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Abstract

We study several variations of the Bitran-Hax method for the continuous quadratic
knapsack problem. We close the gaps in the convergence analysis of several existing
methods, and provide more efficient versions. Computational results are reported
for problems with up to two million variables solved on a notebook PC.

Key words. Nonlinear programming, convex programming, quadratic pro-
gramming, separable programming, singly constrained quadratic program.

1 Introduction
The continuous quadratic knapsack problem is defined by
P: min f(z):=42"Dz—a"z st. tTo=r I<z<u, (1.1)

where  is an n-vector of variables, a,b,l,u € R", r € R, D = diag(d) with d > 0, so that
the objective f is strictly convex. Assuming P is feasible, let z* denote its unique solution.

Problem P has applications in resource allocation [BiH81, BrS97, HoH95), hierarchical
production planning [BiH81], network flows [Ven91], transportation problems [CoH94],
multicommodity network flows [HKL80, NiZ92, ShM90], constrained matrix problems
[CDZ86), integer quadratic knapsack problems [BSS95, BSS96], integer and continuous
quadratic optimization over submodular constraints [HoH95], Lagrangian relaxation via
subgradient optimization [HWC74], and quasi-Newton updates with bounds [CaM87].

Specialized algorithms for P employ either breakpoint searching or variable fixing.
Breakpoint searching methods solve the dual of P by finding a Lagrange multiplier ¢, that
solves the equation g(tf) = r, where g is a monotone piecewise linear function with 2n
breakpoints (cf. §2). The earliest O(nlogn) methods [HWCT74, HKL80] sort the break-
points initially, whereas the O(n) algorithms [Bru84, CaM87, MdP89, PaK90, CoH94,
HoH95, MMP97] use medians of breakpoint subsets.

*Rescarch supported by the State Committee for Scientific Research under Grant 4T11A00622.
tSystems Research Institute, Newclska 6, 01-447 Warsaw, Poland (kiwiel@ibspan.waw.pl)
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The variable fixing methods of [BiH79, BiH81, Sho79, Mic86, Ven91, RJL92, BSS96],
stemming from [LuG75], determine at each iteration the optimal value of at least one
variable; such variables are fixed and hence effectively removed for the next iteration.
Although these methods have worst-case performance of O(n?), they may be competitive
in practice [Ven91, RJL92], since they don’t need sorting or median calculations.

The first aim of this paper is to clarify certain convergence issues of the variable fixing
methods. Only the methods of [Sho79, Mic86] for a special case of P (cf. §5.8) have full
proofs of convergence. We show that the algorithms of [RJL92, BSS96] fail on a simple
counterexample (cf. §5.7). The method of [Ven91] relies implicitly on the convergence
framework of [BiH81] (~ [BiH79]). However, the proof of the main convergence result of
[BiH81, Thm 3] has a gap (cf. §5.5); we show how to fill this gap in the case of P (in
the more general setting of [BiH81] where f is merely separable and convex, our proof
technique could close the gap when f is strictly convex).

Second, we provide more efficient versions of the variable fixing methods. This is quite
suprising, since the methods of [Sho79, Mic86, Ven91, RJL92, BSS96], as well as ours,
may be derived from [BiH81] by replacing certain nonstrict inequalities by strict ones and
using slightly different stopping criteria (these tight relationships have not been noticed
so far). Yet in practice such “tiny” differences can be significant (cf. Ex. 5.4). We also
discuss updating techniques which reduce work per iteration.

Third, we show how suitable modifications of the variable fixing methods may find the
Lagrange multipliers of P; this is useful in certain applications [BrS97].

The paper is organized as follows. Basic properties of P are reviewed in §2. In §3 we
introduce a symmetric version of the method of [BiH81]. Its convergence is established in
84. Various modifications and relations with other methods are discussed in §5. Finally,
computational results for large-scale problems are reported in §6.

2 Basic properties of the problem

Viewing ¢ € IR as a multiplier for the equality constraint of P in (1.1), consider the
Lagrangian primal solution (the minimizer of f(z) +t(bTz —r) s.t. | < z < u)

z(t) := min { max [l, D Ya - tb)] U } (2.1)
(where the min and max are taken componentwise), its constraint value
g(t) := bTz(t) (2.2)
and the associated multipliers for the constraints [ — 2 < 0 and ¢ — u < 0, respectively,
w(t) :=max{Dl—a+tb,0} and v(t):=max{a—th— Du,0}. (2.3)
Solving P amounts to solving g(t) = r for a multiplier lying in the optimal dual set
T,:={t:g(t)=r}. (2.4)

Indeed, invoking the Karush-Kuhn-Tucker conditions for P as in [CaM87, Thm 2.1},
[HKLS0, §2], [NiZ92, §1.2], [PaK90, Thm 2.1] gives the following result.
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Fact 2.1. z* = x(t) iff t € T.. Further, the set T, is nonempty, and t, u(t), v(t) are
Lagrange multipliers of P whenever t € T,.

As in [Bru84], we assume for simplicity that b > 0, because if b; = 0 then z; may be elim-
inated (z; = min{max(l;, a;/d;], u;}), whereas if b; < 0 then we may replace {;, a;, b;, l;, u;}
by —{;, a;, b, u;, ;} (in fact this transformation may be implicit).

By (2.1)~(2.2) and our assumption b > 0, each x;(¢) and g(t) are continuous, piecewise
linear and nonincreasing functions of t. Hence the set T, of (2.4) has the form

T,=[t,ty]NR with &} :=inf{t:g(t)=r}, t =sup{t:g(t)=7}, (2.5)

with g(t}) = r if £} > —oo, g(t};) = r if t}; < oo; clearly, g(t) > r iff t < t}, g(t) < r iff
iy < t. Further, since g(t) and z(t) are nonincreasing, and 2* = 2(t,) for any ¢, € T, we
have the following useful property (implicit in [BiH81] and explicit in [Ven91, Thm 6]).
Fact 2.2. Let f € R, I' := {i: 2i(f) = L}, " := {i : z:(f) = wi}. Then:

(a) If g(}) > r, then xi(t) =i =a} for all t > { and i € I'.

(L) If g(f) < v, then z;(t) = w; = a} for all t <{ and i € .

3 The variable fixing algorithm

At each iteration k, our algorithm partitions the variables as = = (zy,,p, , Ty, ), where
(Ix, Ly, Uy) is a partition of N := {1:n} such that Ty, = i, =f, = uy,; thus, fixing
zy, =l,, Ty, = uy,, we only need to consider the remaining free variables zy,.

Algorithm 3.1.
Step O (Initiation). Set I ;= N, L, := U, :=0, k:=1.

Step 1 (Restricted subproblem solution). Find the restricted minimizer

2k = arginin{ fl@):Te=r, zr, =, 2y, = uy, } . (3.1)

Step 2 (Feasibility check). Compute the infeasibility indicators

Vi= Y bi(li —2¥), where I.:= {z €l :ak <y } , (3.2a)
iel},

Ap =Y bi(zF —w), where If:= {'L €l :af >y } (3.2b)
i€l .

Step 3 (Stopping criterion). If Vi, = Ay, then reset zf, := 1 I :L",‘i. = uju and stop.
t .

Step 4 (Variable fizing). If Vi, > Ay, then set Ijyy = I\ I}, Ly := Ly UIL, Upyr = Uy
if Vi, < A then set Ly =1 \ I¢, Ly := Ly, Upyy :=Ur U I,




Step 5 (Loop). Increase k by 1 and go to Step 1.
At Step 1, @§, = lp,, zf;, = uy,. The remaining components may be computed as
a¥ = (a; — tyb)/di, i€, ‘ (3.3)
(by the form of f in (1.1)), where i, is the Lagrange multiplier of (3.1) given by
t = (Z ab;/d; — rk) [0 /d; with =1 — Y bili— Y big; (3.4)
i€ly, i€l i€Ly, i€l

in other words, t;, is the Lagrange multiplier of the reduced subproblem

k . 14,2 T —
af, = arg min { Zielk (gdiiﬂi - ai:ci) Dbpxp, =T } . (3.5)

4 Convergence of the variable fixing algorithm

Since each iteration reduces the set I, Algorithm 3.1 is finite. However, before showing

that the final z* = z*, we must prove that the algorithm is well defined, i.e., Iy # @ at

Step 1 for all k (this condition is assumed in [BiH81, §2], and implicitly in [RJL92]).
Consider the following estimates of ¢, and ¢{; in (2.5):

thi=sup{t;: V;>4;,i <k} and t:=inf{t;:V; <A;j<k}, (4.1)
with t9 1= —o0, ) := co. Define the reduced constraint value and its linearization
gi(t) == b};z,k(t) and  gi(t) := b};i:;k(t) with - £;(t) := (a; — tb;) /d;, (4.2)

so that o = &1, (ts), Ji(tr) = ri; cf. (3.3)~(3.5). We shall show that at Step 2

o (5 = min {ug, &1, (5} and @, (t57) = max { U, 2,05}, (43)
ge(ty™") = i > gu(t5), (4.4)

.CL'Lk(t‘E_l) =lg, =z}, and oy, (51 = uy, = TP (4.5)

o, (tk) =1, = 27, and  zy, (&) = wy, = 27, (4.6)

Lemma 4.1. Suppose I; # 0 and (4.3)—(4.5) hold at Step 2 for some k. Then:
(a) 571 <ty < tB7L
(b) Condition (4.6) holds.
(c) g(ty) =7 = Vi — Ay
(d) If Vi = Ay, then t, € T, and a* = a* after the reset of Step 3.
(e) If Vi > Ay, then (4.3)~(4.5) hold for k increased by 1, and I} # I, at Step 4.
(£) If Vi < Ay, then (4.3)-(4.5) hold for k increased by 1, and I} # I at Step 4.



Proof. (a) gi(t) is a decreasing function of ¢, since by assumption b;,d; > 0 in (4.2). Hence
ty >t} since otherwise (4.2)—(4.4) would yield 74 = Gr(ti) > gu(t5™1) > a8 >y, a
contradiction. Similarly ¢, < tj;, since otherwise 1, > gi(t57) > Gr(t57Y) > Gi(te) = 4.
(b) This follows from (a) and (4.5), since x(t) is nondecreasing (cf. (2.1)).
(c) By (4.6) and (3.1), 2}y, = Zr,uu, (tk). Since g(ty) = bTx(ty) (cf. (2.2)), bTa* =7
(cf. (3.1)) and I, = N \ (Lx U U) (cf. Steps 0 and 4), we have
9(te) =7 =D bifwi(te) — 2]+ Y bilwi(te) —2¥] = 3 bifai(te) — 2F].

i€l ie LUy icly
Now, by (2.1), (3.2) and (3.3),
zp(te) =1y, )=y, L<zt)= o <u VieL \(ILuly), (4.7
and of = I; = u; Vi € It N I Using these relations and the definitions (3.2) gives

g(tlc) -—r= Z bi(li - -Tf) + Z bi(ui - xf) + Z b.‘[il),'(tk) - "Ef] = Vi — Ay

iel}, el i€l \(ILUIY)

(d) Since g(tx) —r = 0 by (c), we have t;, € T, by (2.4) and z(t;) = z* by Fact 2.1. By
the proof of (c) (cf. (4.7)), z¥ = z;(t;) for all i € N'\ (I} UI}') at Step 2, and Step 3 resets
z} := z;(t) for the remaining i € IL U I (if any), so z* = z(ty).

(e) We have t§ := t, t§ := t{" by (4.1). Since Iy := I \ I} at Step 4, (4.7)
with zf, = &, (t) yields zy,,,(ts) = min{us,,,,%s,,,(ts)}. On the other hand, since
zp (t) = Iy by (4.7), combining (4.2) and (4.6) with (2.2) and (c) gives

Ger1(te) + D bli+ D bili+ Y biui = g(ty) = 7+ Vi — Ay,
ie]}‘: €Ly, iUy
which implies gpy1(tk) = 7641 + Vi — Ay, using Ly = Ly U I}, Upyq = Uy, in (3.4). Thus
Get1(t) > 711 Similarly, using tf = ¢! in (4.3)~(4.4) and then (3.4) gives
I (t) = g(t) — 3 bimax { L, & (th) } S =) bili =1
iell iel},
Combining the preceding relations, we obtain (4.3)-(4.4) for k increased by 1.

Next, we have z;(t;) = L for all i in Ly,y = Ly U} (cf. (4.6), (4.7)), whereas g(t;) > r
by (c). Hence 2y, ,, (t) = l1,,, = o},,, by Fact 2.2(a), i.e., (4.5) holds for k increased by
1. Since zy,(tx) = 2§, by (4.6), if we had I} = I, then Ly UU, = N and z(ty) = a*
combined with Fact 2.1 and (2.4) would give g(;) = r, a contradiction.

(f) The argument is symmetric to that of part (e). [

We may now state and prove our principal convergence result.

Theorem 4.2. Algorithm 3.1 is well defined and terminates with a* = z*, t, € T,.

Proof. Clearly, conditions (4.3)—(4.5) hold for k = 1. Indeed, since I = N, (4.3) means
limy, o 2(t) = u, limo2(t) = I (cf. (2.1)), whereas for Ly = U, = 0 and r, = 7,
(4.4) reduces to bTu > r > b7l (feasibility). The conclusion follows from Lemma 4.1 by
induction, with parts (e,f) ensuring that .., # () at Step 4. 0




5 Modifications and relations with other methods

5.1 Updating and incremental forms
Each iteration of Algorithm 3.1 requires finding ¢, and «f, (cf. (3.3)). Now, by (3.4),

te=(p—mi)/ae with pgi= abi/di, q:=) b2/d;. (5.1)
i€ly, i€l
To save work, we may update pg, qr and i by using the “fixed” set I} := Ij \ Iy in
Pert =Pk — Y aibi/di, Qe =aqu— Y b7/d;, (5.2)
iely i€l
_ L I =1,
rn=n- Ty R 63)
&0

This updating technique of [RJL92, BSS96] may be improved as follows.
Relations (5.1)—(5.3), (3.3) and (3.2) yield the incremental multiplier formula

1 Ve ifI; =1}
tryr =t + —— R 5.4
k+1 k Qe { —Ak if Ik - Ik' ( )
Indeed, for V> Ay, (the opposite case is similar), we have I = I} and
Qertbirt = Dhat — Thart = Pe — Tk — 3 aibi/di + ) bils
iel} iell,
= qute — te Y b} /di + > billi — (a; — tbi)/di]
iel}, iel},
= qrprte + 3 bi(li — 2) = qrate + Vi (6.5)
iel},
Further, using the facts Yy, biz¥ =&, Ix = Iep1 U I and (5.3) in (5.5) yields
Gepr(terr —te) = Y bl —af) = Y bli—me+ Y biab = —rpp+ Y biak
iell, iell, i€lk4q i€lk41
for Vi, > Ay, with ! replaced by u for Vi, < A;. Hence we also have
b1 =t + (Zielm biak — Tk+1) [ Q41 (5.6)
Of course, by (3.3), we may also update
bt = ok — (tpyr — te)bi/diy i € Tipa. (5.7)

The incremental formula (5.4) saves work by not requiring the updates of py and 7.
The second formula (5.6) and the update (5.7) are listed for comparisons (cf. §5.8).
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5.2 Fixing fewer variables
The convergence results of §§3-4 hold for If and I? replaced by their subsets
Fe={ieh:af <t} and IZ:={i€l:af>u}. (5.8)

However, this version is less efficient, since it may fix fewer variables per iteration.

5.3 Stopping criteria
Note that I;, < zf < uy, iff IS = I7 =0 (by (5.8)) iff Vi = Ar =0 (by (3.2)), in which

S
case Step 3 neednit reset z*. Further, by the proof of Lemma 4.1(e,f), if Ix+; = @ then
Vi = Ag. Thus our stopping criterion V; = Ay subsumes the criteria {;, < 'r',“ < uyp,
as well as Iy, = (). In practice, choosing a feasibility tolerance e > 0, we may use the
stopping criterion:

|V — Akl € emax{1,|r|} or Ipy1=0;

it will guarantee termination even under roundoff error (since Ij shrinks).

5.4 An illustrative example
For future comparisons, consider the following example. Let e := (1,...,1) € R™

Example 5.1. Forn =2, lesd=b=¢,a=0,r =1,1 = (1,-1), u = (2,0), so that
z* = (1,0) and T, = [-1,0]. Then r; = 1, ¢; = —0.5, ' = (0.5,0.5), V1 = A; = 0.5,
I! = {1}, I* = {2} and Step 3 of Algorithm 3.1 resets z' to z(t;) = =* before terminating.

5.5 Revisiting the Bitran-Hax algorithm

The Bitran-Hax (BH for short) algorithm [BiH81] differs from Algorithm 3.1 in two aspects.
First, at Step 4 it replaces the condition V), < A by Vi < Ay; our version is symmetric.
Second, its stopping criterion (cf. §5.3)

I, < w',“k <wup or Iyy=0 ‘ (5.9)

may be less efficient than our criterion Vi = Ay; e.g., the BH algorithm solves Example
5.1 in two iterations (with Uy = {2}, I, = {1}, ts = —1, a® = z*). However, the case
Ii+1 = 0 is not covered by the main convergence proof of [BiH81, Thm 3]; in our setting,
the second condition of (5.9) is redundant, as shown below.

Lemma 5.2. If (4.6) holds and either IL=1I or I = I, then I, < x’}k < uy,.

Proof. Suppose I}, = I; (the case I} = I is similar). Then a:'jk <y, = zp,(tx) by (3.2a)
and (4.7), z(ty) = z* by the proof of Lem. 4.1(e), whereas (3.1), (3.4) and (4.6) yield
bl af == 0] 2}, Since b >0, o, <=y, and bf 2§, = b} a7, give af =aj. 0

Consequently, an equivalent version of the BH algorithm is obtained from Algorithin
3.1 by replacing the condition V;, < Ay by Vi < Ay in Step 4, and Step 3 by
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Step 3’ (Stopping criterion). If l;, < z§ < wj, then stop (z* = 2*).
Theorem 5.3. The BH algorithm is well defined and terminates with x* = z*, t, € T,.

Proof. We only show how to modify the analysis of §4. Since I, < 2§ < uy, iff If =
I =0iff Vi = Ay = 0 (cf. §5.3), we have max{V},A;} > 0 at Step 4, and using
o = z;(t) for all i € N\ (I U I7), we may replace (d) of Lem. 4.1 by

&) If Iy, <2k <wuy, then ty € T, and 2* = 2*.
& Iy, k

Next, Vi < Ay replaces Vi, < Ay in Lem. 4.1(f), with Lem. 5.2 showing that I, # 0.
Thus Theorem 4.2 holds for the BH algorithm. [

The BH algorithm coincides with Algorithm 3.1 until V;, = Ay, occurs; then Algorithm
3.1 terminates, but the BH algorithm may go on. The following example shows that the
number of additional iterations of the BH algorithm may be quite large.

Example 5.4. Forn = 2m+ 1 withm > 1, letd=b=¢e,a=0,7r =0, |; = i and
yp=oofori=1m, 1=~ Upp1=1,Li=—-ccandu;=m+1—ifori=m+2n,
so that T, = {0}, zf = I; for i = 1:m, a},,, =0, z} = u; for i = m + 2:n. Algorithm 3.1
generates t; = 0, z' = 0, I! = {Iim}, [} = {m+2:n}, Vi = A; = ﬂ";—“l, terminating
with z' reset to z*. In contrast, the BH algorithm continues with I, = {1:m + 1} and
Ty = ﬂ"Q‘LI), bisecting I, and decreasing ), until I, = {m+1} and r;, = 0. Our experiments
with instances having up to twenty million variables show that the BH algorithm makes
k = [logy(n + 1)] + 1 iterations; e.g., k = 20 for n = 10° + 1.

5.6 Ventura’s modification of the Bitran-Hax algorithm

Assuming ! < u, consider the following modification of Algorithm 3.1.

Replace Step 3 by Step 3’ of §5.5. At Step 4, if V. = Ay, then set I = I, \ (I} UIY),
Liy1 = Ly U T}, Upyy = Up U IE. At Step b, if Iy1 = 0 then reset w’f,( = l’L’ z’,“k =y
and stop. ’

Clearly, this modification behaves like the original version until Vy = A}, occurs.

Lemma 5.5. Suppose the above modification produces Vy, = Ay, for some k. Then t;, €
T.. If (5.9) holds, then z* = x* upon termination; otherwise, the nest iteration terminates
with tyy1 =ty and %! = z*. Consequently, Theorem 4.2 remains valid.

Proof. By Lem. 4.1(d), t; € T., and (5.9) implies z* = z* after the final reset, if any.
If no termination occurs, then Tp (tk) = Loy Ty () = Uy, Try, () = ac',‘k+1 by
(4.7), and using (5.2) with Iy = ILU I} and r1q =), — et bili — Tiery biu; as for (5.5)
yields grqitis1 = Quyrte + Vi — Ay and hence 41 = #;. Thus x’,':; 11 = m’ikH by (3.3). Since
o=l mﬁ,ﬁl =uy,,, by (3.1), we get 2*+! = x(t;). Then z(ty) = 2* (t, € T,)
implies termination due to Iy, < r?::‘l <auy,,. 0

also z

In effect, this modification may only add one (spurious) final iteration, and it needs
I < u. The method of [Ven91, Alg. 3] is equivalent to this modification.
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5.7 The projection algorithm of Robinson, Jiang and Lerme

The algorithm of [RJL92, §3], introduced for the special case of d = e, a = 0 and extended
to the general case in [BSS90], is related to Algorithm 3.1 as follows.

First, using IS and IZ (cf. (5.8)) instead of I} and I, it may fix fewer variables per
iteration. Second, its stopping criterion “IF U I = 0 or Vi = A}” is equivalent to
Vi = Ay (cf. §5.3). Third, omitting the reset of Step 3, it may produce wrong solutions;
e.g., ' = (0.5,0.5) in Example 5.1 (in its original notation, the final step should replace
I by I'\ (L' UU'); similarly in [BSS96, BrS97]). Fourth, the analysis in [RJL92] assumes
implicitly that I, # @ at Step 1, and doesn’t show that the final ¢, € Ts.

5.8 The algorithms of Shor and Michelot

Consider the case where d = b =¢, 7 > 0, l = 0, u; = 00, in which z* is the Euclidean
projection of @ onto the canonical simplex {x > 0 : ¢Tz = r}. In this case streamlined
versions of Algorithm 3.1 discussed below are more efficient than the algorithms of Shor
[Sho79, Eq. (4.62)] and Michelot [Mic86, §4].

Starting with I; = N and ¢; = (T, a; — r)/n (cf. (3.4)), Algorithm 3.1 generates
E’fk = ap — tke;k, a’JICV\Ik = 0, Vk = _EiElkmeOI?r Ak = 0, IIc—H = {’L € Ik : CE:V > 0},
torr = tr + Vi/|[Iepa| (cf. (5.4), (5.1)), until Vi = 0. To avoid updating z*, we may use
Vi = Tienutysa(te — i) and Iy = {i € I @ a; > t,}, setting .'t',“k = ay, — trer,, z’fv\,k =0
upon termination. Shor’s algorithm [Sho79, Eq. (4.62)] replaces Vi by g(tx) — 7 (= Vi
by Lem. 4.1(c)); note that Vj is cheaper to compute than g(ty).

Alternatively, starting with I, = N, t; = (Y%, a; — r)/n, z! = a — t;e and using
Ieyr = {i € I : 2} > 0} (ie., IT instead of If; cf. §5.3), tesr = te+ (Tiere,, T8 — 1)/ ks,
aitl =k — (e — teen,, (of (5.6)-(5.7)), z’;vﬁl,m = 0 until af§ >0 (ie, Vi =0
by (3.2a)), we recover Michelot’s algorithm [Mic86, §4]. A more efficient version may use
Iy = {i € I : 2 > 0} (i.e., I} instead of I; cf. §5.3).

5.9 Recovering all Lagrange multipliers

Once Algorithm 3.1 terminates, the following results may be used for recovering all La-
grange multipliers of P. By (2.1)—(2.2), the function g has the following breakpoints

tli = ((1,' - lidi)/bi, t:L = (ai - ’U,,'d,')/bi, i=1n. (510)

Lemma 5.6. Let I, := {i: 2} € (li,w)}, Lo := {i : zf =1}, Uu:={i: 2} = w}.

(a) If L # 0, then T, = {t.}, where t, = (a; — d;z})/b; Vi € I,.

(b) If I, = 0, then T, = [t}, ] N R, where t}, = maxier\v, &, th = miney.\p, ¥

(c) Upon termination in Step 3, let I¥ := I \ (ILUIY), L := Ly U I}, UF .= U, U I}
Then I¥ =1I,, L¥ c L,, U* c U,, L*UU* = L,UU,, I*NU* Cc L.nU, = {i : ti =t.}.

(d) t, p, v are Lagrange multipliers of P iff t € T\, p = p(t) + A\, v = v(t) + X for
some X > 0 with AT(u — 1) = 0; in particular, A= 0 if | < u.

Proof. (a,b) These follow from (2.1) and the fact that t € T, iff x(t) = a* (Fact 2.1).




Table 6.1: Average, maximum and minimum run times in seconds for uncorrelated, weakly
- correlated and strongly correlated problems.

uncorrelated weakly correl. strongly correl. overall
n avg max min avg max min avg 1max min avg max min
50000 0.18 0.27 0.11 0.21 0.28 0.16 0.19 0.22 0.16 0.19 0.28 0.11
100000 0.38 0.44 0.28 038 044 0.27 0.38 044 0.33 038 044 0.27
500000 1.57 1.76 1.32 158 1.75 132 160 1.76 1.38 1.58 1.76 1.32
1000000 3.13 340 253 3.11 341 242 3.19 346 280 3.14 346 242
1500000 4.48 5.00 3.79 4.63 505 3.85 4.60 517 3.63 4.57 517 3.63
2000000 6.14 6.75 505 G6.11 G6.86 4.55 6.28 6.87 4.89 6.17 6.87 4.55

(c) We have I < :l:f_k < uy by (3.2), whereas the proof of Lem. 4.1(c,d) yields
o =zt = z(ty), mps(te) = Lok, Tps(te) = uyk, Iy = N\ (LyUUL). Since I¥ = N\ (L*uU*),
the conclusion follows from the fact that {i: ; =w;} = {i:t = t}} by (5.10).

(d) This follows from (2.3), Fact 2.1 and the KKT conditions. 0

Lemma 5.6(c) extends easily to all algorithms of §§5.5-5.8.

6 Numerical results

Algorithm 3.1 was programmed in Fortran 77 and run on a notebook PC (Pentium II 400
MHz, 256 MB RAM) under MS Windows 98. The set I, was maintained as a linked list;
instead of maintaining L and Uy, the final x(t) and g(t;) were computed directly.

Our test problems were randomly generated with n ranging between 50000 and 2000000
(to avoid memory swapping). As in [BSS95, §2], all parameters were distributed uniformly
in the intervals of the following three problem classes: (1) uncorrelated: a;, b;, d; € (10, 25];
(2) weakly correlated: b; € [10,25], a;,d; € [b; — 5,b; + 5]; (3) strongly correlated: b; €
[10,25), a; = d; = b; + 5; further, L;,u; € [1,15], i € N, r € [b7l,b"u). For each problem
size, 20 instances were generated in each class.

Table 6.1 reports the average, maximum and minimum run times over the 20 instances
for each of the listed problem sizes and classes. The run times grow linearly with the
problem size.

More extensive numerical tests and comparisons with breakpoint scarching methods
[Kiw02] are given in [Kiw03].

Acknowledgment. I would like to thank A.G. Robinson for useful information.
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