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Abstract

We give several linear time algorithms for the continuous quadratic knapsack prob-
lem. We show that, out of the seven existing linear time algorithms, two can be
improved, and the remaining five fail on simple counterexamples.

Key words. Nonlinear programming, convex programming, quadratic pro-
gramming, separable programming, singly constrained quadratic program.

1 Introduction
The continuous quadratic knapsack problem is defined by
P: min f(z):=12"Dz—a"z st. z=r, [<z<y, (1.1)

where z is an n-vector of variables, a,b,l,u € R", 7 € R, D = diag(d) with d > 0, so that
the objective f is strictly convex. Assuming P is feasible, let z* denote its unique solution.
Problem P has applications in resource allocation [BiH81, BrS97, HoH95)], hierarchical
production planning [BiH81], network flows [Ven91], transportation problems [CoH94],
multicommodity network flows [HKL80, NiZ92, ShM90|, constrained matrix problems
[CDZ86], integer quadratic knapsack problems [BSS95, BSS96], integer and continuous
quadratic optimization over submodular constraints [HoH95], Lagrangian relaxation via
subgradient optimization [HWC74], and quasi-Newton updates with bounds [CaM87].
Specialized algorithms for P solve its dual problem by finding a Lagrange multiplier
t, that solves the equation g(t) = r, where g is a monotone piecewise linear function
with 2n breakpoints (cf. §2). The earliest O(nlogn) methods [HWC74, HKL80] sort
the breakpoints initially, whereas the O(n) algorithms [Bru84, CaM87, MdP89, PaK90,
CoH94, HoH95, MMP97] use medians of breakpoint subsets (see [BKP93, MeT93] for
extensions); [PaK90] also proposed an approximate median version with an average-case
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performance of O(n). Another class of methods with worst-case performance of O(n?)
[BiH81, Zip80, Mic86, Ven91, RJL92, BSS96] employs variable fixing [LuG75).

This paper focuses on linear time algorithms for P. We introduce a breakpoint searching
framework that is conceptually simpler than those in [Bru84, CaM87, MdP89, PaK90,
CoH94, HoH95, MMP97]. Among other things, we give modifications of the first two
methods [Bru84, CaM87] (with more efficient g-evaluations), and simple counterexamples
for the remaining methods [MdP89, PaK90, CoH94, HoH95, MMP97], showing that they
may deliver wrong solutions.

The paper is organized as follows. Basic properties of P are reviewed in §2. Our simplest
algorithm is introduced in §3 together with the standard g-evaluation of [Bru84, CaM87].
A more refined g-evaluation is derived in §4, and a complementary one in §5 (the latter
extends and corrects some ideas in [CoH94, HoH95]). To ease comparisons with related
methods, in §6 we state simplifications for quadratic resource allocation. Extensions of
the two median approach of [Bru84] and the additional breakpoint removal of [CaM87)
are discussed in §§7 and 8, respectively. Section 9 presents our counterexamples for the
methods of [MdP89, PaK90, CoH94, HoH95, MMP97]. Finally, preliminary computational
results for large-scale problems are reported in §10.

2 Basic properties of the problem

Viewing ¢ € IR as a multiplier for the equality constraint of P in (1.1), consider the
Lagrangian primal solution (the minimizer of f(z) +t(bTz —r) s.t. | <z < u)

z(t) == min{max[l, D_l(a—tb)] ,u} (2.1)
(where the min and max are taken componentwise), its constraint value
g(t) := bTa(t) (2.2)
and the associated multipliers for the constraints | — z < 0 and z — u < 0, respectively,
w(t) :=max{Dl—a+1th,0} and v(t):=max{a—tb—Du,0}. (2.3)
Solving P amounts to solving g(t) = r for a multiplier lying in the optimal dual set
T.:={t:g(t)=r}. : (2.4)

Indeed, invoking the Karush-Kuhn-Tucker conditions for P as in [CaM87, Thm 2.1],
[HKLS8O, §2], [NiZ92, §1.2], [PaK90, Thm 2.1] gives the following result.

Fact 2.1. z* = z(t) iff t € T.. Further, the set T, is nonempty, and t, p(t), v(t) are
Lagrange multipliers of P whenever t € T.

As in [Bru84], we assume for simplicity that b > 0, because if b; = 0 then x; may be elim-
inated (¢} = min{max[l;, a;/di], u;}), whereas if b; < 0 then we may replace {z;, a;, bi, i, u;}
by —{zi, a,bi, u;, i} (in fact this transformation may be implicit).
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Figure 2.1: (a) Illustration of z;(t) := min{max[l;, (a; — tb;)/di],u;}. (b) Hlustration of
biz;i(t) = min{max[bil;, (a;b; — tb?)/d;], biu;} (for b; > 0).

By (2.1)-(2.2), the function g has the following breakpoints
= (a,- - l,,d,)/b, and t:‘ = (ai - uidi)/bi, 1=1: n, (25)

with £ < t! (from I; < u; and b; > 0), and each z;(t) may be expressed as

u; if t < ¥,
zi(t) = ¢ (a; —th)/d; ift* <t <t (2.6)
I iftl <t

Thus g(t) is a continuous, piecewise linear and nonincreasing function of ¢ (cf. Fig. 2.1).
Hence the optimal set T, of (2.4) is an interval (possibly infinite) of the form

T, =[tp, tp]NR with &} :=inf{¢t:g(t)=r}, t =sup{t:g(t)=r}, (2.7

with g(ty) = rif t} > —o0, g(tfy) = r if &f; < oo; clearly, g(t) > r iff t < t}, g(t) < r iff
{ < t. Denoting the minimal and mammal breakpoints by #%;, := min;t¢ and t\,, =
max,t we have g(t) =bTu>r forall t <%, g(t) =bTl < rforallt > ¢

‘min»

3 The breakpoint searching algorithm

As shown in §2, the search for an optimal ¢, in T, can be restricted to the breakpoint in-
terval [t ¢!, ]. The algorithm below generates successive nondecreasing underestimates
ty, of t} and nonincreasing overestimates ty of t}; by evaluating g at trial breakpoints in
(tz,tv) until t;, and ty become two consecutive breakpoints; then g is linear on [tr,ty],
and t, is found by interpolation. Let N := {1:n}.

Algorithm 3.1.
Step 0 (Initiation). Set Tp := {t}ien U {t'}ien, T := To, t1, 1= —00, ty := o0.

Step 1 (Breakpoint selection). Choose f in T'.
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Step 2 (Computing g(f)). Calculate g(f).

Step 3 (Optimality check). If g(f) = r then stop with ¢, := £

Step 4 (Lower breakpoint removal). If g(£) > r then set ¢, :={, T:={t € T : { < t}.
Step 5 (Upper breakpoint removal). If g(f) < r then set ty :=f, T:= {t € T : t < {}.
Step 6 (Stopping criterion). If T # @ then go to Step 1; otherwise, stop with

t* = tL - [g(tL (31)

g mEr
The following comments clarify the nature of the algorithm.

Remarks 3.2. (a) At each iteration in Step 2 we have t, < ty, T\ C [t,ty] and i € T =
To N (L, ty) (this follows by induction from the properties of g given in §2).
(b) To compute g(f) efficiently, we may partition the set N into the following sets

p={iti<t}, M={irtptoe[t ]}, U={i:tw<e}, (320

[i={i:th € (tr,tv) or € (tr,tv) }, (3.2b)
which are disjoint because ¢, < ty and t¢ < t.. Further, we have
I=nLul, with Li={i:te(tsty)}, L:={itetnt)}, (3.3)
and T = {#}ics, U {t*}icr,; hence |I| < |T|. Thus, by (2.2), (2.6) and (3.2),
g(t) = _bimi(t) + (p—tq) +s Vt€[tr,tv], (3:4)
iel
where
Zb,’l‘i(t) = Z b,'(ai - tbi)/d.' + Z b,‘li + Z bill,i, (35)
i€l iel:te(ty th) ielti<t ielt<ty
D= Z ﬂ,ibi/d,‘, q = Z b?/d, and s:= Zbili + Z b,-ui. (36)
ieM ieM i€l ieU

Setting I := N, p,q, s := 0 at Step 0, at Step 6 we may update I, p, q and s as follows:

forie I do
if # <ty then I:=1T1\{i}, s:=s+bl;
if ty <t¥ then I:=1T1\ {i}, s := s+ bu;;
if tr,ty € [t¢,¢] then I := I\ {i}, p:=p+ a;bi/d;, q := q + b?/d..

This update and the calculation of g(£) require order |I| < |T) operations.

(c) When T becomes empty, then I = @ in (3.4), so ¢ is linear on [ty ty] and (3.1) yields
g(t.) = r. Note that g(t;) and g(ty) must have been evaluated earlier; indeed, ty = oo
would imply ¢;, = ¢! and g(t;) = bTl < r, contradicting g(t;) > r; similarly t;, = —oo
would yield ty = tmm and g(ty) = bTu > r, another contradiction. Alternatively, (3.4)
with I = () shows that (3.1) is equivalent to

=(p+s—r1)/q. (3.8)

(d) Since each iteration reduces the set T', Algorithm 3.1 must terminate with ¢, € T,;
then z* = z(t,) (cf. Fact 2.1) is recovered via (2.1) in order n operations (cf. (2.6)).

(3.7)
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The choice of £ in T' at Step 1 is crucial for efficiency, as explained below.

Remarks 3.3. (a) For an arbitrary choice of #, Algorithm 3.1 requires order n2 operations
in the worst case. The complexity can be improved to order n by sclecting £ as the
median of T', which requires order |T'| operations; see, e.g., [AHU74, §3.6], [CLR90, §10.3],
[BFP*72, SPP76]. Thus the complexity of each iteration is O(|T). Since |T| is originally
2n and is halved at each iteration, the algorithm makes O(logn) iterations in time O(n).

(b) As suggested by [PaK90], in practice it may be preferable to choose £ in T at
random, with an expected number of iterations of O(logn) in an expected time O(n),
which can be derived as in [AHU74, Thm 3.11], [CLR90, §10.2].

We now briefly describe several useful modifications.

Remarks 3.4. (a) Step 0 may set t;, :=t%:, ty = tho, T = To N (tL, ty), terminating
with &, 1= tr, if g(tL) =7, or ¢, := ty if g(ty) =, or t, given by (3.8) if T = 0.

(b) If the set of fixed variables L= := {i : l; = u;} is nonempty, at Step 0 we may set
I:=N\L~, T := {t,t*}icr, with L replaced by L U L= in (3.2) and (3.6) and M, U, I
modified accordingly, terminating with ¢, given by (3.8) if T = §.

(c) An extension to infinite bounds is easy, since #! = oo iff ; = —o0, t* = —oo iff
u; = 0o. Starting with ¢ := —oo0, ty := oo (or tf, := ¥, ty =t} as in (a)), Step 0
may set T := {t{}ies, U {t¢}ier, with I, I, given by (3.3), terminating with ¢, given by
(3.8) if I = @. Thus infinite breakpoints are effectively ignored.

4 More refined updates

In a simple implementation based on (3.4)~(3.7), certain sums of (3.5) are repeated in (3.7).
We now give a more refined version of Algorithm 3.1 that eliminates these redundancies.
Our refinement consists in using the following partition of I (cf. (3.3))

Jm:={z':tL<t;‘5t5<tU}, (4.1a)

Jui={i:tf <ty <ti<ty} and Jo={it <tf <ty <d}, (4.1b)
with I = J, U U Jy, i = Ju U diy I, = Ju U Jy. Thus Jp, = N1, Ji = I\ I, and

Ju = I, \ I index the middle, left and right breakpoints of T = {t!}icsun U {t Fiesut-
To shorten notation, for any subsets M, L, U of N, we let

p(M) =Y aibs/di, q(M):= 3" 63 /di, si(D) = bili, su(0) 1= Y b (4.2)
iehl ieM ik iell
Algorithm 4.1.
Step 0 (Initiation). Set ty, := —00, ty := 00 (or tf, := ¥, ty := t} .. asin Rems. 3.4(a,c)),
T = {ti}iesun Y {ties,ua, with Jp, Ji, Ju given by (4.1), p := p(M), g = q(M),
s :=8(L) + s,(U) with M, L, U given by (3.2). If I = 0, stop with ¢, given by (3.8).

Step 1 (Breakpoint selection). Choose £ in T.




Step 2 (Computing g(f)). Se
M, = {i € J, : t¢ <1},
p+ p(My) + P(M)+ p(M.,),
g(8) = (- 1q) + 5.

Step 3 (Optimality check). If g(f) = r then stop with ¢, :=

My = {i € Jn tU<£<tl}Jvn_{i§J,:£
={zeI, t‘<t},U_{zeI,, i<t}
+q(Myn) + g(M) + g(M,), 3 = s + si(L) + su

<
b

t N, tt},
L L
G = )

Step 4 (Lower breakpoint removal). If g(t f) > r then set t;, ;= f, T := {teT: t <t}
pi=p+p(M,), ¢:=q+q(M.), i := {i € I : £ =}, s := s + s,(L) + si().

Step 5 (Upper breakpoint removal). If g(t f) < r then set ty := f, T:={teT:t< t},
pi=p+p(M), q:=q+qM), I, := i€ L, : t* =1}, s := s + 8(U) + su(La).

Step 6 (Stopping criterion). If T # @ then go to Step 1, else stop with t, given by (3.8).

The sums in Step 2 require a single scan of I = J,,, U J; U J,; another scan suffices
for updating J,,, J; and J, at Step 4 or 5 (cf. (4.1); for brevity, explicit updates are
omitted). The work of Step 2 is comparable to that in using (3.4)-(3.5); however, relative
to (3.7), Steps 4 and 5 save the work needed for (re)computing the sums p(M,), q(M,),
etc., available from Step 2. Thus the efficiency estimates of Remarks 3.3 remain valid for
Algorithm 4.1. Tt remains to show that the algorithm is correct.

Theorem 4.2. Algorithm 4.1 terminates with t, € T,.

Proof. To validate the calculation of g(f) at Step 2, suppose £ € (tr,tu) and (3.6) holds
(this is true initially; cf. Step 0) Then (3.3) and (4.1) imply that M,,,, M, and M, form a
partition of M := {iel:t<t<tl}, with M, Mﬂ Jmy My=MNJy,, My =MnNJy,
whereas M together with L= {i € I : i <} and U = {i € I : { < t¥} (use t;, < < ty)
form a partition of I. Hence (3.5) and (4 2) yield

3 biai(d) = p(M) — tq(M) + si(L) + s.(0)

iel

= p(Mw) -+ p(V) + p(M) = £ [ (W) + a(V) -+ q(M) | + su(E) + 5u(D).

Combining this with (3.4) and (3.6) shows that Step 2 computes g(£) correctly.

Thus, as long as (3.6) holds, Algorithm 4.1 may be identified with Algorithm 3.1. We
now show that (3.6) is maintained by the updates of Steps 4 and 5, using superscript *
for the updated quantities, e.g., p*.

First, suppose ¢f = £ at Step 4. Since t;, < t} and ¢y doesn’t change, Ut = U by
(3.2) and I'\ I'* splits into M*\ M and L* \ L. The first set M +\ M consists of ¢ € I
such that t¥ < £ < tt and ¢ < ty < t!, so, since t¥ < ty Vi € I, it coincides with
the intersection of M and {i € I : ty < i} = J, (cf. (4.1)), which is M,. The second
set LY\ Lequals [ :== {i € I : t{ < {} (t} = ﬂ with L = {i € I : t <} (using
f <ty in (3.3)). Thus M+ = MUM with M N M, =0, L* = LULwith LnL = 0,
U+ = U. Further, L = L U, with Ln I[ 0. Comblmng the plecedlng relations
with (3.6) and (4.2) gives p* = p(M) + p(M,) = p(M*), gt = q(M) + q(M,) = q(M™),
5% = si(L) +5u(U)+5(L) = se(L*) +5,(UY). Thus (3.6) holds for the updated quantities.



Next, suppose tf; = £ at Step 5. Since tf; < ty and ¢, doesn’t change, L* = L by
(3.2) and I'\ I'* splits into M*\ M and U+ \ U. The first set M+ \ M consists of i € T
such that ¢} < t < t’ and t* < t; <t so, since t;, < tt Vi € I, it coincides with the
intersection of M and {i € T tf <t} = Jp (cf. (4.1)), which is M,. The second set
Ut\Uequals U ;= {i e T : § < '} (t = ), with U={ie I : t <t} (using
tr < in (3.3)). Thus M+ =MUM, with MO N =0, Ut =UUU with UnU =,
L* = L. Further, U = U U, with U N1, = 0. Combmlng the preceding relations
with (3.6) and (4. 2) gives p* = p(M) + p(M) = p(M*), ¢t = q(M) + q(M,) = g(M+),
st = si(L)+5,(U)+5,(U) = s:(L*)+5,(U*). Thus (3.6) holds for the updated quantities.

It follows by induction that (3.6) always holds at Steps 2 and 6.

Upon termination with T' = @, ¢, € T, by Remark 3.2(c). O

5 Decrementing updates

Algorithm 4.1 works with the quantities p = p(M), ¢ = ¢(M), s = s;(L) + s,(U), incre-
menting them when M, L and U grow. Using the set (cf. (3.2), (3.3))

Iy:={istp<fand ! <ty } =IUM =L UL UM, (5.1)
we now describe a version of Algorithm 3.1 that employs the redefined quantities

p=p(Iu), a=4q(Iu) and s=s(L)+ su(U), (5.2)

decrementing p and q when I shrinks.
Algorithm 5.1.
Step 0 (Initiation) Set t;, := —o0, ty := oo (or t := ¥, tu = t\,, as in Rems.
3.4(a,c)), T := {ti}ies, U {t¥ }ier, with I, I, given by (3.3), set p, g, s via (5.1)~(5.2) with
I, M, L, U given by (3.2). If I = @ then stop with ¢, given by (3.8).
Step 1 (Breakpoint selection). Choose £ in T.
Step 2 (Computing g(®). Set L := {i el th <}, U= ={iel: f <}, p=
p=p() = p(0), 4:= g~ a(L) — a(D), § = s+ su(L) + 5,(0), 9(B) = (5 — £4) + 5.
Step 3 (Optimality check). If g(£) = r then stop with ¢, := {.
Step 4 (Lower breakpoint removal). If g(f) > r then set ¢, :=%, T == {t € T: { < t},
fii={ieh:t =i}, p=p-p(L)—p(L), q:= g — (L) — a(R), 5 == s + si(L) + su( ),
L:={iel: t<t} L={iel,:t<t}
Step 5 (Upper breakpoint removal). If J(t) <rthensetty =({T:={teT:t< t}

Loe={iel,: t¢ =1}, p=p—p(0)—p(L), ¢ := = q(U) — q(L.), s := s+ su(0) +su(L),
I, ={iel: t‘<t} L:={iel,: <t}
Step 6 (Stopping criterion). If T # ) then go to Step 1, else stop with ¢, given by (3.8).

The work of Step 2 in computing p, § is proportional to |L| + lU |, whereas that of
Algouthm 4.1 is proportional to |M|, with |M| + |L| + |U| = |I| (cf. the proof of Thm

4.2). Hence again the efficiency estimates of Remarks 3.3 remain valid, and we only need
to show that the algorithm is correct.




Theorem 5.2. Algorithm 5.1 terminates with t, € T,.

Proof. To validate the calculation of g(f) at Step 2, suppose f € (t,ty) and (5.2) holds
(this is true initially; cf. Step 0). Using (2.6), (3.2), (3.3), (4.2), (5.1) and (5.2), we may
express g(f) = Tiew bizi(f) as

g(f) = Z bizi(t) + Z bil; + Z bu; = Z b,:l),(i) + s, (533.)

i€lps i€l eV i€lpr
where in the notation of Step 2 (with LU c Iy, LnU = 0 from & < t}) we have

Z b,'.l‘,'(f) = Z bﬁl),‘(ﬂ + Zbili + Z b;u;

i€l iely\(LU0) il icl
= [p (I \ (LU D0)) —dq (In \ (LU D)) | + su(L) + 5(D) (5.3b)
= [Pt = #(E) = p(0)] = aTar) = a(D) ~ o) | + su(L) + (D).

Relations (5.3) and (5.2) show that Step 2 computes g(f) correctly.

Thus, as long as (5.2) holds, Algorithm 5.1 may be identified with Algorithm 3.1. We
now show that (5.2) is maintained by the updates of Steps 4 and 5, using superscript *
for the updated quantltles, e.g., pt.

First, suppose tf ={at Step 4. Let L := {i € I, : < {}. Then Ipy = If; U L with
Ifi ={i:t <t and t¥ < ty} and I}; N L =0by (5.1) and (3.3), whereas the partition
(3.2) yields LUU = N\IM and L’LUUJr = N\ Ij; with U* = U and LNnU =40, s0
L+ = LUL with LnL = 0. Further, L = LUl with LN, = Q) at Step 2. Combining the
pleccdmg relations with (5.2) and the rules of Step 4 gives p* = p(In) — (L) = p(Ify),

= (Iu) — a(L) = a(Ih), 5% = si(L) + 8u(V) + si(E) = s(L*) + u(U™). Thus (5.2)
holds for the updated quantltles 5

Next, suppose t}; =t at Step 5. Let U ={iel,: i<t} Then Iy = I}z UU with
Ify = {i: t, < thand t¢ < £} and I};y N U = @ by (5.1) and (3.3), whereas the partition
(3.2) yields LUU = N\IM and L+UU+ = N\ If; with L* = L and UNL=0,so0
U+ =UUU with UNT = 0. Further, U = U U, with U NI, = 0 at Step 2. Combmmg
the preceding relations with (5.2) and the rules of Step 5 gives pt=p(Iy)— —p(U) =p(I}),

= q(Tur) — a(0) = a(Ih), 5 = (L) + 5u(V) + su(D) = st(L*) + 5u(U). Thus (5.2)
holds for the updated quantities.

Thus, by induction, (5.2) always holds at Steps 2 and 6.

When T = {t:}ier, U {t!}icr, becomes empty, I; = I, = §. Then (3.3) and (5.1) show
that (5.2) with Ip; = M reduces to (3.6), so t. € T\ by Remark 3.2(c). O

Remark 5.3. An asymmetric version of Algorithm 5.1 is obtained by replacing L with
L= {iel: t’ < t} at Steps 2 and 4 with It omitted; alternatively we may replace U
by U:={iel,: &<t} omitting p(I ), etc. In fact both replacements may be used
whenever [ < u (smce (5.3b) with L, U replaced by L, U only needs L N U =0).



6 Simplifications for quadratic resource allocation

The quadratic resource allocation (QRA) problem is a special instance of P with I; = 0
and u; = oo for all ¢. In this case Algorithmm 4.1 simplifies as follows (cf. Rem. 3.4(c)).

Algorithm 6.1 (for QRA: [; =0, u; = 0o Vi € N).

Step 0 (Initiation). Set tf, := —o0, ty :=00, I := N, T := {tt}ien, p:=0,¢:=0, s := 0.

Step 1 (Breakpoint selection). Choose £ in T

Step 2 (Computzng g(d). Set M :={i e I:i<t},p:=p+pM),q:=q+q(M),

9(t) = p—ig.

Step 3 (Optzmality check). If g(f) = r then stop with ¢, :={.

Step 4 (Lower breakpoint removal). If g(f) > r then set t, := ¢, T := {t € T : { < t},

I'={iel:{<t}.

Step 5 (Upper breakpoint removal). If gf) <rthensetty =1 T:={teT:t<i}

p=p,q:=§ [:={icl:t<i}).

Step 6 (Stopping criterion). If T # () then go to Step 1, else stop with ¢, given by (3.8).
Also Algorithm 5.1 may be simplified as follows.

Algorithm 6.2 (for QRA: [; =0, u; = 0o Vi € N).

Step 0 (Initiation). Set ¢, := —o00, ty := 00, I :== N, T := {t'}ien, p := p(N), ¢ := q(N),
s:=0.

Step 1 (Breakpoint selection). Choose £ in T.

Step 2 (Computmg 9@). Set L={iel:t <}, p:=p-pl),q:=q-qd),
9() =p—ig. :

Step 3 (Optzmality check). If g(£) = r then stop with ¢, := i.

Step 4 (Lower breakpoint removal). If g) > rthenset t, =4 T:={t € T: % < t},
I={iel:tt=8),p=p—pD),qg=G—q), I:={icl: t<t’}

Step 5 (Upper breakpoint removal). If g(f) < r then set ty =1, T:= {t € T : t < i},
I'={iel:t<{}.

Step 6 (Stopping criterion). If T # () then go to Step 1, else stop with t. given by (3.8).

Note the complementary features of both algorithms, and their modifications discussed
below.

Remarks 6.3. (a) For M := {i € I : { <t} and [ := {i € I : &} = i}, we have
M = MUT with IV[PII 0, and p(l) —tq(I) 0 from (a; —tb )/di = l =0 Vi € I; thus
p(M) —iq(NI) = p(M) — £q(M). Hence M may replace M at Step 2 of Algorithm 6.1, but
then Step 5 must set p := p + p(I), ¢ := § + q(I).
(b) In the asymmetric version of Algorithm 6.2 (cf. Rem. 5.3), L := {i € I : t! < {}
replaces L at Step 2, and Step 4 sets p := P, q:=q.




7 A double-median approach

In the spirit of [Bru84, §3], we now consider a modification of Algorithm 3.1 in which Steps
1-5 are replaced by a call to the following procedure that may update both ¢, and ty.

Procedure 7.1.
Step 0: Set f := median{t};c;. If ty < { then go to Step 4.

Step 1: If g(f) = r then stop with ¢, :=1

Step 2: If g(f) > » then set ¢, :={ and exit, else set ty = .
Step 3: Set C:= {i € I : t,,t* ¢ (tr,tv)}. If |C| > || then exit.
Step 4: Set { := median{t{'},;, where [={iel:{<t}.

Step 5: If g(f) = r then stop with t, := {.

Step 6: If g(f) > r then set tf, := {, else set ty :=1.

After t;,, ty are updated to t}, t;, I is updated to I via (3.3).

Lemma 7.2. Procedure 7.1 either terminates or finds t}, t{; such that |I'*| < 3|I|.

Proof. At Step 0, t;, < £ because t;, < t\ Vi € I by (3.2). If Step 2 exits with tf =1,
then {i € I:# <{} c L* C I\ I*; otherwise, ty is decreased to £. If Step 3 exits then

= I\ I*. If Step 4 is entered from Step 3, then { € (t,ty). Indeed, { < tr, would
lmply Cu:={iel:t<{t} CC using ty = £, with |Cy| > 2|I| > §l1], whereas
ty < T would yield Cy = {i € I:i< t*} C C with |Cy| > 2|I| > i|1[, contradicting
IC| < 4|I| Also £ € (tg, ty) if Step 4 is entered from Step 1 with ty < {, since by (3.3),
tr <t<tVie I implies t} € (tr,tv) Vi € I and hence ¥ € (tr,ty). If tf = at Step
6 then C}w = {'L ef:tr<ifycM*fromIc {iel:ty<t}, with ICM| > 1.
Otherwise t; = { yields Cly := {i € I : ¥ <t¥} C U* with |C}y| > }|I|. In each case I\ I*
contains a set of cardinality at least §|I|; hence |I*| < 3|1]. O

Remarks 7.3. (a) The exits in Steps 2 and 3 of Procedure 7.1 are intended to save work
in finding ¥ and g(£). Note that |C| is easily determined while computing g(f). Both exits
may be replaced by an exit at Step 4 when & ¢ (tr,ty), still ensuring |I*| < 3|I|; this
version corresponds to the algorithm in [Brud4, §3].

(b) Procedure 7.1 requires order |I| operations for g(f) and g(f) computed via (3.4)-
(3.7) as in [Bru84, §3], or as in Algorithms 4.1 and 5.1. Of course, I = {) serves as the
stopping criterion. Since |I| is initially n and is reduced by at least a quarter at each
iteration, the overall complexity is O(n) as in the single median versions of Algorithms
3.1,4.1 and 5.1.
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8 Removing more breakpoints at each iteration

Consider the following modification of Algorithm 3.1 which removes more breakpoints from
the set T' as in [CaM87, Alg. 2.3]. Replace Steps 4 and 5 by

Step 4’ (Lower breakpoint removal). If g(£) > r then find the right adjacent breakpoint
f:=min{t e T:{<t};if{ <ooand g(f) > thenset t, =1 T:={t € T: ¢ <}, else
set ty, :={f, ty := min{ty,{} and stop with ¢, given by (3.1), or (3.8) if ty = o0

Step 5 (Upper breakpoint removal). If g(t f) < r then find the left adjacent breakpoint
=max{t € T:t < t};if { > —oo and g(f) < r then set ty :=1, T:={t € T: t<t}
else set tr, := max{tr,t}, ty ==t and stop with ¢, given by (3.1), or (3.8) if t;, = —

By (2.6) and (3.4), because { and { are consecutive breakpoints, we may compute
9 =g@) - (i-1) [a+alyp)] with L:={iel:iie [t #] } (8.1)

in order |I| operations. Thus the complexity estimates of Remarks 3.3 remain valid.
Yet, relative to the original version, this modification will typically remove only one more
breakpoint; it is not clear whether this is worth the additional effort in finding t and g(f).
The version of [CaM87, Alg. 2.3] is less aggressive, setting 7' := {t € T': £ < t} in Step 4’
and T:= {t € T:t <{}in Step 5.

Algorithms 4.1 and 5.1 may be modified similarly, using

-l B

for g available from Step 2. Of course, i replaces { in Steps 4 and 5. More specifically, let
L={ieh:tt=0), ly={icL tr =i}, Jo={ieJ: =1}, Jo:={i € Ju: t} =1}.
In Algorithm 4.1, p, g, s increase by p(Ju), ¢(L), si(f) in Step 4, and by p(J), q(J),
bz([ ) in Step 5, respectively. In Algorithm 5.1, subtract p(L), q(I[) from p, ¢q, and add
s1(I;) to s in Step 4, and do the same in Step 5 with I, replaced by I,. The derivation of
these updates and of (8.2) is quite long, and hence omitted.

9 Relations with other methods

9.1 Dangerous modifications

Steps 4 and 5 of Algorithm 3.1 reduce T' independently of how t € T is chosen. The
following examples (cf. Figs. 9.1-9. 2) illustrate the need for such reductions when  :
median(T") at Step 1. Let e := (1,...,1) € R" denote the unit vector.

Example 9.1. Suppose Steps 4 and 5 of Algorithm 3.1 set T := T N [tz,ty]. For the
problem withn =3, d=b=¢,a=0,7=-1,1=(0,-1,-2),u =0, wehaveT —{0.5}
and Ty = {0,1,2,0,0,0}, but this version will loop infinitely with £ =0, g(®) =

11
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Example 9.2. Consider QRA with n =5, d =b =¢, a = (1, 1000),1"- 1, T, =
{0.5}. Algorithm 6.2, starting with T' = {1,1,0,0,0}, generates t, =t =0, T = {1, 1}
I = {1,2}, then ty = { = 1, T = @, terminating with ¢, = 0.5. Now, suppose Step 5 sets

T={teT:t<i}, I:={iel: ¢ <{} and Step 6 stops if |T'| < 1. This version loops
infinitely with ty =f =1, T = {1, 1}

Example 9.3. Consider QRA withn =3, d=b=¢,a=(0,0.1,02),r=1,T. = {——
Algorithm 6.1, starting with 7' = {0,0.1,0.2}, generates ty = { = 0.1, T = {0}, p = 0.3,
q=2 thenty =t=0T=0p=03, ¢ =3, terminating with ¢, = —5. Now,
suppose that when £ =t at Step 1 for some m € I, Step 4 sets T := {t € T : { < t}U{f},
I:={iel:f<t}u{m},Step5sets T :={t € T:t < t}U{t}, I :={i € I : & <i}U{m},
and Step 6 stops if |T'| < 2. Then the first iteration terminates with ¢, = —%

As will be seen, several methods fail on the following simple example.

Example 9.4. Consider QRA withn =3, d =b=¢,a = (0,0,2), r =1, T, = {1}.
Algorithms 6.1 and 6.2, starting with T' = {0, 0,2}, generate t;, = £ =0, T = {2}, then
ty =t =2, T =0, terminating with ¢, = 1.

9.2 The algorithm of Pardalos and Kovoor

In our notation, the algorithm of [PaK90, §2], starting with T 1= Ty U {—00, 00}, sets
{ := median(T), computes g(f) via (3.4), sets ¢ := tif gd) > r, ty := L if g(f) < r,
T := T N [tg, tv], updating p, ¢, s as in (3.7) until I = . First, without reducing T, it
loops on Example 9.1. Second, the updates of (3.7) are not valid when ¢, = ty; this makes
it fail on the following example.

Example 9.5. Forn=2,letd=b=¢,a=0,r = -2, =(-2,-2), u = (—1,0). Then
T, = {1} (cf. Fig. 9.3) and z* = (—1,—1), but the algorithm of [PaK90, §2] delivers the
wrong solution (—0.5, —0.5).

9.3 The algorithm of Cosares and Hochbaum

In our notation, the algorithm of [CoH94, §1.2] differs from Algorithm 6.2 in two (crucial)
aspects. First, assumming implicitly that |I| = 1 in Step 4, it fails on Example 9.4
(producing t, = —0.5). Second, it employs the modification of Example 9.2; hence it
cycles on that example.

9.4 The algorithm of Maculan and de Paula

In our notation, the algorithm of [MdP89] differs from Algorithm 6.1 in two aspects (note.
that Step 3 in [MdP89, §3] should set S := {Z;|j € J}). First, it employs the modification
of Example 9.3, but only stopping in Step 4 if |T| < 2, or in Step 5 if |T'| < 1; hence it
cycles on that example (assuming median{0,0.1} = 0. 1) Second, its calculation of g(f) is
wrong: it terminates on Example 9.4 with ¢, = —1.
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Figure 9.3: (a) Illustration of Example 9.5. (b) Hlustration of Example 9.6.

9.5 The algorithm of Maculan, Minoux and Plateau

In our notation, the algorithm of [MMP97] differs from Algorithm 6.1 in three aspects
(note that p~, p should be swapped with ¢~, ¢ in calculating o in [MMP97, §3]). First,
employing the modification of Example 9.3, it fails on that example (producing ¢, = —20)
Second, it fails on instances where g(f) < r never occurs, such as Example 9.4 (producing
te = —§). Third, for n < 2, it only yields ¢, = —%.

9.6 The algorithm of Hochbaum and Hong

The algorithm of [HoH95, §3] is close in spirit to the asymmetric version of Algorithm 5.1
of Remark 5.3 (with L replaced by L), modified as in Example 9.2. However, its updates
of p, g, s and the final formula for ¢, are wrong; hence it fails on the following example.

Example 9.6. For n = 3, let d = b =¢,a = (0,-1,-2),r = 2,1 = 0, u = 3e;
then T, = {—3} (cf. Fig. 9.3). The asymmetric version of Algorithm 5.1, starting with
T = {0,—1,-2,—-3,—4, -5}, generates ¢t;, = = =2, T = {0,—1}, then ty = £ = —1,
T = {, terminating with ¢, = —2. The algorithm of [HoH95, §3] stops with ¢, = 1 or
t. = 0, depending on how medians are chosen.
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Table 10.1: Average, maximum and minimum run times in seconds for uncorrelated,
weakly correlated and strongly correlated problems with exact medians.

uncorrclated weakly correl. strongly correl. overall
n avg max min avg max min avg ImaX min _avg max min
50000 0.22 0.28 0.16 021 022 0.16 021 033 016 021 0.33 0.16
100000 0.42 0.49 0.38 039 044 038 040 0.50 0.33 0.40 0.50 0.33
500000 1.79 1.87 1.75 1.81 187 175 182 192 175 1.81 192 175
1000000 3.57 3.79 3.40 3.59 3.84 340 358 3.85 3.40 3.58 3.85 3.40
1500000 5.35 5.66 5.11 539 572 516 537 576 511 537 576 5.11
2000000 7.24 9.23 681 723 785 6.86 7.17 775 6.86 7.22 9.23 6.81

Table 10.2: Average, maximum and minimum run times in seconds for uncorrelated,
weakly correlated and strongly correlated problems with approximate medians.

uncorrelated weakly correl. strongly correl. overall
n avg max min avg max min avg maX min avg max min
50000 029 039 0.16 026 039 0.16 024 044 0.11 026 044 0.11
100000 0.45 0.82 033 045 0.77 0.27 045 077 028 045 082 0.27
500000 1.60 220 0.99 2.04 340 099 196 3.07 121 187 3.40 0.99
1000000 3.82 583 198 3.8 626 1.65 3.55 494 170 3.73 626 1.65
1500000 5.47 857 3.08 547 7.74 280 591 9.77 242 562 9.77 242
2000000 7.20 14.88 3.73 7.24 11.21 3.57 747 1164 3.90 7.30 14.88 3.57

10 Numerical results

Two versions of Algorithm 4.1 were programmed in Fortran 77 and run on a notebook
PC (Pentium IT 400 MHz, 256 MB RAM) under MS Windows 98. The first version
computed exact medians of T' via subroutine dsel.f of Lin and Moré (available as part of the
incomplete Cholesky factorization code ICFS [LiM99] from www.mcs.anl.gov/ more/icfs).
The second version chose  in T' at random (cf. Rem. 3.3).

Our test problems were randomly generated with n ranging between 50000 and 2000000
(to avoid memory swapping). As in [BSS95, §2], all parameters were distributed uniformly
in the intervals of the following three problem classes: (1) uncorrelated: a;, b;, d; € (10, 25];
(2) weakly correlated: b; € [10,25], a;,d; € [b; — 5,b; + 5]; (3) strongly correlated: b; €
(10,25), a; = d; = b; + 5; further, i, u; € [1,15], 4 € N, r € [b"l,b"u]. For each problem
size, 20 instances were generated in each class.

Tables 10.1 and 10.2 report the average, maximum and minimum run times over the 20
instances for each of the listed problem sizes and classes, as well as overall statistics. The
average run times grow linearly with the problem size. The relatively good performance
of the exact median version is due to the high efficiency of dsel.f.

More extensive numerical tests and comparisons with variable fixing methods [Kiw02]
are given in [Kiw03]. _

Acknowledgment. I would like to thank Jorgé Moré for providing subroutine dsel.f.
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