo). 
(2.5) 

From (A3-l)(i) and (ii) it follows that 

(2.6) F1(e 1 0)- 0F1,o(e,0) 2': O for (e,0) E 5 2 x [O,oo), 

7 



and owing to (A3-2) (i), 

(2.7) (F1(e,0)-0F1 ,9 (e,0))+F2(e)~O for (e,0)E52 x[O,oo), 

what mea.ns that the elastic part of the interna! energy is nonnegative. 
The later bouncl is of importa.nce in deriva.tion of energy estimate (sec Lemma 4.2). 

Concerning the data. we assume: 
(A4) Source terms sa.tisfy 

b E Lp(D.T), n+ 2 < JJ < oo, 

g E Lą(nr), n+ 2 < q < oo, and g ~ O a.e. in nT. 

Initial data satisfy 

uo E w;-211'(11) 

Bo E w:-2 fq(S1), 

Ut E w;-2h'(i1), n+ 2 < ]J < oo, 

n+ 2 < q < oo, and e. = min 80 > O. n 
Moreover, the initial data are supposed to satisfy compatibility conditions for the classical 
solvability of parabolic problems. 
For further use we note that, by imbeddings, 

n+2 
Bo E C1 •00 (i1) O< Cl'o < _1 - --, 

q 

eo E C 2•0 :,(i1) O< Cl'~ < 1 - n+ 2 . 
JJ 

We shall give now an example of the function F1 ( e, 0) which satisfies the structure 
assumptions (A3-1) (i)-(iv). This example is motivated by the Falk-Konopka energy model 
(1.5), (1.6). 
Example. Let 

N 

F1 (e, 8) = L .F'i;(B).l\;(e), 
i=I 

with functions Fli E C3 ([0,oo)) given by 

for O 5 0 ś 01 
for 81 < 0 < 02 
for 82 ś 0 < oo. 

Here NE N, O< s; < s < I, 01 ,02 are numbers satisfying O< 81 < 82 , s;e;;-t < 1, and 
functions cp; are nondecrea5ing, concave such that Fi; E C 3 ([0, oo)). Moreover, functions 
F2; E C 3 (S2 ) are supposed to satisfy 

F'i;(e)~O, 

I.F'i;(e)I Ś c(l + lelK' ), 

I.F'i;,e(e)I Ś c(l + leimax{0,/1,-1)), 

IF2i,u(e)I Ś c(l + lelmax{O.K,-2 l) 

for all e E 52, where numbers s and 1(1 a.re subject to conditions specified in (A3-l) (iv). 
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For the presenta.tion convenience the a.bove example is used in the proof of pointwise 
es tima.tes on tempera.ture (see Lemma.s 5.1, 5.2). 

The main result of the paper is the following existence theorem . 

Theorem 2.1. Let assumptions (Al)-(A4) be sa.tisfied am} the coefficients xu, 1, folii] the 
conclition 

(2.8) 0 <Fo~ 1,. 

Tl1en for any T > O tl1ere exists a. solution ( u, B) to problem (1.1), (1.2) in the spa.ce 

sucl1 that 

(2.10) 

with a positive constant c(T) dependi11g on the data of the problem and Ta , a E IR+. 
Moreover, tl1ere exists a positive ifoite number w, satisfyiilg 

[g + v(Ae 1): et] exp(wt) + [wco(e:, 0) + F,oe(e:,B) : e:t]B. 2 O in n.T, 

sucli tliat 

(2.11) B 2'. B,exp(-wt) in nr. 

The proof of this theorem is presented in Sections 3 + 6. 
We add here some comments concerning the solution space. 
The condition n+ 2 < p, q is implied by the required regularity of solutions. More· precisely, 
from Sobolev's imbeddings it follows that solutions in the space V(p, q) enjoy the following 
properties: 

(2.12) 

are Holder continuous in nr and satisfy the corresponding a priori bounds with constant 
c(T). The continuity of e, B and e 1 is used in the proof of Lemma 4.1. 
The relation p ~ q is needed in the proof of the complete continuity of the solution map 
(see Section 3). 

For completeness we recall also the uniqueness result which follows by repeating the 
arguments of the 2 - D proof presented in [7] . In this proof the continuity of e: 1 and VB is 
required. 

Theoren1 2.2. Let the assumptions of Tl1eorem 2.1 be sa.tisfied and in aclclition suppose 
tlmt 

(A5) F(e:,B):S2 x [O,oo) isofclassC4, and gEL00(nr) . 

Tl1en the solution (u,0) E V(p,q) to problem (1 .1), (1 .2) is wiique. 
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3. The proof of Theorem 2.1. Application of the Leray-Schauder fixed point 
theorem 

First we recall (see [Sł) that system (1.1) 1 aclmits the following clecomposition into 
two para.bolic systems, for vector field w: 

Wt - f3Qw =V. F,e:(e:, 0) + b 111 nr, 
(3.1) 

and vector field u: 

(3.2) 

wlt=O =Wo= u 1 - crQu0 

w =0 

Ut-CIIQU =W 

ult=O = uo 

u=O 

where a, /3 a.re numbers sa.tisfying 

(3.3) 

111 n, 
Oil ST, 

in nT , 
in n, 
on 5T , 

We assume that the viscosity and capilla.rity coefficients, v and x 0 , satisfy relation (2.8). 
Un<ler such condition a,/3, E IR+. Systems (3.1) and (3.2) are coupled with problem (1.2) 
for 8. 

We apply the following formulation of the Leray-Schaucler fixed point theorem (see 
[3]): 

Tl1eorem 3.1. Let B be a Banacll space. Assume tliat T : [O, 1] x B-, Bis a map witl1 
tl1e following properties: 
(i) For any fixed r E [O, 1] tl1e map T( r, ·) : B-, B is completely continuous. 

(ii) For every bounded subset C of B, tlie family of maps T( •,X) : [O, 1] -, B, x E C, is 
uniformly equicontinuous. 

(iii) Tl1ere is a bounded subset C of B sucl1 tl1at any fixed point in B ofT( r, ·),O ~ r ~ 1, 
is contained in C. 

(iv) T(O, ·) lias precisely one fixed poiut iii B . 
Tl1e11 T(l, ·) lias at least one fixed poi11t iii B . 

In order to define the corresponding solution map we extend the definition of F 1 ( e:, 0) 
to all 0 E IR in such a way that it is of class C 3 , and that 

Fi ,oo(e:,0) ~ O for all (e:,0) E S 2 x (-oo,O). 

Wit,h such extension the !ower bound (2.4) on c0 (e:, 0) remains valid for all (e:, 0) E S 2 x llł. 
The solution space is V(p,q) clefinecl by (2.9), The solution map 

(3.4) T(r,·): (ii.,0) E V(p,q)-, (u,0) E V(p,q), r E [O, 1], 
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is clefinecl by n1eans of the following initial-bounclary value problems: 

w 1 - /3Qw = T["v · F,c:(e:, O)+ b] 111 0,T 
' 

(3.5) wl,=o = Two 111 n, 
w=O on sr, 

u 1 -aQu= w in f!r 
' 

(3.6) ul,=o = TUo 111 n, 
u=O on Sr 

' 

co(c:, o, T )01 - koD.0 = T[0F,ec:(c:, 0) : E:t + v(Ac:t) : E:t + g) lll nr, 

(3.7) 

where 

0Jl=O = T0o 

n • '70 = O 

co(c:,0,T) = Cv - T0F,es(c:,0), e: = c:(ii). 

111 n, 
on sr, 

Clearly, a fixed point of T(l, •) in V(p, q) is equivalent to a solution ( u, 0) of the decomposecl 
system (3.1), (3.2), (1.2), and thereby constitutes a solution to problem (1.1), (1.2) in 
V(p, q) . Therefore, the proof of Theorem 2.1 reduces to checking that the solution map 
T(r, ·) satisfies properties (i)-(iv) of the Leray-Schaucler fixed point theorem. 
Here we check properties (i), (ii) and (iv). The property (iii) will be proved in Sections 4+6. 

The property (i) foliowa by showing that for any fixed r E [O, l], T( r, ·) maps the 
bounded subsets into precompact subsets in V(p,q). Let (ii",0") be a bouncled sequence 
in V(p, q) such that for n -t oo 

(3.8) 
ii"~ ii weakly in w:•2(nr), n+ 2 < p < oo, 

0" ~ 0 weakly in w;•1 (nr), n+ 2 < q < 00 . 

Our aim is to show that for the values of T( r, •) given by 

(3.9) (u", 0") = T( T, ii", 0") 

the following convergences hold for 11 -t oo 

(3 .10) 

(3 .11) 
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where 

(3 .12) (u,0) = T(r,u,0). 

With the help of compact imbeddings theorems (1) it follows from (3 .8) that for n --1 oo 

(3.13) 
u" --1 u strongly in W/• 312 (.Qr), n+ 2 < p < oo, 

0" --1 0 strongly in w;,112(.nr), n+ 2 < q < oo. 

This, by virtue of continuous imbeddings, implies that 

(3.14) ii:"-> ii:, Vii:"-+ Vii:, 0" -+ 0 

strongly in spaces of Holder continuous functions in nr, where 

ii:"= e(ii"), ii:= e(u). 

Thanks to the above convergences, it follows that 

(3.15) 

V· F,e(ii:" ,0") = F,ee(ii:", 0")Vii:" + F,ee(ii:" ,0")V0" 

-+ F,ee(ii:, 0)Vii: + F,ee(ii:, 0)'i10 = V· F,e(ii:, 0) 

strongly in Lp(S1r) for n+ 2 < p ~ q < oo. 

Consequently, by the theory of parabolic systems (9), 

w" --1 w strongly in w;•1(!1r), 

where w" and w a.re the corresponding solutions to problem (3.1). In tum, owing to the 
latter convergence, for solutions of problem (3.2) it holds (3.10). Furthermore, we note 
that, by (3.10), 

(3.16) en-+ e, ef -+ ei 

strongly in spaces of Holder continuous functions in nr, where 

e" =: e(u"), e;• =: e(un, e = e(u), ei= e(u1)­

ln order to prove convergence (3.11) we consider the difference 

17 = 0" - 0. 

By definition, 7/ satisfies the following problem 

co(e, 8, r)11;' - kofl.17" = P"(e", 811 , r) - P(e, 8, r) 

-(co(e",011 ,r)- co(e,0,r))0;• 
(3.17) 

11"! = 0 l=O 

n· 'i117" = O 

12 
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where 
P"(e",0",r) = r[0 11 F,0e(e:' 11 ,0") : e;' + 11(Ae;'): e;' +g], 
P(e,0,r) = r[0F,oe(e,0): e 1 + v(Ae,): e, + g]. 

In view of Holder continuity of the coefficient co( e, ii, r ), in order to prove that for n --> = 

it is snfficient, by virtue of the classical parabolic theory, to show that the right-hand sicie 
of (3.17)i coi1Verges to O in Lq(!1T)-norm. Indeed, we have 

!IP"(e",0",r)- P(e,8,r)IIL.(OT) 

~ c(1110" - BIIF,se(e",B")lle:'I IIL,(OT) + 11 Ble:'l(le" - el+ w· - BI) IIL,(nT) 

+li BIF,oe(e, 0)lle~ - ed IIL,(fiT) + li le~ - e1l(le:'I + lei I) IIL,(nT)) 

--> O as n --> O, 

where we have used uniform with respect to n Holder bounds on e", e;', 0" and the 
convergences {3.14), {3.16). Furthermore 

li( co ( E", 0", r) - co( E, ił, r ))0;' IIL.(nT) 

~ supnrico(1o",B",r)- co(1o,B,r)l ll0~IIL,(nr) -t O as n-->=· 

This shows (3.11) and thereby the complete continuity of T( r, · ). 
The uniform equicontinuity property {ii) follows by direct comparison of two solu­

tions (w,u,0) and (w,i&,0) to problem(3.5)-{3.7) con-esponding to parameters rand f, 
respectively, and applying the cla.5sical regularity theory (see [7] for details). 

The property (iv) is obvious, by definition of T(r, •). 

4. Energy estimates and recursively improved estimates 

In this section we begin the derivation of a priori bounds for a fixed point of the so­
lution map T( r, • ). Without loss of generality we may set r = 1. Let then ( u, 0) E V(p, q) 
be a fixecl point of T(l, · ), i.e., a solution to problem (1.1 ), (1.2). Our goal is to obtain 
estimates (2.10). To this end we follow the procedure described in [7]. First of all, before 
establishing the energy estimates, we prove that for solutions ( u, 0) E V(p, q) temperature 
0 stays positive what is in accordance with thermodynamics. This is proved under suffi­
cient regularity of solutions. The regularity requirements are satisfied for solutions in the 
space V(p,q), where 1o,0 and Et are Holder continnous in nr. By repeating tllf' proof of 
Lemma 3.1 [7], we have the following 
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Lemma 4.1. Let 
e. = min0o > o, 

!1 

and (u,0) be a solutio11 to (1.1), (1.2) such that e,et E L 00(l1T), 0 E L 00 (l1T), 01 E 
L1 (O, T; Lq(l.1)), 1 < ą < oo. 
The11 tl1ere exists a positive finite 1mmber w satisfyi11g 

[g + 11(Ae1): e,) exp(wt) + [wco(e, 0) + F,eE:(e, 0) : et)0. 2: O m nr, 

sud1 tliat 

(4.1) () 2: 8. exp(-wt) in n,T. 

In the next step, due to (4.1) and the bound (2.7), we can establish physical integral 
estimates. Repeating the proof of Lemma 3.2 in [7) we have the following: 

Lemma 4.2. Let 

tto E Wf(!!), tt1 E L2(l1), Bo E L1 (!1), 

(F1 (eo, Bo)- 80F1,e(eo, Bo))+ F2(eo) E L1(!1), 

b E L1(0,T;L2(!1T)), g E L1(!!T). 

Assume that 8 2: O in n,T and tlie bound (2. 7) Iw/ds. Tlien a solution (u, 8) to (1.1), (1.2) 
satisfies estimate 

1 2 Xo 2 
(4.2) c„IIBIIL=(O,T;L,(!1)) + 4llu1IIL=(O,T;L2(0)) + sllQullLoo(O,T;L2(0)) 

+ ll(F1 (e, 8) - 8F1,e(e, 8)) + F2(e )IIL=(o,T;L,(O)) ~ c 

witli tlie consta.nt c given by 

We note the fo!lowing implications of energy estima.te ( 4.2). In view of property (2.2) 
of the operator Q, it follows that 

(4.3) 

Consequently, 

so, by Sobolev's imbedding, 

(4.4) li li < for 1 < < _ { a.ny finite number if n = 2, 
E: L= (O,T;L.(O)) - c, CT - q,. - 6 if n= 3. 
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:tvioreover, ( 4.2) implies the bound 

(4.5) Ilu/Iw'·' (!JT) ~ c. 2,= 

Hence, 

so, in view of imbedding, 

(4.6) l!e/lL,(!JT) ~ c for 1 <a< q,.(n + 2) = { any finite number if n= 2, 
- n 10 if n= 3 .. 

Our further procedure will consist in iterative improvement of energy estimates. Similarly 
as in [7], the niain tool is the regularity theory of parabolic systems. 
Applying Lemmas A2, A3 [7] to problems (3.1), (3.2) we obtain at first estimates on w: 

and next on u: 

With the help of these estimates we prove now additional bounds on temperature. To 
achieve this we have to impose appropriate growth restrictions on F( e, 0). 

Lemma 4.3. Suppose tliat s, 1{1 and K2 satisfy c011ditions 

n+ 1 q,. [n+ 2 · 1 ] 
O< s < ~• O< K1 < 1 + 2 ~ + n(n + l) , 

O < K2 ~ 1 + q,.(: + 4). 
11 

fo case K1 > 1 tJ1e numbers s ru1d 1{1 are linked by 

Moreover, 

_2_sn_+_4n~(~K_i_-_l~)=l+---2 __ 
n+l q0 (n+2) (n+l)(n+2) 

u E W3-(n+4)/2(n+2)(S1) 
O 4(n+2)/(n+4) ' 

Do 

G(eo, Bo) = -8~F1,o(e:o, Bo)+ 280F1 (eo, Bo) - 2 j Fi (eo, Od~ E L1 (S1), 

o 

b E L4(11+2)/(n+4)(rlr), g E L2(n+2)/(11H)(rlr) . 
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Then there exists a. constant c(T) depending on the da.ta and T", a E IR+ sucli tliat 

(4.8) 

Proof. Multiplying (1.2) 1 by 0 and integrating over S1 we get 

Cv d J 2 j( 2 2 J I 12 Zdt 0 dx - 0 F1,008t + 0 F1,BE : Et)d:r; + ko \10 d:r; 

n n n 

= 11 J 0(Aet) : E1dx + J 0gd:r;. 
(4.9) 

n n 
Now we introcluce the function 

(4.10) G(e, 0) = -02 F1,o(e, 0) + 28F1 (e, 0) - 2-F't(e, 0), 

where 
8 

F1(e,8) = j F1(e,€)d( . 
o 

It is seen that G(e, 0) is the primitive of -02 F1,oo(E, 0) with respect to 0 such that 

G(e,0)=0 and G,o(e,0)=-02 F1,oo(e,0)~O, 

SO 

(4.11) G(e,0) ~ O for (e,0) E S 2 x [O,oo). 

Furthermore, according to ( 4.10), 

( 4.12) G,e(E, 0) ~ -02 F1,oe(e, 0) + 20F1,e(e, 0) - 2F1,e(e, 0) . 

In view of ( 4.10) and ( 4.12), identity ( 4.9) takes on the form 

c; ! j 02 dx + ~ j G(e,B)dx + ko j IVBj2 dx 

( 4.13) n n n 

= 11 J 8(Ae1): e,dx + 2 j(8F1,e - F1,e): e1dx + J Bgdx. 

n n n 

Integrating (4.13) with respect to time and using (4.11) we get 

cX2 (t) ś ~ / 02 dx + ko J jv'0j 2 dxdt' 
n n• 

(4.14) Ś v J fJ(Aei•) : E,,dxdt' + 2 j(BF1,E -F'1,e) : e 1,d:cdt' 

n• n• 

+ J Bgdxdt' + c; J B~dx + J G(eo, 0o)dx, Oś t ś T, 
n• n n 
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where 

X(t) = (ll0IIL<o,,;L,{nJ) + IIV0IIL<n•J) 112 -

\Ve proceecl now to estimate the terms on the right-hand sicie of (4.14). To this enci first 
we note that by virtue of the imbedding of the space Vi(S1T) in L 2{,.+2)/n(S1r), it holcls 

( 4.15) 
11011L,rnp1(0T), :S cllBllv,cnr) 

:S c(IIBIIL{o,T;L,(n)) + IIVBIIL{nr/ 12 = cX(T). 

In view of (4.15) the first term on the right-hand sicie of (4.14) is estimated as follows 

(4.16) 

To find bounds on !le:1 IIL.c .. +,J/(n+•l (OT) we make use of estima.te ( 4. 7). From now on we set 

4(n + 2) 
p= n+4 · 

In view of a.ssumptions, by the Holder inequa.lity, it follows tha.t 

l. 

IIF,e:(e:,B)IIL,(flT) :S cf J 0"'1e:lpmax(o,K,-1)dxdt + J łcJpmax(o,K,-l}dxdt) • + c, 

\r flT 

....L ....L 

:Sc(/ OP•>- 1dxdt) ,,, ( / le:11'>.,max(O,I<,-l)dxdt) ,,, 

flT flT 

l. 

+ c( J le:ll'rnax(O,K,-l}dxdt), + c, 

flT 

where 1/ >11 + 1/ >..2 = 1. Now we set 

{ 
q,.(~ + 4) if K1 > 1 

>..2 = 411(/11 - 1) 
a.ny number from the interva.l (1, oo) if /{1 :S 1. 

Then, by virtue of the bound ( 4.6), 

:SC. 
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J\'Ioreover, in view of (A3-2) (iii), 

Consequently, 

WP. exa.mine now the term 

To this end we make use of the interpolation inequality 

where parameter t91 is determined by the relation 

Then 
T ....L.. 

I1 Sc[ j(IIV0llf:1~~' 11011~~1~\1-~,) + ll0ll7;,:1~))dt] ,,, 
o 

where in the last inequality we have used estimate ( 4.2). Imposing the condition 

2n 
--(psA1 - 1) = 2, 
n+2 

equivalent to 

it follows that 

AJ = (n+ l)(n + 4), 
2ns(n + 2) 

In the case psA1 S 1, by virtue of energy estimate ( 4.2), Ii :S: c. 
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In view of the aboYe estimates, we obtain 

so, by virtue of ( 4. 7), 

( 4.17) 

Consequently, using the above estimate in (4.16) gives 

Now we assume the condition 

(4.18) 

implying that 

Hence, in view of expression for AJ, 

(4.19) 

4 
1 +-, < 2, 

PAJ 

n+l 
s<~-

Moeover, we note that the equality 1/ AJ+ 1/ A2 = 1 can be always satisfied in case KJ :S 1, 
whereas in case KJ > 1 it imposes an additional conditon between s and KJ, namely 

{4.191) 
2sn(n + 2) + 4n(KJ - 1) = 1. 

(n+l)(n+4) q,.(n+4) 

In view of ( 4.18), by Young's inequality, 

Yi :S EJX(T)2 + c(EJ )c(T), EJ = const > O. 

Therefore, for sufficiently small EJ the term EJX(T)2 can be absorbecl by the left-hand sicie 
of(4.14). 

The second integral on the right-hand sicie of (4.14) is handled a.-, follows: 

2 J ((JFJ,€: - f\e} : €:t•dxdt1 :Sc J B(l + B')le:l 111 "x{O,K, -J} ie:tldxdt 

n• nr 

~ ' [ (J ,, '+•1'• d,dt) ,', + ,(T) l (J 1, I'""", • .,,'_, I d.,dt) " (j 1,' I'' d.,dt) " 
=Y2, 
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where 1/ .,\3 + 1/ ,\4 + 1/ ,\5 = 1. In view of the previous considerations we set 

{ 
q11 ( n + 2) 'f ,. 

• I A1 > 1 
.,\4 = 11.(li.1 - 1) 

any number from the interva.l (1, oo) if 1(1 ::; 1, 

As= 4{n + 2) . 
n+4 

In that case, utilizing estimates ( 4.6) and ( 4.17), 

Similarly as 12, the term 

T f:i 
11 011 1+• - ( I 11011<i+•)Aa dt) = I L(l+•)>a({JT) - L(l+,)>a(ll) - 3 

o 

is examined by means of the interpolation inequality 

where t'l2 is determined by the rela.tion 

2n 1 
so t'l2 = 2 + n (I - {l + s)..\a ). 

Then 

[IT ]* J < C (11VBll(J+•)A,t1, ll0ll(l+•)Aa(l-_t1,) + 11011(1+.,)Aa) dt 
3 - L,(11) · L 1 (n) L 1 (Il) 

o 
T ..L ::; c( j IIVBllf!c'rt+•)Ao-t) dt) '• + cT-ł. = [4, 

o 

where in the last inequality we have used estimate ( 4.2). Here we set 

what implies that 

2n 
--((1 + s)..\a - 1) = 2, 
n+2 

.,\ 3 = 2(n + 1). 
n{l + s) 
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• 

: 

Then 

Combining estimates on the terms la and I.1 , we arrive at 

Now we assume the conclition 

( 4.20) 
2 2 ,-+, < 2 . . 

P"I AJ 

Consequently, by Young's inequality, 

so for sufficiently small c2 , the term c2X(T)2 can be absorbed by the left-hancl sicie of 
(4.14). Using expressions for p, A1 and AJ, condition (4.20) takes on the form 

that is 

ns n(l + s) 1 
2(n + 1) + 2(n + 1) < ' 

n+2 s<--. 
2n 

Clearly, the latter condition is less restrictive than (4.19). 
In ca.5e K1 > 1 the equality 1/ AJ+ l/ A4 + 1/ As = 1 imposes the conclition 

(4.21) 

that is, 

Obviously, since 

(1 + ,ą)n n(I<1 - 1) n+ 4 ---+ --'----"- + --- = 1, 
2(n + 1) q,.(n + 2) 4(n + 2) 

2sn(n + 2) 4n(K1 - 1) (n+ l)(n + 2) + 2 + = . (n+l)(n+4) q,.(n+4) (n+l)(n+4) 

(n+ l)(n + 2) + 2 1 
(n+l)(n+4) < ' 

condition ( 4.21) is more restrictive than ( 4.191). 

In case K 1 ~ 1 it is seen, in view of 

2sn(n+2) n+2 
)( ) < --4 < 1, 

(n+ 1 11 + 4 n+ 

that the conclition between AJ, A4 and As can be always satisfiecl. 

21 



Summarizing restrictions, we see that s and K1 have to satisfy (4.19) and (4 .21). 
Finally, the thircl integral on the right-hand sicie of (4.14) is bounded by 

so aga.in the term e3 X(T) 2 can be absorbed by the left-hancl sicie of (4.14). 
In this way, recalling assumptions on initial data, it follows from (4.14) that 

X(T) 2 ~ c(T), 

what completes the proof. • 
We note some a.dditional estima.tes resulting from the above lemma. From ( 4.15) it 

follows that 

(4.22) 

and from (4.17), 

( 4.23) ll,;-llw•·• cnr) ~ c(T). 4(:t..2> . 

Thus, by imbedding, ,;- is Holder continuous in nr, and 

( 4.24) 

Consequently, 

and, with the help of ( 4. 7), we conclude tha.t 

( 4.25) 

O< a1 < 1- ~-
4 

We note also that, by virtue of (4.24), the bounds (2.5) imply 

( 4.26) /co(c,0)/ + /co,.(c,0)/ + /co,B(i;-,0)/ ~ c(T) in nT. 

In the next lemma we obtain an estimate for 01• 
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Lemma 4.4. Suppose tliat 

n+l 
o< s < -?-, _n 

g E L2(l1r), V0o E L2(l1), and 

llellc•1,n1/2(!1T) :S c(T), 

2(n + 2) 
p= ~----'- >2. 

ns 

Tl1e11 tliere exists a constaiit c(T) > O sucl1 tliat 

( 4.27) 

Proof. Multiplying (1.2)1 by 01 and integrating over !11 we obtain 

I 

Cu J 0;,dxdt' + ~ J ~I J /V0l 2dxdt' 
n• o o 

:Sc j(l + 0'le1 111 ax{O,Ki-l))le11 1ł01 1 ldxdt1 +c j le11 l2 l011 ldxdt' + j lglJ0,,ldxdt' . 
nt Qt nr 

Hence, in view of assumptions, by Young's inequality it follows that 

~ IJ0d1Lcn•) + ~ IJV01JLoo(O,t;L,(O)) 
( 4.28) 

:Sc J (l + 02')/et•l 2 dxdt' + c J le1•/ 4 dxdt' + J g2dxdt' + ~ J /V0ol 2dx. 
n1 n• 0 1 n 

For the first term on the right-hand side of (4.28) we have 

11' 

:S c(T)(l + lled/i cor)), 
--2l••±_2_]__ 
~ 

where we have appliecl the Holder inequality with 

A1 =(n+ 2)/(ns), A2 =(n+ 2)/(n + 2 - ns). 

Since, O < .s < 1 < "t2, 1 < A1, A2 < oo. 
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Furthermore, in view uf 

( 4.29) 

i t follows that 

n+l n+2 
s<--<--, 

2n 2n 

2(n+2) 2(n+2) 
----<---. 
n+ 2- ns ns 

Hence, by virtue of the bound on e: 1 

Similarly, since 

I ś c(T). 

2(n+2) 4<~-~, 
ns 

the second integral on the right-hand side of (4.28) is bounded by 

J le:,,l4 dxdt' ś lle:diLcnr) ś c(T). 
n• 

Consequently, ( 4.28) implies 

what together with ( 4.8) shows the assertion. 

By virtue of imbedding, it follows from ( 4.27) that 

(4.30) IIBIIL~(o,T;L.(!l)) ś c(T) for 1 < u ś q,.. 

We indicate more consequences of the estimates obtained so far. 
Let us write equation (1.2)1 in the form 

(4.31) -ko~B = -co(e, 0)01 + OF,oe(e:, B): e:1 + v(Ae:1): e:1 + g. 

Recalling the arguments used in the proof of the previous lemma we see that 

• 

Also, by ( 4.26), ( 4.27), we have llco(e, 0)0t//i,(nr) ś c(T). Therefore, by virtue of the 
cla5sical elliptic theory, it follows from ( 4.31) that 

(4.32) 

Furthermore, (4.32) and {4.27) imply that 

( 4.33) 
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so, by Sobolev's imbeddings, 

( 4.34) 

Thus, repeating estimate (4.25), in view of (4.34), we arrive at 

(4.35) 

ll'~h·llw;•'''(nTJ ś c(T) 

for JJ = q,.(n + 2)/(ns) > q ... Hence, by imbedding, 

( 4.36) llv'ellc•2,•2/'(!1T) Ś c(T) with O< o 2 < 1 - ns . 
q„ 

We close the sequence of estimates by the one resulting directly from the regularity 
theory of parab~lic systems. Nam~ly, in view of assumptions, 

~~ . 

IV•F,e(e, 0)1 Ś c(1+0'lelmax{O,K1 -2) +leJIDax{o,K,-2})lv'el+c(1+0'-l lelmax{O,K1-l} )IV0ł, 

recalling bounds ( 4.24 ), ( 4.34) and ( 4.36), we get 

llv' · F,e(e,O)IIL1.l!,.±ll(f1T) $ c(T). 
n 

Therefore, owing to the classical regularity result for parabolic systems (see e.g. (7], 
Lemma Al), it follows that 

(4.38) 

Consequently, by imbedding, 

( 4.39) lleillw•·•'' (OT) ś c(T) . 
.!W:!). 

n 

Hence, in particular, siuce Wki (11) C L 00 (S1), it follows that 
n 

( 4.40) 

The latter estimate will be crucial for obtaining L00 (!JT) - norm bound for B (see 
Lemma 5.2) . 
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5. Pointwise estimate on temperature 

In this section we prove the crucial L00(!JT) - norm estimate on 0. Here we assume 
t.hat the hypotheses (Al)-(A4) are satisfied and, for the presentation convenience, suppose 
that function Fi ( e:, 0) has the form specified in Example in Section 2. The idea of the proof 
consists in deriving a.n uniform bomu! in Lr(!JT) - norm and then pa.ssing to the limit with 
1· --> 00 . 

First we esta.blish that 0 E Lr(!lT) for 1 < 1· < oo . In 2 - D ca.se this is assured by 
cstimate ( 4.34) . In 3 - D we have the following 

Len1ma 5.1. Let function Fi (e:, 0) be denned as ill Example in Sectio11 2. Moreover, 
suppose tliat estimates (4.24), (4.35) liold, and 

n+l 
0< s< - 2-, 

n 

1 < r < oo, 

e. 
G(e:o, 0o; r) = -0~+1 Fi ,e(e:o, Bo)+ (r+ 1)0~F1(e:o, Bo)- r(1·+ 1) j lr-i Fi (e:o, e)d( E L1 (!l) . 

o 

(5.1) 

wliere 
l. l _L 

c(r) = c(T)•r•r 1 -• --> oo as r--> oo. 

Proof. Without loss of generality we can assume that 0 2". 02 a.e. in n.T. Multiplying 
equation (1.2) 1 by er, ,. > 1, and integrating over n we get 

Cv J 0r0,dx - J cer+! Fi,ee0·, + er+i Fi,ee:: e:,)dx 

(5.2) 
{l {l 

+ ,·ko J 0r-i JV0J 2dx = 11 J er(Ae:1): e: 1dx + J 9r gd:v. 
{l {l {l 

Similarly as in the proof of Lemma 4.3, we introduce the function 

where 
e 

Fi (e:, 0; r) = J (r-i Fi ( e:, e)d(. 

o 
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Clearly, we have 

(5.4) G(e:,O;r)=O, G,e(e:,0;r) = -0r+ 1 F1,ee(e:,0)::::: O, 

so that 

(5 ,5) 

for all arguments. Besides, 

(5.6) G,,(e:, 0; r) = -0r+i F1 ,ee:(e:, 0) + (r + 1)0r F1,e:(e:, 0) - 1·(1· + l)F1,e:(e:,0; r). 

In view of (5.4) and (5.6) we can express identity (5.2) in the form 

--- 0r+ 1dx + - G(e:,0;r)dx + --- J'v0 2 I dx Cv d J d J 4rko J · .c±!. 2 

1·+ldt dt (r+1)2 

(5.7) 
n n n 

= (r + 1) J [0r F1,e:(e:, 0) - r.F'1,e:(e:, 0; r)] : e:1d:t: + V J 0r(Ae:1) : e:1dx +Jor gdx. 

n n n 

Integrating (5.7) with respect to time, using (5.5) and noting that 2r/(r+ 1) > 1 for 1· > 1, 
we obtain 

(5.8) 

where 

_c_X2 (t) ~ ~ 1(0r{..!")2dx + 2ko J J'v041-l 2 dxdt' 
r+l r+l r+l 

n n• 

~ (r + 1) J [0r F1,e:( e:, 0) - 1·F1 ,e:( e:, 0; 1·)] : e:1,dxdt' 

n• 

+ V J 0r(Ae:1,): e:1,dxdt' +Jor gdxdt' + 7": 1 J 0~+1 dx 

n• n• n 

+ j G(e:o,0o;r)dx, 

n 

O~ t ~ T, 

( .c±!. 2 .c±!. 2 ) ½ 
X(t) = 110 2 IILoo(O,l;L,(O)) + llv'B 2 IJL,(01) • 

In view of the imbedding of the space Vi(h1) in L2c,.+2)/n(.111), 

Therefure, for the lcft-hand sicie of (5.8) we have 

(5.10) 
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Having this in mind we proceed now to estimate the integrals on the right-hand sicie of 
(5.8). Turning to the first integral, a direct calculation shows that for the assumecl form of 
F1(e,0), 

for 02 S 0 < oo. 

Therefore, using estimate (4.24) and the bounds (r + l)s;/(r + s;) < 2, s; < s, 

i t follows that 

(5.11) 

82 

r j er-l'Pi(e)d( S (0; - 0n0;•, 
81 

(r + 1) / [0?1,e(e,0)- r.F1,e(e,0;r)] : e;dxdt' 

n• 

S c(T) J 9r+•1eiJdxdt + cr = R + cr. 

nr 

Next, by means of Holder inequality, 

By virtue of ( 4.35), since 

n+ 2 q,.(n + 2) q,.(n + 2) -- < .c_.'----'- < -"-'----'-, 
2 n ns 

it follc:iws that lleiilLcn+•J/>(nT) S c(T). Hence, applying Young's inequality 

(5.12) 

with co = ( rti )1 /.>.,, c = const > O, )q = *' A2 = ~. we obtain 

~ 

R< (T)(r·+s) c Jl0Jlr+1 (T)(l-s)(r+l)'-• 
_c r·+l 1· +1 L~(nri+c r·+l -c-

E (r·+l)~ S c(T)--ll0Jl~+l (OT)+ c(T) -- . 
r+l ~ E 
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Consequently, in view of (5.10), the c:-term in the a.bove inequality can be absorbed by the 
left-hand sicie of (5 .8). 

For the second integral on the right-hand sicie of (5 .8) we get 

11 J 0r(Aet') : et'd:r:dt'::; cll01/L~(flTJl/edlL+,(flTJ::; c(T)ll01/L 1.,;.21 ,(nTJ 

n• 

where on the way we have used estimate (4.35) and inequality (5.12) with A1 = (1· + l)/1·, 
A2 = r + 1, Eo = (c/(1· + 1))'7. Again, the first-term iri the above inequality can be 
absorbed by the left-hand sicie of (5.8). 

The third integral on the right-hand sicle of {5.8) is treated similarly. Namely, 

Jor gdxdt' ::; 1/01/l, (f!T) IIYIIL-i2(flT) $ c~l 11011rL+i (f!T) + C (r + 1) r. 
i!!.±!l!:. .!b:.:. r + (nt2)(T'fl) C 

{lł n 2 n 

Combining the above estimates it follows that 

C +t tl! !..±1 -1/011" T)$c(T)c•-•(1·+l)•-• ,- + 1 L ~ (O 

what provides the assertion. o 
We indicate the consequences of the above lemma concerning regularity of e. Recalling 

estimate (4.25), in view of (5.1), it follows that 

(5.13) llellw;•'(flTJ ::; c(T,p) for 1 < p < co, 

where c(T,p) -> oo as p-> oo. 
In the next lemma, with the help of estimate (4.40), we prove L00 (f2T) - norm bound 

011 0. 

Lemma 5.2. Let functioi1 F1(e,0) be defined as in Example in Secti011 2. Moreover, 
suppose tl1a.t 

Tlien tl1e following estima.te lwlds 

(5 .14) 
ll0IIL=(f!TJ $ cexp (c(T)T½lle11lL,(O,T;L""(n))) · 

. (llc1/1Lco,T;Loo(O)) + IIYIIL1(0,T;L""(fl)) + ll0aliL~cni) $ c(T). 
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Proof. \Vithout loss of generality we assume that B 2: 02 a.e. in nr. We proceed as in 
Lemma 5.1 by multiplying (1.2) 1 by or,1· > l, and integrating over D. As a result we 
arrive at the iclentity (5 .7). Now the idea is to find additional information from the term 
G(e:,B;r). A direct calculation shows that 

(5.15) G(t:,0;r) = 0r+ 1 a-(e:,B;r) for B2 :SB< oo, 

where 

We note that by virtue of (5.5), a( E:, 0; r·) 2: O for all arguments. 
Then, recalling estimate (5.11), we conclude from identity (5.7) that 

--- or+i 1 + --a(e:,B;,·) dx cvdj ( r+l ) 
i•+ldt Cv 

(5.16) 
{l 

:S c(T) J or+•1e:tldx + C J or1e:1l2d:c + J orlgfdx. 
{l {l {l 

Let us introduce now the new function 

(5.17) I ( 1•+1 ( );:-:\:r 0 = B l +--;;:-a e:,B;r) . 

We note that O' 2: 0. We ca.n also see that 

(5.18) B' -+ ii0 as ,. -+ oo, 

where ii, is some constant from tlie interval (1, 2]. The latter. convergence follows from the 
followiug estimates 

and 

which in view of the convergences 

(1· + 1);,:h- -t 1, 
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imply (5.18). Then, with the help of Hi:ilder inequality, (5.16) yields 

~-dd f(0't+ 1 dx S c(T)IIBI/~+• cnJl/e,IIL,i, (O) 
r + 1 t •+ 1 t:':";-

n 

+ cl/Bllt,+dOJl/edli,(,+1)(0) + 1/01/1,,+1(0)1/YIIL,+1(0) · 

Therefore, in view of the equality 

1' ~ 1 ~ f(0'r+ 1dx = c.l/ 81 IIL+dOJ~I/B'lli,+1(0), 
Il 

taking into account that 01 ~ 0 and s < 1, it fellows that 

Now we apply a standard procedure by multiplying both sides of (5.19) by 

exp ( - c(T)J; llel'(t')IILf:!.=¼(n)dt'} This leacls to the inequality 

I 

Sc (lle1lli,<•+l)(n) + IIYIIL,+1(n)) exp ( - c(T) J 1/e,,(t')I/Lf!-¼(n)dt'), 
o 

which in turn implies that 

(5.20) 

· [} (llel'(t')l/1,(,+IJ(O) + l/g(t')IIL,+ 10)) dt' + 110'(0)1/L,+1 (O)] 
o 

for all t E [O, TJ and 1· > 1. In view of (5.18) and the L2 (0, T; L 00 (!1))-norm estimate on 
et, we can pass in (5.20) to the limit with 7'-+ oo to conclucle the assertion. O 
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6. Holder continuity of temperature. Completing the proof of Theorem 2.1 

In this section we shall apply the method of [5], Chap.II. 7, to prove that 0 is Hcilder 
continuous. The cssential for the procedure is L00 (f2T)-norm estimate on 0, proved in 
Lemma 5.2, and Lp(fłT)-norm cstimate (5 .13) on et, For reader's convcnicnce we record 
here the definition of the space B2(f2T,1\1,-y,r,ó,x) (see [5), Chap. II. 7). 
The function UE B2(nr,.M,-y,1·,ó,x), where nT = nx (O,T), and Af,-y,r,ó, X arepositive 
numbers, if the following conditions are satisfiecl: 
(i) u E v2

1 ·°(nr) = C(O, T; L2(fł)) n L2(0, T; Wł (n)), 
(ii) esssupnrlul :SM, 

(iii) the function w(x,t) = ±u(x,t) satisfies the following inequalities 

and 

tołf~+r ll(w- k)+IILcB,-,,,(xo)) :s ll(w - kl+(•,to)IILcB,(%0)) 

+, [(u1p)-2ll(w - k)+IIŁ,(Q(p,r)) + µf(l+x)(k,p,r)], 

ll(w - k)+ll},(Q(p-u1p,r-u2 r)) 

:S 'Y { [(u1p )-2 + (u2r)-1] li( w - k)+ 111.cą(e,r)) + µf(Hx)(k, l!, r)}. 
Here the notation is as follows: 

(w - k)+ = max{w - k,O} - the truncation of w, 

Bu(xo) = {x E n1 lx - xol < e} - a bali in n, 
Q(e,r) = Be(xo) x (ta,to +r) = {(x,t) E .!1TI lx - xol < e, ta< t <to+ r} -

a cylinder in ,nr, where e, r are arbitray positive num bers, O'J, u2 are arbitrary numbers 
from the interval (0,1), k is an arbitrary number satisfying condition 

esssupQ(e,r) w(x,t)- k :S Ó. 

Moreover, 

to+r 

µ(k,u,r) = J meastAk,e(t)dt, 
to 

where positive numbers q and r are linked by the relation 

1 n n -+- = -, 
1· 2q 4 

with the admissible ranges 

2n 
q E (2, --2], 1· E [2, oo) for n 2: 3, 

n-

q E (2, oo), 

ą E (2, oo], 

1· E (2,oo) 

r E [4, oo) 
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Furthennore, 

\Ve have the following 

Lemma 6.1. Suppose tlmt 

le:I ::; c(T) in nr, lle:dlL,(nTJ ::; c(T), 1 < p < oo, 

ll0lli=cnrJ ::; M = c(T), 

lco(e:,0)1 + lco ,e:(e:,0)1 + lco,e(e:,0)1::; c(T) in nr, 

g E L1,(nr), 1 < p < oo, 0o E C"0 (l1), 1 < ao < 1. 

Furtliermore, Jet k be a positive number sucli tliat 

(6.1) 

and 

Tlien 

(6.2) 

wlwre 

k > supn0o(:i:), 

M - k < ó with some ó > O. 

2(n + 2) 
r=q=---, 

n 

2 
KE (O,-), 

n 
-y = c(T). 

Proof. We check that 0 satisfies conditions (i)-(iii) in the definition of the space 
B2(nr, .M,-y, r, ó, x). By virtue of(4.33), 0 E W{•1(nr). Hence, by the imbedding theorem 
(see [5], Lemma. II.3.4), 

0 E C(O, T; w;-219(!1)), 1 < q ~ 2, 

so condition (i) is clearly satisfied. 
Furthermore, thanks to Lemma 5.2, condition (ii) is also satisfied with constant M = c(T). 

We proceed now to check that 0 satisfies the second inequality in condition (iii). To 
this end, first we recall that by Lemma 4.1, 0(:i:, t) > O in nr. 
Let Q(e, r) = Be(:i:0 ) x (to, t0 + r) be an arbitrary cylinder in nr, and ((:i:, t) be a smooth 
function such that supp ((:i:, t) C Q(e, r) and ((:i:, t) = 1 for (:i:, t) E Q(e - u1 e, r - u2 r), 
where u1, u2 E (O, 1 ). Moreover, let 

Ak,e(t) = {:i: E Be(:i:o)l 0(:i:,t) > k} . 

Multiplying equation (1.2) 1 by ( 2(0 - k)+ and integrating over n we get 

~ J Co( 2 ftc0 - k)tdx + ko J IV(0 - k)+l 2 ( 2dx 

(6.3) u n 

+ 2k0 J ((0 - k)+ 'v(0 - k)+ · V(dx = J f( 2(0 - k)+d:c, 

n n 
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where for simplicity we have denoted the right-hand sicie of (1.2)1 by J, 

f = 0F,ee (e:,0) : e:1 + ,,(Ae:,): e:1 + g. 

The first term on the left-hand sicie of (6.3) is rea.rranged as 

11 d Id! - co(2 -d (0 - k)~d:i: = --d c0 (0 - k)~( 2 d:i: 
2 t 2 t 

n n 

(6.4) - ½ / (co,e:: e:1)(0 - k)~(2d,r - ½ / co,s01(0 - k)~( 2dx 

A•,,(t) A•,,(t) 

- J c0 (0 - k)~((1dx. 

A•,,(t) 

The third integral on the right-hand side of the above inequality requires special teclmical 
treatment because of the presence of 01• We rearrange it in a similar way as in Lemma 4.3. 
To this end we first observe that on the set Ak,0(t) it holds 

co(e:, 0) = co(e:, (0 - k)+ + k), 

SO 

co,o(e:, 0) = co,(8-k)+ ( e:, ( 0 - k)+ + k) on Ak,e(t). 

Now, restricting considerations to the set Ak,e(t), we define the function 

(8-k)+ 

(6.5) G(e:,(0-k)+)= J co,E(e:,l+k)e1d( 
o 

Clearly, i t satisfies the con di tions 

(6 .6) 
G(e:,O) = O, 

G,(B-k)+(e:,(0- k)+) = co,(B-k)+(e:,(0- k)+ + k)(0- k)~ -

Then the third mentioned above integral transforms as follows (further on for simplicity 
we omit functions arguments ): 

-~ J co,001(0 - k)i(2dx = -~ j 
A•,,(t) A•,,(t) 

(6.7) = -½ / G,(8-k)+ ~(0 - k)+( 2 dx 
A•,,(t) 

= -~ j (~c) (2dx + ~ j (G,e:: e: 1)(2dx . 
A,,,(t) A•.,(t) 
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Setting 

G+ = { 
0
G(c,(0 - k)+) for 

for 0 ~ k, 

0 > k, 

we rewrite the first integral in the last equality as 

(6.8) 

Summarizing, in view of (6.4), (6. 7) and (6.8), iclentity (6.3) takes the form 

½ft J co(B - k)t( 2 dx + ko J IV(0- k)+l 2 ( 2 dx 
n n 

= ~ ! j G+(2dx - j G+CC1dx - ~ j (G,e: : e:1)(2dx 

(6.9) 
n n A.,,(t) 

+ J co(B - k)tCCidx + ~ J (co,e:: e:1)(0 - k)t(2 dx 

A.,,(t) A•,,(l) 

- 2k0 J ((0- k)+ V(0- k)+ · v'(dx + J f(2 (0- k)+dx. 

A•,,(t) A.,,(t) 

Integrating (6.9) with respect tot, and taking into account that (Bo - k)+ = O, and 
G(e:o, (Bo - k )+) = O, we obtain 

C; Jce-k)te2dx+ko f 1v(0-k)+l2(2dxdt' 
n n• 

(6.10) 

~ c[ J IG+l( 2dx + J IG+IIC1•ldxdt1 + J IG+,e:I le::ICdxdt' 
n n• n• 

+ J lcol(B- k)t IC1•ldxdt' + J lco,e:I le:i,1(0- k)t( 2dxdt' 
n• n• 

+ J 1!1(0 - k)+ICl 2d.-i:dt' + f c0 - k)+IV(0 - k)+l 1(1 IV(ld:ult'] . 
!l' SV 

Now we observe that owing to the bouncleclness of functions c0 ,e, c0 ,ee:, it follows that 

(6 .11) IG(e:,(0- k)+)I + IG,e: (e:,(0 - k)+)I ~ c(0 - k)t. 
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Moreover, by the assumption on k, 

(6.12) 

Therefore, choosing 8 a.ppropriately, the first integral on the right-hand sicie of (6.10) ca.n 
be absorbecl by the left-hancl sicie. The last integral on the right-hand sicie of (6.10) is 
estimatecl by use of the Young inequality as follows 

j (0 - k)+ l'v((0 - k)+I 1(1 l'v(ld:cdt' 

(6.13) n• 

:'S ~ J l'v(0-k)+l2 ( 2dxdt' + 2~o f c0- k)tl'v(j2dxdt', 
n• n• 

so the first integral on the right-hand side of above inequality is absorbed by the left-hand 
side of (6.10). Combining (6.11)-(6.13) in (6.10) we arrive at 

f c0- k)t(2dx + J l'v(0- k)+l 2 ( 2dxdt' 

n n• 

(6.14) ~ c [ j (0 - k)t((2 + j'v(l2 + !(1• l)dxdt' 

n• 

+ j(le1•l(8-k)t+IJl(8-k)+)(2dxdt']. =l1+I2. 

n• 

Clearly, the integral I 1 is estimated by 

I1 :Sc [(a1e)-2 + (a2T)-1] j (8 - k)tdxdt'. 

Q(e,r) 

For the integral I2, using the boundedness of 8 and applying Holder inequality, we obtain 

to+r 

I2 ~ c j j (lec,I + lfl)(2dxdt' 

to A>,,(t') 
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with 1/ >.. 1 + 1/ >. 2 = 1. V•.'e set now 

1 ? 
- = =(1 + r.) and 

2(n + 2) 

>.2 1' 
1' = q = 

n 

where Y. is a.rbitrary number from interval {O, ¾ ). Then 

, _ n+2 
/\] - ' 2-nx 

(n +2) 
>.2= ( ) E{l , oo). 

n l + x 

Clearly, 1·, q satisfy conditions in definition of B2(fl_T, M, 7, r, 8, x). Consequently, 

Taking into account that by assumptions 

it follows that 
12 ~ c(T)µf(l+x)(k, e,r). 

Combining estimates on 11 ,12 in (6.14) leads to 

li{ 0 - k )+ lli,(Q(e-o-1 e,r-o-,r)) 

= ess SUPtE[O,'I'] f ce - k)t(2dx + J l'v(9 - k)+l 2(2dxdt 
n or 

~ c(T) { [(0-1 e)-2 + (u2r)-1 l 11(0 - k l+IILcQ(e,r)) + µ ~(i+x)(k, li, r)} . 

Since(} > O, this shows that the second inequality in conclition (iii) is satisfied with constant 
7 = c(T) . 

The first inequality in (iii) can be proved by multiplying (1.2)1 by (J(0 - k)+, where 
(o(:i:) is a smooth function such that supp (o(:i:) C Be(:i:o), (o(:i:) = 1 for z E Be- 17 ,e(:i: 0 ), 

and next integrating over n x ( t0 , t0 + r ). In this case, repeating the ahove arguments, 
inequality (6.14) is replaced by 

J (0 - k)!(Jdx + J IV(0- k)+l 2(Jdxdt 
n Q(e,r) 

{6.15) ~c[ J (0(to)-k)!(~dx+ J (0-k)!ccJ+IVCol 2 )dxdt 
B,(xo) Q(e,r) 

+ J (ktl(0 - k)tlfl(0 - k)+J(gdxdt] . 
Q(e ,r) 
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Since the last two integrals on the right-hand side of ( 6.15) are estima.ted as above, this 
leads to the required inequa.lity. The proof is completed. O 

By virtue of (6.2) we can apply the imbedding result of [5], Theorem II.7.1, to conclude 
that 0 is Holder continuous in nr, and 

(6.16) 

with Holder exponent O < a < l depending on 1,lf = c(T), 1 = c(T), 1·, {j and x. 
Thanks to Holder continuity of c: and O, in view of a priori bounds (4.36), (5.13), we can 
obtain the finał estimates for a solution (u,O) to problem (1.1), (1.2) in V(p,q) - norm 
and thereby complete the proof of Theorem 2.1. 

Lemma 6.2. Suppose that c: and 0 are Holder contfouous in nr, and 

ie:!+ IBI~ c(T) in nr, 
ll'hl!L.(OT) + l!c:tl!L.(OT) ~ c(T) for 1 < a < oo. 

Moreover, suppose tl1a.t 

b E Lp(nr), g E Lq(nr), 

uo E w:-2h1(n), u1 E w;-2h•(n), Bo E w;-2fq(n), n+ 2 < p, q < oo, 

and compa.tibility conditions. The11 

(6.17) l!ullw;•'(OT) ~ c(T), n+ 2 < p < oo, 

(6.18) 11011 w;•' (OT) ~ c(T), n+ 2 < q < oo, 

Proof. Owing to the bound on c:1, the right-hand side of equation (1.2)1 is bounded h1 
Lq(nr) - norm for 1 < q < oo. Therefore in view of the Holder continuity of the coefficient 
co(c:, O), the classical parabolic theory [5J a.~sures bound (6.18). Consequently, by virtue of 
imbeddings, (6.18) implies that 

so in case q 2 n + 2, 

(6.19) IIVBIIL.(OT) ~ c(T) for 1 < a< DO. 

Hence, recalling estimate ( 4.37), it follows that 

(6.20) !IV· F,ec(c:, B)IIL,,(or) ~ c(T), 
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By the regularity theory of parabolic systems, (6.20) implies (6.17). 
FinaUy, we observe that the bouncls n+ 2 < p, q, by virtue of imbeclclings, are compatible 
with assumptions of the lemma„ O 

Lemma 6.2 completes the cleriva.tion of a priori bouncls for a fixecl point of the map 
T(l, · ), and thereby proves property (iii) of the Leray-Schaucler fixecl point theorem. 

Summarizing, we have shown that the solution map (3.4) satisfies assumptions (i)-(iv) 
of the Leray-Schauder theorem. 
Thus, T(l, •) has at least one fixed point in V(p, q) which is equivalent to a solution 
(u,0) E V(p,q) to problem (1.1), (1.2). Now, in view of bounds (6.17), (6.18) and (4.1), 
the proof of Theorem 2.1 is completed. 
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