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Abstract

We study several variations of the Bitran-Hax method for the continuous quadratic
knapsack problem. We close the gaps in the convergence analysis of several existing
methods, and provide more efficient versions. Computational results are reported
for problems with up to two million variabIes solved on a notebook PC.

Key words. Nonlinear programming, convex programming, quadratic pro­
gramming, separabie programming, singly constrained quadratic program.

1 Introduction

The continuous quadratic knapsack problem is defined by

P: min f(x):= ~xTDx - aTx s.t. bTx = T, l::; x::; u, (1.1)

where x is an n-vector of variables, a, b,l, u E lRn
, T E lR, D = diag( d) with d > 0, so that

the objective f is strictly convex. Assuming P is feasible, let x* denote its unique solution.
Problem P has applications in resource allocation [BiHBl, BrS97, HoH95), hierarchical

production planning [BiHBl), network fłows [Ven91], transportation problems [CoH94),
multicommodity network fłows [HI<LBO, NiZ92, ShM90], constrained matrix problems
[CDZB6), integer quadratic knapsack problems [BSS95, BSS96], integer and continuous
quadratic optimization over submodular constraints [HoH95], Lagrangian relaxation via
subgradient optimization [HWC74), and quasi-Newton updates with bounds [CaMB7].

Specialized algorithms for P employ either breakpoint searching Ol' variable fixing.
Breakpoint searching methods solve the dual of P by finding a Lagrange multiplier t; that
solves the equation g(t) = T, where g is a monotone piecewise linear function with 2Tl,

breakpoints (cf. §2). The earliest 0(11 log n) methods [HWC74, HI<LBO] sort the break­
points initially, whereas the O(n) algorithms [BruB4, CalVIB7, l\1dPB9, PaK90, CoH94,
HoH95, łvHvIP97) use medians of breakpoint subsets.

*Rescarch supportcd by the State Committee for Scientific Rescarch under Grant 4TIIA00622.
tSystems Research lnstitute, Newc1ska 6,01-447 Warsaw, Poland (kiwiel@ibspan.waw.pl)
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The variable fixing methods of [BiH79, BiHB1, 8h079, NIicB6, Ven91, RJL92, B8896],
stemming from [LuG75], determine at each iteration the optimal value of at least one
variable; such variabies are fixed and hence effectively removed for the next iteration.
Although these methods have worst-case performance of O(n 2) , they may be competitive
in practice [Ven91, RJL92], since they don't need sorting Ol' median calculations.

The first aim of this paper is to clarify certain convergence issues of the variable fixing
methods, Only the methods of [8h079, NIicB6] for a special case of P (cf. §5.B) have full
proofs of convergence. We show that the algorithms of [RJL92, B8896] fail on a simple
counterexample (cf. §5.7). Thc method of [Ven91] relies implicitly on the convergence
framework of [BiHB1] (~ [BiH79]). However, the proof of the main convergence result of
[BiHB1, Thm 3] has a gap (cf. §5.5); we show how to fi11 this gap in the case of P (in
the 1110re general setting of [BiHB1] where f is merely separabie and convex, our proof
technique could close the gap when f is strictly convex).

8econd, we provide more efficient versions of the variable fixing methods-.This is quite
suprising, since the methods of [8h079, Mic86 , Ven91, RJL92, B8896], as well as ours,
may be derived from [BiHB1] by replacing certain nonstrict inequalities by strict ones and
using slightly different stopping criteria (these tight relationships have not been noticed
sa far). Vet in practice such "tiny" differences can be significant (cf. Ex. 5.4). We also
discuss updating techniques which reduce wark per iteration.

Third, we show how suitable modifications of the variable fixing methods may find the
Lagrange multipliers of P; this is useful in certain applications [Br897].

The paper is organized as follows. Basic properties of P are reviewed in §2. In §3 we
introduce a symmetric version of the method of [BiHB1]. Its convergence is established in
§4. Various modifications and relations with other methods are discussed in §5. Finally,
computational results for large-scale problems are reported in §6.

2 Basic properties of the problem

Viewing t E lR as a multiplier for the equality constraint of P in (1.1), consider the
Lagrangian primal solution (the minimizer of f(x) + t(bT x - r) s.t. l ~ x ~ u)

x(t) := min { max [l, n-1(a - tb) ] ,u }

(where the min and max are taken componentwise), its constraint value

g(t) := bTx(t)

(2.1)

(2.2)

and the associated multipliers for the constraints l - x ~ Oand x - u ~ O, respectively,

It(t) := max {Dl - a + tb,O} ancl v(t):= max {a - tli - Dii, O} . (2.3)

Solving P amounts to solving g(t) = r for a multiplier lying in the optimal dual set

T* := { t : g (t) = r } . (2.4)

Incleed, invoking the Karush-Kuhn-Tucker conclitions for P as in [CaNIB7, Thrn 2.1],
[HI<LBO, §2], [NiZ92, §1.2], [PaI<90, Tlun 2.1] gives the following result.
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Fact 2.1. x" = x(t) iff t E T*. Further, the set T* is nonempty, and t, j.l(t) , v(t) are
Lagrange multipliers of P whenever t E T*.

As in [Bru84], we assume for simplicity that b > O, because if b, = Othen x, may be elim­
inated (x; = lnin{nlax[li' ai/di],Ui}), whereas if b, < Othen we 111ay replace {Xi, ai, bi, l.i' Ui}
by -{Xi, ai, bi,Ui, l.i} (in fact this transformation may be implicit).

By (2.1)-(2.2) and our assumption b > O, each Xi(t) and g(t) are continuous, piecewise
linear and nonincreasing functions of t. Hence the set T* ol' (2.4) has the form

T* = [tŁ , tb ) n 1R with ti:= inf{ t : g(t) = l' }, tb:= sup{ t : g(t) = r}, (2.5)

with g(tl) = l' if tl > -00, g(tu) = l' if tu < 00; clearly, g(t) > l' iff t < tl, g(t) < l' iff
tu < t. Further, since g(t) and x(t) are nonincreasing, and x* = x(t*) for any t; E T*, we
have the following useful property(iInplicit in [BiH81) and explicit in [Ven91, Thm 6]).

Fact 2.2. Let i E 1R, jł := {i : xi(i) = l'i}, ju := {i : xi(i) = Ui}' Then:
(a) If g(i) 2:: 1', then Xi(t) = li = xi for all t 2:: i and i E jł,
(h) If g(i) :::; 1', then Xi(t) = u; = x; for all t :::; i and i E i-,

3 The variable fixing algorithm

At eachiteration k, our algorithm partitions the variabłes as X = (xh,XLk,XUIJ, where
(Ik , Li; Uk ) is a partition of N :'= {l: n} such that xlk = lLk' xUk = UUk; thus, fixing
XLk = lLk, XUk = uu., we only need to consider the remaining free variabłes XIk'

AIgorithm 3.1.
Step O (Initiation). Set 11 := N, LI := Ul := 0, k := 1.

Step 1 (Restricted subproblem solutuni]. Find the restricted minimizer

Step 2 (Feasibility check), Compute the infeasibility indicators

\1k := L b,(li - X~), where Ii:= { i E Ik : x~ :::; li } ,
iEIi

~k := L bi(X~ - Ui), where fl::= { i E t, :xf 2:: ui } .
iEIi:

(3.1)

(3.2a)

(3.2b)

Step 3 (Stopping criterion). If \1k = ~k then reset xk
l", := LI" x1u := UlU and stop.

k k k k

Step 4 (Variable fixing). If \1k > ~k then set Ik+l := Ik \ Ik, Lk+1 := L; Ulk, Uk+l := Uk;
if \1k < fl k then set Ik+l := Ik \ Ii:, Lk+l := Lk, Uk+l := U; U Ii:.
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Step 5 (Loop). Inerease k by 1 and go to Step 1.

At Step 1, xik = lLk' X~k = ltuk. The remaining components may be computed as

(3.3)

(by the form of f in (1.1)), where tk is the Lagrange rnultiplier of (3.1) given by

tk := (I: Q,ibi/d; - rk) / I: b;/ di with ru > r - I: bili - I: biUi; (3.4)
iEh iEh iELk iEUk O

in other words, tk is the Lagrange rnułtiplier of the reduced subproblem

(3.5)

4 Convergence of the variable fixing algorithm

Sinee eaeh iteration reduees the set I k , Ałgorithm 3.1 is finite. However, before showing
that the finał xk = x*, we must prove that the ałgorithm is well defined, i.e.; I k =1= 0 at
Step 1 for alI k (this eondition is assumed in [BiH81, §2], and implicitly in [RJL92]).

Consider the following estimates of ti and tu in (2.5):

ti :=sup{tj : Vj ~ baj,j::; k} and t~ :=inf{tj : v,« ilj,j::; k}, (4.1)

with t1 := -00, t~ := 00. Define the redueed constraint vałue and its linearization

gk(t) := brXlk(t) and 9k(t):= brXlk(t) with oXi(t):= (ai - tbi) /d i , (4.2)

so that'xt = Xh(tk), 9k(tk) = rk; ef. (3.3)-(3.5). We shalI show that at Step 2

(4.3)

(4.4)

(4.5)

(4.6)

(tk - 1) • { .'" (tk - 1) }Xh L = mm Ulk , Xlk L

gk(ti-1
) ~ rk ~ gk(t~-l),

XLk(tt- 1
) = lLk = XLk and XUk(tt-1) = UUk = XUk'

XLk(tk) = li; = XLk and XUk(tk) = UUk = XUk'

Lemma 4.1. Suppose Ik i= 0 and (4.3)-(4.5) hołd at Step 2 for same k. Then:
(a) ti-1 ::; tk ::; t~-l.
(b) Condition (4.6) holds.
(e) g(tk) - r = \7k - bak.
(d) ff V k = bak, then tk E T* and :z;k = x* after the reset of Step 3.
(e) If \7k > bak, then (4.3)-(4.5) hold for k increased by 1, andIL =1= Ik at Step 4.
(f) If Vk < bak, then (4.3)-(4.5) hołd for k increased by 1, and Ii: =1= Ik at Step 4.
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Proof. (a) fJk(t) is a decreasing function oft, since by assumption bi,di > Oin (4.2). Hence
tk ~ ti-1,since otherwise (4.2)-(4.4) would yield 1'k = 9k(tk) > fJk(ti-1) ~ gk(tl-1) ~ n, a
contradiction. Similarly tk Ś tt-1, since otherwise 1'k ~ gk(tt- 1

) ~ 91.: (tt- 1
) > gk(tk) = ri:

(b) This follows frorn (a) and (4.5), since x(t) is nondecreasing (cf. (2.1)).
(c) By (4.6) and (3.1), xikuuk = XLkUUk(tk)' Since g(tk) = bTx(tk) (cf. (2.2)), bTxk = l'

(cf. (3.1)) and t, = N \ ti, U Uk) (cf. Steps Oand 4), we have

g(tk) - l' = E bi[Xi(tk) - xf] + E bdXi(tk) - xf] = E b,[Xi (tk) - x~].
iEh iELkUUk iEh

Now, by (2.1), (3.2) and (3.3),

xIL(tk) = lIL' Xli: (tk) = Uli:' l'i < Xi(tk) = xf < u; Vi E Ik \ (Ii U Ik), (4.7)

and xf = li = u; Vi E Ik n rk. Using these relations and the definitions (3.2) gives

g(tk) - l' = E bi(li~ x:) + E bi(Ui - xf) + E bi[Xi(tk) - xf] = \lk - ilk.
iEIL iEli: iEh\(ILUli:)

(d) Since getk) - l' = Oby (c), we have tk E T* by (2.4) and X(tk) = x* by Fact 2.1. By
the proof of (c) (cf. (4.7)), xf = Xi(tk) for aIl i E N \ (Ik U IicL

) at Step 2, and Step 3resets
xf := Xi(tk) for the remaining i E Ik U Ii: (if any), so xk = X(tk)'

(e) We have ti := tk, tt := tt-1 by (4.1). Since Ik+1 := Ik \ IL at Step 4, (4.7)
with xt = XJk(tk) yields Xh+l (tk) = min{ulk+l'Xh+l (tk)}' On the other hand, since
xIL (tk) = IIL by (4.7), combining (4.2) and (4.6) with (2.2) and (c) gives

gk+l(tk) + E.bili + E bili+ E b.u; = g(tk) = l' + \lk - ilk,
iEJt iELk iEUk

which implies gk+1(tk) = 1'k+1 + \lk - ilk, using Lk+1 = Lk U Ii, Uk+1 = Uk in (3.4). Thus
gk+1(tk) > 1'k+1' Similarly, using tt = tt-1 in (4.3)-(4.4) and then (3.4) gives

gk+1(tt) = gk(tt) - E bimax{ li,xi(tt)} Ś 1'k - E bili = 1'k+1'
iEIL iEIL

Comblning the preceding relations, we obtain (4.3)-(4.4) for k increased by 1.
Next, we have Xi(tk) = li for aIl i in Lk+l = LkUIL (cf. (4.6), (4.7)), whereas g(tk) > l'

by (c). Hence XLI.:+l (tk) = ILI.:+1 = XLI.:+1 by Fact 2.2(a), i.e., (4.5) holds for k increased by
1. Since XUI.: (tk) = xVk by (4.6), if we had IŁ = Ik then Lk+1U Ui; = N and x(tk) = x*
combined with Fact 2.1 and (2.4) would give g(tk) = 1', a contradiction.

(f) The argument is symmetric to that of part (e). D

We may now state and prove our principal convergence result.

Theorem 4.2. Alqoriihmi 3.1 is well defined and terminates with x k = x*, tl.: E T*.

Proof. Clearly, conditions (4.3)-(4.5) hołd for k = 1. Indeed, since II.: = N, (4.3) means
lim, __oo x(t) = u, 1in1t_oo x(t) = l (cf. (2.1)), whereas for Lk = Ul.: = 0 and 1'1.: = r,
(4.4) reduces to bT1l ~ l' ~ bTl (feasibility). The conclusion foIlows from Lemma 4.1 by
incluction, with parts (e,f) ensuring that 11.:+1 =I- 0 at Step 4. D
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5 Modifications and relations with other methods

5.1 Updating and incremental forms

Each iteration of Algoritlun 3.1 requires finding tk and x1
k

(cf. (3.3)). Now, by (3.4),

tk = (Pk - rk)/qk with Pk:= L aibi/di,
iEh

qk := L b;/di .

iEh

(5.1)

To save work, we may update Pk, qk and rk by using the "fixed" set Fi: := h~ \ Ik+1 in

Pk+l = Pk - L aibi/di,
iE1"k

qk+l = (jk - L b;/di,
tet;

(5.2)

_ ~ b {li if t; = IL,
rk+l - rk -.~ i u; if Fi; = rt:.

'tEIk

This updating technique of [RJL92, BSS96] may be improved as follows.
Relations (5.1)-(5.3), (3.3) and (3.2) yield the incremental multiplier formula

_ 1 { \lk if t; = It,
tk+l - tk + - _ A 'f I- - lUqk+1 uk l k - k :

Indeed, for V k > Llk (the opposite case is similar ), we have Ii: = IL and

qk+ltk+l = Pk+l - rk+l = Pk - rk - L aibi/di + L bili
iEIi iEIk

= qktk - tk L b;/di + L bdli - (ai - tkbi)/di]
iEI~ iEIL

= qk+ltk + L bi(li - xf) = qk+ltk+ \lk·
iEIi

Further, using the facts LiEIk bixf = rk, Ik = Ik+1 U Ii: and (5.3) in (5.5) yields

qk+l(tk+l - tk) = L bi(li - xf) = L bili - rk + L bixf = -rk+l + L bixf
iE1i iEIk iEIk+ 1 iEIk+l

for \lk > Llk , with l replaced by u for \lk < Llk • Hence we also have

tk+l = tk + (L, l biX~ - rk+1) /qk+l'
'tE k+l

Of course, by (3.3), we may aiso update

X~+l = x~ - (tk+l - tk)bi/di , i E I k+1.

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

The incremental formula (5.4) saves work by not requiring the updates of Pk and rk.
The second formula (5.6) and the update (5.7) are listed for comparisons (cf. §5.8).
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5.2 Fixing fewer variabIes

The convergence results of §§3-4 hold for Ik and II: replaced by their subsets

I~ := { i E t, : x~~ < li} and If:= { i E t, : x~ > ui } .

However, this version is less efficient, since it may fix fewcr variabies per iteration.

(5.8)

5.3 Stopping criteria

Note that hk :s; x1
k

:s; Uh iff I~ = I"f = 0 (by (5.8)) iff V k =~k = O (by (3.2)), in which
case Step 3 needn't reset xk . Further, by the proof of Lemma 4.1(e,f), if I k+ 1 = 0 then
Vk = ~k' Thus our stopping criterion V k = ~k subsumes the criteria lt; :s; xt ::s; Uh,

as well as Ik+1 = 0. In practice, choosing a jeasibility iolerance Eta] ~ O, we may use the
stopping criterion:

IVk - ~kl :s; Etol maxi 1, Irl} Ol' Ik+1 = 0;

it will guarantee terrnination even under roundoff error (since Ik shrinks).

5.4 An illustrative example

For future comparisons, consider the following example. Let e := (1, .... ,1) E lRn
.

Example 5.1. For n = 2, let d = b = e,. a = O, r = 1, l = (1, -1), u = (2, O), so that
x* = (1, O) and T* = [-1, O]. Then rl = 1, t l = -0.5, xl = (0.5,0.5), VI = ~l = 0.5,
Ił = {l}, Ii = {2} and Step 3 of Algorithm 3.1 resets Xl to X(tl) = x* .before terminating.

5.5 Revisiting the Bitran-Hax algorithm

The Bitran-Hax (BH for short) algorithm [BiH8l] differs from Algoritlun 3.1 in two aspects.
First, at Step 4 it replaces the condition Vk < ~k by Vk ::; ~k; our vcrsion is symmetric.
Second, its stopping criterion (cf. §5.3)

(5.9)

may be less efficient than our criterion V k = ~k; e.g., the BH algorithm solves Example
5.1 in two iterations (with U2 = {2}, 12 = {l}, t2 = -1, x2 = z"). However, the case
I k+1 = 0 is not covered by the main convergence proof of [BiH8l, Thm 3]; in aur setting,
the second condition of (5.9) is redundant, as shown below.

Lemma 5.2. Ij (4.6) holds and either Ik = Ik or Ii: = Ik, then li; :s; x1
k

:s; UIk'

Proof. Suppose Ik = Ik (the case II: = Ik is similar). Then x1
k

:s; lh = xh(tk) by (3.2a)
and (4.7), 3;(tk) = X* by the proof of Lem. 4.1(e), whereas (3.1), (3.4) and (4.6) yield
bT k bT * S· b O k < * d bT k b7' * . k * DIk 3;h = rk =hXh' Ince. > .rt; _ »i. an Ik:r1k = h:xh grve 3;h = xh'

Conscquently, an equivalent version of the BH algoritlun is obtainecl from Algoritlun
3.1 by replacing the condition \7k < ~k by V1.~ :s; ~k in Step 4, and Step 3 by
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Step 3' (Stopping criterion). If lt, ::; xt ::; uh then stop (xk == z").

Theorem 5.3. The BH algorithm is well defined and terminates with xk == x", tkE T*.

Proof. We only show how to rnodify the analysis of §4. Since hk ::; ;rjk ~ uh iff l{ ==
1'( == (/) iff \7k == !:lk == O (cf. §5.3), we have lnax{\7k, !:lk} > O at Step 4, and using
xf == Xi(tk) for all i E N \ (l{ U l'(), we may replace (d) of Lem. 4.1 by

(d') If lh ::; xt.: ~ uh, then tk E T* and xk == x*.

Next, \7k ~ !:lk replaces \7k < !:lk in Lem. 4.1(f), with Lem. 5.2 showing that Ik+l #- 0.
Thus Theorem 4.2 holds for the BH algorithm. D

The BH algoritlun coincides with AIgorithm 3.1 until \7k == !:lk occurs; then Algorithm
3.1 terrninates, but the BH algorithm may go on. The following example shows that the
number of additional iterations of the BH algorithm may 'be quite large.

Example 5.4. For n == 2m + 1 with m ~ 1, let d == b == e, a == O, r == O, li == i and
Ui == 00 for i == l:m, lm+l== -1, Um+l == 1, li == -00 and Ui == m+ 1- i for i == m+2:n,
so that T* == {O}, xi == li for i == 1: m, x;n+l == O, xi == u; for i == m + 2: n. Algorithm 3.1
generates t l == O, xl == O, Ił == {l:m}, Ii == {m + 2:n}, \71 ==!:ll == m(~+l), terminating
with Xl reset to x", In contrast, the BH algoritlun continues with 12 == {l: m + l} and
r2 == m(n~+l) , bisecting 1k and decreasing rk until lk == {m+ l} and rk == O. Our experiments
wit h instances having up to twenty million variabies show that the BH algorithm makes
k == Llog2(n+ l)J + 1 iterations; e.g., k == 20 for n == 106 + 1.

5.6 Ventura's modification of the Bitran-Hax algorithm

Assuming l < u, consider the following modification of Algorithm 3.1.
Replace Step 3 by Step 3' of §5.5. At Step 4, if\7k == !:lk then set 1k+l == lk \ (IL U r/:),

Lk+l, == Lk U IL, Uk+l == Uk U rl:. At Step 5, if lk+l == (/) then reset x/ki :== lIt, xju :== Ulu
k k k k

and stop.
Clearly, this modification behaves like the original version until \7k == !:lk occurs.

Lemma 5.5. Suppose the above modification produces \7k == !:lk for some k. Then tk E

T*. If (5.9) holds, then xk == x* upon termination; otherunse, the next iteration terminates
witk tk+l == tk and xk+1 == x*. Consequently, Theorem 4.2 remains valid.

Proof. By Lem. 4.1(d), tk E T*, and (5.9) implies xk == x* after the final reset, if any.
If no terminatiou occurs, then XLk+l (tk) == lLk+l' XUk+l (tk) == UUk+l' xh+l (tk) == xt+l by
(4.7), and using (5.2) with II; == IŁ U Ii: and rk+l == rk - L:iE/'k bili- L:źE/u b.u, as for (5.5)

l k

yields ąk+l tk+l == ąk+l tk +\7k -!:lk andhence tk+l == tk. Thus X~~ll == xt+l by (3.3). Since

also xl~~l == lLk+t' xtt~l == UUk+ 1 by (3.1), we get Xk+l == X(tk). Then X(tk) == x* (tk ET*)
implies tennination due to hk+1 ::; X~~ll ::; Uh+l' D

In effect, this modification 111ay only add one (spurious) finał iteration, and it needs
l < u. The method ot' [Ven91, Alg. 3] is equivalent to this modification.
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5.7 The projection algorithm of Robinson, Jiang and Lerme

The algoritlun of [RJL92, §3], introdueecl for the speciał ease of d == e, a == Oand extendecl
to the general ease in [BSS96], is related to Algorithm 3.1 as follows.

First, using I~ and 1"( (ef. (5.8)) instead of IŁ and I;:, it may fix fewer variables per
iteration, Seeond, its stopping criterion "I~ U 1"( == 0 or \1k == D"k" is equivalent to
\1k == ~k (ef. §5.3). Third, omitting the reset of Step 3, it may produee wrong solutions;
e.g., Xl == (0.5,0.5) in Example 5.1 (in its original notation, the finał step should replace
I by I \ (L' U U'); similarly in [BSS96, BrS97]). Fourth, the analysis in [RJL92] assumes
implieitly that Ik =1= 0 at Step 1, and doesn't show that the final tk E T*.

5.8 The algorithms of Shor and Michelot

Consider the ease where d == b == e, r > O, l == O, u; == 00, in whieh x* is the Euelidean
projeetion of a onto the eanonieal simplex {x 2:: O : eTx == r}. In this ease streamlined
versions of Algoritlun 3.1 diseussed below are more effieient than the algorithms of Shor
[Sho79, Eq. (4.62)] and Miehelot [Mie86, §4].

Starting with 11 == N and t1 == (I:?=l ai - r)/n (ef. (3.4)), Algoritlun 3.1 generates
X~k == ah - tke1k' X~\Ik == O, \1k == - I:iElk:x~śoxf, D"k == 0, Ik+l == {i E Ik : xf > O},
tk+l == tk + \1k/l lk+ll (ef. (5.4), (5.1)), until \1k == O. To avoid updating xk, we may use
\1k == I:iEh:tk?a/tk - ai) and Ik+l == {i E Ik : ai > tk}, setting xt.: == a1k - tke1k' xt\Ik == O
upon termination. Shor's algoritlun [Sh079, Eq. (4.62)] replaces \1k by g(tk) - r ( == \1k
by Lem. 4.1(e)); note that \1k is cheaper to eompute than g(tk)'

Alternatively, starting with 11 == N, tl == (I:?=l a; - r)/n, xl == a - tle and using
Ik+l == {i Elk: xf 2:: O} (Le., I~ instead of Ik; ef. §5.3), tk+l == tk+(I:iEh+1 xf-r)/IIk+ll,
x1~\ == xt+l - (tk+l - tk)eh+l (ef. (5.6)-(5.7)), xt,t:+l == O until xt 2:: O (Le., \7k == O
by (3.2a)), we reeover Miehelot's algorithm [Mie86, §4J. A more effieient version may use
Ik+ l == {i E Ik : xf > O} [i.e., IL instead of I~; ef. §5.3).

5.9 Recovering alI Lagrange multipliers

Onee Algorithm 3.1 terminates, the following results may be used for recovering all La­
grange multipliers of P. By (2.1)-(2.2), the funetion g has the following breakpoints

(5.10)

Lemma 5.6. Let 1* :== {i : xi E (li, Ui)}, L* :== {i : xi == li}, U* :== {i.: xi == Ui}'
(a) If 1* =1= 0, then T* == {t*}, where t; == (ai - diXi)/bi Vi E 1*.
(b) If 1* == 0, then T* == [tt, tu] n lR, uiłiere tt == n1aXiEL.\U. ti, tu == min.iEU.\L. ty.
(e) Upon termination in Step 3, let I: :== Ik \ (ILU I;:), L~ :== i; U IŁ, U: :== u, U Ii:.

Then I: == 1*, L: C L*, U: C U*, L: U U: == L*UU*, L~ n U: C L* n U* == {i : t~ == t~}.
(d) t, 1-", v are Lagrange multipliers of P iff t E T*, J-L == {L(t) + A, v == vet) + A for

some A 2:: O with ).,1'(u -l) == O; in pariicular, A == O if l < u,

Proof. (a,b) These follow from (2.1) and the faet that t E T* iff x(t) == x* (Faet 2.1).
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Table 6.1: Average, maximum and minimum run times in seconds for uncorrelated, weakly
correlated and strongly correlatecl problems,

uncorrelated wcakly correl, strongly correl. overall
n avg max min avg max min avg max min avg max min

50000 0.18 0.27 0.11 0.21 0.28 0.16 0.19 0.22 0.16 0.19 0.28 0.11
100000 0.38 0.44 0.28 0.38 0.44 0.27 0.38 0.44 0.33 0.38 0.44 0.27
500000 1.57 1.76 1.32 1.58 1.75 1.32 1.60 1.76 1.38 1.58 1.76 1.32

1000000 3.13 3.40 2.53 3.11 3.41 2.42 3.19 3.46 2.80 3.14 3.46 2.42
1500000 4.48 5.00 3.79 4.63 5.05 3.85 4.60 5.17 3.63 4.57 5.17 3.63
2000000 6.14 6.75 5.05 6.11 6.86 4.55 6.28 6.87 4.89 6.17 6.87 4.55

(c) We have lI: < x~: < Ul: by (3.2), whereas the proof of Lem. 4.1(c,d) yields

xk = x* = X(tk), XL~(tk) = lL~' XU:(tk) = uu:' I k = N\(LkUUk). 8ince I: = N\(L:UU:),
the concIusion follows from the fact that {i : li = Ui} = {i : t~ = t~L} by (5.10).

(d) This follows from (2.3), Fact 2.1 and the I{KT conditions. D

Lemma 5.6(c) extends easiIy to all algorithms of §§5.5~5.8.

6 Numerical results

Algorithm 3.1 was programmed in Fortran 77 and run on a notebook PC (Pentium II 400
MHz, 256 MB RAM) under MS Windows 98. The set I k was maintained as a linkedlist;
instead of maintaining Lk and Uk, the finaI X(tk) and g(tk) were computed directIy.

Our test problems were randomly generated with n ranging between 50000 and 2000000
(to avoid mernory swapping). As in [B8895, §2], all parameters were distributed uniformly
in the intervals of the following three problem classes: (1) uncorrelated: ai, bi , di E [10,25];
(2) weakly correlated: bi E [10,25), ai, d, E fbi - 5, bi + 5]; (3) strongly correlated: b, E

[10,25], ai = d; = bi + 5; further, li, u; E [1,15], i E N, rE [bTl, bTU]. For each problem
size, 20 instances were generated in each class.

Table 6.1 reports the average, maximum and minimum run times over the 20 instances
for each of the listed problem sizes and classes. The run times grow linearly with the
problem size.

More extensive numerical tests and comparisons with breakpoint scarching methods
[Kiw02] are given in [I<iw03].

Acknowledgment. I would like to thank A.G. Robinson for useful information,
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