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ABSTRACT

In this paper we discuss a two-phase Stefan problem with convection in a non-cylindrical
(time-dependent) domain. This work is motivated by phase change phenomenon arising
in the Czochralski process of crystal growth. The time-dependence of domain is a mathe-
matical description of the situation in which the material domain changes its shape with
time by crystal growth. We consider the so-called enthalpy formulation for it and give its
solvability, assuming that the time-dependence of the material domain is prescribed and
smooth enough in time, and the convective vector is prescribed, too. Our main idea is to
apply the theory of quasi-l:inear equations of parabolic type.

1. INTRODUCTION

Czochralski process is widely used for the production of a column of simple crystal
from the melt. But its theoretical analysis seems still incomplete, though many interesting
phenomena are observed in this process [rom the mathematical point of view. Recently,
the modelings of the Czochralski process were discussed by Pawlow [10] in a more general
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setting, and some special cases of those modelings have been analysed theoretically by
the authors (see [4]).

In the original model of crystal growth the shape of material (crystal and melt) is
determined by three (unknown) interfaces between solid-liquid, liquid-gas and solid-gas.
But, in this paper, supposing that the material domain is prescribed and under this
situation, we consider the solid-liquid phase transition in the material domain (see Fig.1).

| — Trijunction

| Meniscus
|__— Crucible (Heater)

|— Melt

Fig.1

We use the following notation (see Fig.2): For 0 < T' < oo and t € [0, 7],

Q(t) : liquid (melt) region,

2,(t) : solid (crystal) region,

S(t) : solid-liquid interface,

Qun(t) == Qe(t) U Q,(t) U S(t) : material domain,

['(t) := 0 (t) = e(t) UT4(t) : material boundary,

v = v(t,z): 3-dimensional outward unit vector normal to I'(t) at = € I'(¢),

n = n(t,z): 3-dimensional unit vector normal to S(t) at = € S(t) pointing to Q(t),

Qi= U {t} xu(t), i=m,s,

te(0,1)

L= Y {t} x0@), Zi:= U {t} xL(t), i=¢s,
te(0,T) ; te(0,7)

S:= U {t} x 8.
Le(0, 1)

Note that Ip(t) is the union of the the liquid-gas interface and the liquid boundary
attached to the crucible, and I',(t) is the solid-gas interface.
Next, we denote by vy := vs(t,z) the normal speed of I'(t) at (¢,z) € X. Then the
4-dimensional outward unit vector normal to ¥ at each (t,z) € ¥ is given by
X 1

Vi= —————(—uyp,v).
o+ F ")
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Similarly, with the normal speed vs := vg(t,z) of S(t) at (¢,z) € S, the 4-dimensional
unit vector normal to S, pointing to the liquid region, is given by

1
W(—vs,”)-

These notations will be used in the derivation of our weak formulation.

It is easily understood that by the crystal growth the shape of material domain Q,,(t)
changes with time and hence a 3-dimensional convective vector field v := v(t, ) is caused
in Q,,. The determination of v is also one of the important questions in the mathematical
modeling of the Czochralski crystal growth process. It is reasonable to postulate that v is
equal to the pulling velocity v, in the crystal and is a solution of the incompressible Navier-
Stokes (or simply Stokes) equation in the melt (see Crowley [1], DiBenedetto and O’Leary
[3]). Nevertheless, in this papar, we suppose that the convective field v is prescribed, too,
assumed to be sufficiently smooth and satisfying

divv =0 in Qm, (r.1)

v.viuvy onX. (1.2)

Now, from the usual energy balance lows we derive the following system to determine

the temperature field  := 0(t,z) and interface S(t); note that 8(t, z) together with S(t)

is a solution of the two-phase Stefan problem with prescribed convection v formulated in
the non-cylindrical domain Qn,,

Oie — kidO; +v -V, =f inQi, i={s, (1.3)

0, -0, -0, (kl%%— - k,%) =L(v.-n—vg) ons, (1.4)
(SPC) 50

ki‘a—l/‘ + n(:)kigi =p on Ei) 1‘ = Z,S, (15)

0(0,-) = 6y on Q0), S(0) =Sy, (1.6)

where 0, and 6, denote the temperature in the liquid and solid region, respectively, and
the phase change temperature is supposed to be 0 for simplicity; &, ks and L are positive
constants which are the heat conductivities and latent heat, respectively; f is a given heat
source on @y, p is a boundary datum prescribed on ¥ and nyg is a positive constant; 0y is
the initial temperature on ,,(0) and Sy is the initial location of the solid-liquid interface,
satisfying that

0y >0 onQ0), 0p<0 onQ0), 6 =0 on Sy (1.7)

When the material domain dose not change in time, the Stefan problem without
convection was skillfully treated by Damlamian (2] in the time-dependent subdifferential
operator theory and the problem with convection was discussed by Rodrigues and Fahuai
Yi |12] and Rodriques [11] as models of the continuous casting process of steal. On the
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other hand, the case of non-cylindrical domains was treated by Kenmochi and Pawlow (7]
and only the existence result was there obtained, but the uniqueness question has been
left open. The main difficulty apparently comes from the time-dependence of the material
domain and the analysis is much harder, for instance, in getting uniform estimates for
approximate solutions. Another point of our approach is to use the properties (1.1)
and (1.2) required to the convection vector v. The main result of this paper says that
these properties of convection vector v are significant especially for our weak variational
formulation.

This paper is organized as follows. In section 2 we derive a weak variational formula-
tion, which is called the enthalpy formulation, from the system (1.3)-(1.6). In sections 3
and 4 we propose regular approximate problems for it and give various uniform estimates
for approximate solutions. In the final section we discuss the convergence of approximate
solutions and construct a weak solution of our problem as a limit, and the uniqueness is
also proved.

2. WEAK FORMULATION

The enthalpy u is defined as follows:

0+ L if 0>0,
u:=< [0,L] if6=0,
[/ if 0 <0.

Moreover we define a function #: R — R by

ket if <0,
B(r):=<{ 0 if 0<r<I,
ke(r—L) if r> L.

Then [ is a non-decreasing Lipschitz continuous function on R, and its Lipschitz constant
is Lg := max{ky, k,}.

By using the enthalpy u our problem (SPC) is reformulated as an initial-boundary
value problem for a degenerate parabolic equation in the non-cylindrical domain @, of
the following form

w = Ap) 1V V<[ in Qu,
u(0) =up on Q,(0),

(E)

where ug := 0y + Lxq,(0) With the characteristic function xgq,() of ¢(0). In fact, multiply
equations (1.3) by any test function n € C*(Q,,) with 7 = 0 on Q,,(7’), and then integrate



them over @, and @, respectively, and add these two resultants. Then, with the help of
the Green-Stokes’ formula and the relations d¥; = (|Jug|?+1)Y2dli(t)dt, i = ¢, s, utilizing
the first condition in (1.4), we have

/Q Oyundadt + /Q 0, st

= /Q Oenided: + /s 8un)(~7i) dS + /E Om(9)'ds, - /ﬂ PRIOLE
. /Q Oundadt + /S Oun(7i)dS + jE 0.n(7)'dz, - /ﬂ o (0

= —Lm undzdt — /{1,,.(0) uon(0)dz

+ / Ludedt -+ / Ln(0)dz — / Qe dle(t)dt — / 0,musdls(t)d,
Qe 2(0) e .

where (7)* and (7)' denote the time-axis component of vectors ¥ and 7, respectively.
Next, by (1.4) and (1.5) we have

- /Q keAOdadt - /Q kAg,ndadl

- / ko(V0, - Vn)dzdt — /OT { /1 » Bundl“ o) + / ktao, dS(t)}dt

+ / (0, - Vo, dzdt — /OT { /F ‘(t)k,%%ndl",(t)— /S (t)k,a—n’nds(t)}dt
= /Q  VA(u) - Vrdzdt + /E (n0B(u) — p)ndT(t)dt — /S L(v -1 — vg)ndS(t)dt

Moreover, recalling (1.1) and (1.2), by the first condition in (1.4) and the continuity of
v-non S(t), we see that

/Q (v Vondede + /Q (v 0,)ndadt |
- -—/ 0c(v - Vr)dzdt + /1/ Oo(v - (—n))ndS(t)dt + /7/ O¢(v - v)ndlLy(t)dt
- / 0,(v - Vn)dzdt + / / 0u(v - n)ndS(t)dt + / / (v - v)ndTs(t)dt

= —/ u(v - Vn)dzdt +/ (v - Vn)dadt +/ Opusndly(t)dt
Qm Qe e
—r-/ O, uyndl,(t)dt.
X,

Summing up these equalities, we obtain that

- /Q undzdl -+ /Q VB (u) - Vndzdt + no/gﬁ(u)-r)dl"(t)dt —/Q u(v - Vn)dzdt
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+ L‘ Ln,dzdt + / Ln(0)dz —/ L(v -n — vs)ndS(t)dt +/ L(v - Vn)dzdt (2.1)

/ fndzdt + / prdl'(t)dt + / 0)dz.

Here, with the help of the 3reen-Stokes’ formula, we see from conditions (1.1)-(1.2) again
and the relation dS = (Jus|? + 1)/2dS(t)dt that

Lndzdt + Ln(0)dz + | L(v - Vn)dzdt

Jo, bndode + [ n(O)dz+ [ L(v-Vn)
= /E  LipusdTy(t)dt - /s LuwsdS(t)dt + A Ln(v - v)dT(t)dt + /s Ly(v - n)dS(t)dt
- /s L(v - n — vg)ndS(t)dt.

Therefore it follows from (21) and the above equalities that

_/Q... unedzdt + /Qm VB(u) - Vndzdt +no/2ﬂ(u)nd[‘(t)dt —/; u(v - Vn)dzdt

m

= / Jndadt + / pndT(t)dt + / o (0)dz 2.2)

for all n € C*(Q,,) with n = Oon Qn(7"). As usual, this is regarded as a variational form
of (E).

Now, we define a weak solution of our problem.

Definition 2.1 A function u is called a weak solution of (SPC), if u,8(u) € L*(Qm)
and B(u(t,)) € H'(Qn(t)) for ae. t € [0,T] with

/ [B(u( Im(n.,.(n))dt < oo,
u(t,-) € L2(Qm(t)) for all t € (0, T, the function
t—> / u(t,z)é(z)dz  is continuous on [0, T for each ¢ € L7, (R?),
and wu satisfies the variational identity (2.2).

We suppose that the material domain §,,(t) depends smoothly on time ¢ in the sense
that there is a transformation y = X (¢, z) of C?-class from Q,, into R?, satisfying that

*) X(t,-) := (Xa(t, ), Xa(t,-), Xa(t,-)) maps Q,(t) onto 2,,(0) for all t € [0,T].
X(0,-) = I (identity) on Qm,(0).
Now, fix the following notation:

Qo := Qm(0), To:=1(0), Qo:=(0,T) x Q, Lo :=(0,7) x Lo, y = (41,2, ¥3) € Qo;
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and denote the inverse of y = X(t,z) by z = Y (¢,y) := (Ya(t,v), Ya(t,v), Ya(t,v)).

Under some assumptions on the data v, f, p and up, we prove:
Theorem 2.1  Assume that f € L*(Qm), p € CNE), uo € L* () and B(u) € H ().
Also, assume that v € C*(Q)* and (1.1), (1.2) are satisfied. Then there is one and only
one weak solution u of (SPC).

The proof of our theorem is given through sections 3 to 5.
As will be understood from our proof given in section 5, the presence of convection

term v plays an important role for the uniqueness of weak solutions of Stefan problems
formulated in non-cylindrical domains. This is one of interesting aspects of Theorem 2.1.

3. REGULAR APPROXIMATION FOR (SPC)

In this section, let us consider an approximate problem (SPC); in the non-cylindrical
domain Q,,, with parameter 4 € (0, 1], for (SPC):

Use — Aﬂ&(u,s) +v.Vus = f5 in Qm, (3.1)
(PO { 2509 4 o) = s on (3:2)
u;(O) =ugs on , (3.3)

where G5, f5, ps and ugs are regular approximations of 3, f, p and wuy, respectively, as
follows:

(1) Bs is a smooth, increasing and Lipschitz continuous function on R such that

6 < Bs(r) (: Ed;ﬂa(r)) <Cp forallT €R,

for a positive constant Cp independent of §, and such that
Ps — [ uniformly on R as § — 0;
we put Bs(r) = Ji Bs(s)ds as well as B(r) := [ B(s)ds for all 7 € R.
(2) fs is a smooth function on @y, such that

fs— [ in L*(Qm) as § — 0.

(3) ps is a smooth function on ¥ such that

ps—p inCYE)asd— 0.



{4) wos is a smooth function on Qg such that ugs — ug in L2(), Bs(uos) — Plug) in
H'(%) as § — 0 and the compatibility condition

9Bs(os)

5, T ols(uos) =ps onTo (3.4)

holds.

We give first an existence-uniqueness result for the approximate problem (SPC);.
Lemma 3.1 (SPC);s has one and only one solution us such that us and all the derivatives
U, Usz; ONd Usgye,, 5,k = 1,2,3, are Holder conlinuous on Qm.

Proof. By y = X(t,z), we transform (SPC); to a problem (SPC); formulated in the
cylindrical domain Qp:

3 ~
gy — Z aiy' {aijfm_;g(iﬁl} +wy- Vﬂa(ﬁa) + wy - Vi = f.s in Q(], (35)

N

i,j=1

ke —0%’5?) + 7ofs(us) = Ps  on To, (3.6)
%5(0) = ups on . 3.7)

Here us (L, y) == us(t, Y (L, 9)), fs(t,y) := f5(t, Y (4, 9)), Ro(t,y) == (I1Jv (&, I/ Iy (&, 9)]))no,
ps(t,y) == (|| (@& I/ Iy (¢ y))ps(t, Y (t,y)), where Jy denotes the Jacobian of z =
Y(-,y) with its determinant ||Jy||, and ||Jy|| denotes the ratio between the surface ele-
ments dI'(t) and dI'g, which is determined by the restriction of £ = Y'(-,y) on I'y; hence

dz = ||Jy|ldy on Qy, dI(t)=||Jy|ldlo on Ly.

Moreover 4
0X; 0X;
i(t,y) == St Y (ty) =2t Y (), 4,5=123,
w(ty) = 2 5o Y B F Y (), 3
30 (0X/\ 0X;
= ith wy; := = = , =123,
wy = (wyy, Wiz, wy3) Wwith w, ’g::l e (amk) e i 3

Wy 1= 0—{ +vB with 3 x 3 matrix B := et .
ot Bx,-

and

), 3~ 4,20, _ IKlI20)

» = i W4 Y
B oy T vl o T

ij 1
where v = (i, 1, 3) is the unit outward normal vector to I'y.

Since X(0,-) - I on €, the matrix {a;;(0,y)} is the unit on Qy and hence {a;;(t,y)}
is strictly positive definite on Qg for ¢ € [0,7"] with a certain positive 7'(< T"). There-
fore (SPC);s is (uniformly) parabolic quasi-linear equation with smooth coeflicients on



Qo(T") := (0,7") x Qp, and by (3.4) the compatibility condition for initial and bound-
ary data is satisfied. Now, apply the general existence and uniqueness theorem due to
Ladyzenskaja, Solonnikov and Ural’ceva [8; Chapter 5, section 7] to (SPC)s. Then we see
that (SPC); has a unique solution s in the Holder space H2+*!+2/2(Qy(T")) for a certain
exponent a € (0,1). It is also easy to check that us(t, ) := 4s(t, X (¢, z)) is a solution of
(SPC)5 on Qu(T") := Uicr{t} X Qm(t), satisfying the required regularities. If 7" < T,
then the solution us can be extended beyond time 7" by repeating the same argument as
above with initial time 7”. Finally we can construct a unique solution us of (SPC);s on
Qm in the Holder class. (m]

Next we prepare two lemmas about uniform estimates of approximate solutions.
Lemma 3.2  There exists a positive constant M,, independent of parameter § € (0,1],
such that

. T
sup "ua(t)lia(nm(‘» +/‘; Iﬁa(’ug(t))ﬁp(nm(‘))dt S Ml fO'I‘ all § € (0, 1]. (38)

tel0,T]

Proof. We use essentialy conditions (1.1) and (1.2) in order to get the uniform esti-
mates (3.8). For each t € [0,T], put Qm(t) = Urey{7} X Qm(7).
First, multiplying (3.1) by Bs(us) and integrating the resultant over Q. (t), we have

-/Qm(t) %E:—_d-ﬂg(u‘s)dxdr _ij(t) ABs(us)Bs(us)dzdr + /Q...(t)(v - Vus)Bs(us)dzdr  (3.9)

= f5P5(us)dzdr.
Qml(t)

Here, by the Stokes’ formula,

/Q,.. @ OT ﬁ'f (vs)dzdT

= /Qm(t) o—ﬁg(ug)dzdr

—vy
tg) — e d¥ ))dz — /
/ /P(T) IUL|2 Ty o Bs (us(t))dz Bs(uos)dz
= /u /. o Bo(usundr ()i + /ﬂ QS /nu B (g) dz,
and by the boundary condition (3.2),

- ABs(us)Bs(us)dedr
Qum(t)

B 3 (s M2 g g ! aﬁn(uo)
= [u 17 s(us)dadr — [ /H) =0 B (ug)dI (r)dr

/th |V 35 (us )*dedr —/ / pss(us)dl(T)dT + ﬂo/ / |85 (us)|2dT(7)dr.
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Moreover, we have by (1.1) and (1.2)
/Q,..(,)(V " V"‘f&)ﬂa(ua)dzdr _ /Q » . Vﬁs(ud)dxdT
- /" () Ps(us)(v - v)dL'(7)dr
¢ A
= /0 /P ” Bs(us)vsdl(1)dr.

Now, substituting the above expressions in (3.9), we obtain with the help of Young’s
inequality that for any € >0

/ ﬂ;(ua(t))dz+ / |V Bs(s)[2dzdr + (no — €) / / |85 (us) | 2dT () dr

1 { gt
% i / *ded ——// 241 (7)d 3.1
~ 4e /Qm(t) \fsldwdr + Qm(t) |Bs (us) I dadr + 4e Jo Jre) |ps| (r)dr (3.10)

i /n Pa(vng)dz for all t € 0,7

From the definitions of 5 and s it follows that there exist positive constants cg and cp,
independent of parameter § € (0, 1|, such that

Bs(r) > calr|* — ¢ and |Bs(r)|* > cplr|* —c, forallr €R. (3.11)

Therefore, by choosing & > 0 small enough in (3.10), we obtain a uniform estimate of the
form (3.8) for a positive constant M; independent of § € (0, 1]. m]

Lemma 3.3  There ezists a positive constant M», independent of § € (0,1], such that

/ B4 (us)|Vus|?dzdt < My for all § € (0, 1]. (3.12)
Qm

Proof.  Just as the proof of Lemma 3.2, multiplying (3.1) by us and integrating over
Qum, and noting that (v - Vus)us = 1/2(div(ulv)), we get

0Ps(u
g usdl()dt
/... 5 t]u;| dzdt F/ VBs(us) - Vusdzdt — / /l‘(t) o (t)

<z

= / 3d1v(u5v ydzdt + / fsusdzdt.

m &

Now, by using (1.2), (3.8) and Young’s inequality,

1 2
9/9 (r)m( )|2dz +/ B35 (ug)| Vg dzdt

< —= 2 dl(t)dt + = / 2d:
/ /r(:) |LL|’ Fl / /1 )|u,5| e - ujutLf) luos|"dx
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/ v (ps — mofs(us) Jusdl(t)dt + / | fs|*dzdt + = / |us|*dzdt
<3 paf*dr(t)dt —0// 2ar(t)dt // 241
= 2/0 /p(,) |psl"dl(e)dt + 5 | - |Bs(us)|"dl'(t)dt + | - us|2dT(t)dt
L 1. T
+ 51 folzaqm) + (5 + 5) M.
By (3.11) again we have
2. 1 2, %
us(t, z)|* < alﬂﬁ("-"&(t,z))l t o for all (t,7) € Qm,
so that there exists a positive constant M3, independent of § € (0, 1], such that
/Q B4 (us)|Vus|*dzdt

T 1 1 1 T
< MﬁA 185 (w5(1)) 131 (e ey Bt + Elpsliz(z) + ilfsliﬂ(q,,.) + (5 + 5) M.

This together with (3.8) gives a uniform estimate of the form (3.12) for a constant M,
which is independent of § € (0, 1|. m]

4. ESTIMATES OF REGULAR APPROXIMATE SOLUTIONS

In this section we prove some uniform estimates of the time derivative of 85(u;) and
the H'-norm of f5(us). These estimates seem more complicated in the non-cylindrical
case than in the cylindrical one.

Lemma 4.1  There ezists a posilive constant My, independent of parameter § € (0,1],
such that

(us)

dzdt + s[l;}; n 1B5(us(t)) i iy < Ms for all § € (0,1]. (4.1)
tel0,7

Proof. Yor each 6 € (0,1] end ¢t € (0,7'] we consider the time-dependent convex func-
tional ®5(¢,-) on L?(p) defined by

0z Bz 2 .
i t — | 7t — | ps(t)zdly if H!
D5(t,2) =4 2 Uz:] /n (1) 2 Jro F(t)2"dlo /mpa( Jzdlo if 2 € H{S),
+00 if z € Lz(Qo) \ Hl(Qu)

Then it is easy Lo sce thal ®s(t,-) is proper and lower semi-continuous on L*(€y) and
®;(-, z) is Lipschitz continuous on [0, 7] for each z € H'(£); actually, it holds that

%CI)O( z) < Ko(Ky + ®s(t, 2))  for ae. t € [0,7) and all z € H'(Q), (4.2)
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where Ky and Kjj are positive constants determined only by the Lipschitz constants of
aij, fig and Ps; they can be chosen so as to be independent of d, too. It is derived from
this property in the same way as in [5; Lemma 1.2.5] (or [6; Lemma 2.3]) that if v €
W20, T; L*(0)), 0®s(-,v(-)) € L*(0,T; L*(Q)) and v(0,-) € H'(Q), then 5(-,v(-)) is
absolutely continuous on [0, 7] and

%q’a(t,v(t)) = (ve(t), 02s(t, v(t))) L2(0) < Ko(Kp + ®s(t, v(t))) (4.3)

for a.e. t € [0,T), where 0®4(t,-) is the subdifferential of ®5(¢,-). In fact, for each
s,t € [0,T] with s < ¢ by the definition of the subdifferential and (4.2) we get

Z—i_s {®4(t,0(t)) — @s(s,v(s))}
ey {Qa(t,v(t)) ~ B4(t,0(s)) 1 5(1,0(6) ~ Bal5,0(5))}

L%(%0)

where (-,+)r2(n,) stands for the standard inner product in L*(€). For a.e. ¢ € [0,T]
at which ®;(-,v) and v are differentiable, we have (4.3) by letting s  t. Moreover
0%;(t,v(t)) is characterized by

Bv(t) Ow

(02s(t,(8)), w) 120 = z 3505, gyt [, mo(@o(Owdlo = [ ptudry

for all w € H'(Qp) and herce

Bs(t,u(t) = — 3 2 («j(t)a“(t’)

i5=1 0Y; 0y

in the distribution sense on €. Since 33 ©i-10/0y; {a:;005(s)/0y:} = s+ w1V B5(is) +
wa - Vg — f5 (cf. (3.5)), it follows from (4.3) by taking f5(is) as v that

S a(r, Ba(u(r) + [ Pi(as(r)uss(r) Py
< Ka(h + @alr, fuaa(r)) = [ (w(r) - VPstas(r)) 2-Aulas(r My (44)

~ [} (wa(r) - St Can(rios () + [ o) 2 BaCastr))dy

for ae. 7€(0,T g (4.4) over |0, t] with respect to 7 and using Lemmas
3.2 and 3.3, we obtain for an arbitrary small positive number £ and with notation Qo(t) :=




(0, t) X Qo that
B, Bo(as(t))) + [ Pilie) i, Pyr

(w, VBs(is)) —ﬂg(u,;)dyd‘r / (wq - Vig)B5(is)tis,- dydr

Qo(t)
oot )fa ﬁa(“a)dydT + Ko/ (Ko + ®5(7, Bs(tas(7))))dr + @5(0, B5(tios))
2
< —lelo(Qo)"’/ 'Vﬂ&(ﬁ&))|2dyd7’+E(|W1'C(Q0)3 - 1)/(;00) 6_7_.36(176) dyd'r

1
_| — 2|C(Qo) / l\'7u6|2ﬁ5(u6)d?/d'r+5IW2IC(Q0)3/ )ﬂé(ﬁ‘;)lﬂs,TIzdydT

¥ Zglfslu(qo) + Ko [, (K + @s(r, Ba(its(r))) ) + 5(0, s(as))
) 2
dydt + CleIIC(Qo)C‘Ml (45)

d
< 1 — Bs(@
+ elwalc(oyp / Bs(as) s | *dydr + Ce|wa|cqoys M2
Qo(t)
_ T
+ Cel folT2(qo) + KoKoT + KO/O @5(7, Bs(ts(7))dT + @5(0, Bs(tios)),

where C is a positive constant depending only on €, and M;, M, are the same constants
as in Lemmas 3.2 and 3.3. Since |0(85(t%s))/0t| < Colis,|, it follows that

ﬁ;(u,;) dydT.

(iig)|2s - [Pdyd —/
Qo(t) REDIY yT_C Qo(t) | OT

Therefore it follows from (4.5) with a small € > 0 and Lemma 3.2 that

2
@J(t,ﬁa(ﬁa(t))) + dydr < My forallt € [0, T], (46)

g . .
A Eﬂ&(ua)

where M, is a positive constant independent of § € (0, 1]. From the definition of ®5 and
(4.6) it follows immediately that

dydt < Ms *.7)

sup |B5(as(t)) |71 () +/ Iatﬁ" iz)

Lel0,7]

for a positive constant M; independent of § € (0,1]. Finally, describe the quantities of
the left hand side of (4.7) in the (¢, z)-coordinate of the non-cylindrical domain @,. Then
we obtain a unilorm estimates of the form (4.1). a
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5. PROOF OF THE THEOREM

Ezistence:

Let {us}se(o,1) be the family of approximate solutions of (SPC);. By Lemmas 3.2,
3.3 and 4.1 with the standard compactness argument we can find a sequence {4,} with
6, — 0 as mn — +oo and a function u such that

Uy = Us, U weakly in Lz(Qm))

Bs.,(un) = B(u) in L*(Qy,) and weakly in H'(Qum).

We now show that u is a weak solution of (SPC). To do so, multiply (3.1) by any
test function n € C*(Q.) with 7(7,:) = 0 and integrate it over Q,,. Then, just as in
the derivation of our weak formulation, we see by the Green-Stokes’ formula that the
approximate solution u, sutisfies

- /Q ) upndzdl — /L u,.quzdf‘(t)dt + /Q VBs, (un) - Vndzdt + ngy /z. Bs., (ug)ndl(t)dt
- /Qm Un (v - V)dzdt + /Eu,,n(v -v)dI'(t)dt
= [, fondzd+ [ po,ndl (@it + [ vas,m(0)da.
Here, noting condition (1.2) again and passing to the limit in n yield
—/Q undzdt +L VB(u) - Vndzdt + no/E,H(u)ndl"(t)dt —/Q u(v - Vn)dzdt

/ [ndzdt | / pndl(t)dt | / un(0, -)dz,
Qm X Q0

which is the required variational identity. Moreover, on account of the uniform estimates
obtained in sections 3 and 4, we see that u, B(u) € L*(Q,,) and

T
| 1B0) syt < M.

Finally, let us check the continuity property of u in time. To do so, we use the weak
continuity of the function w(t) := u(¢,Y(¢,-)) in L?(€), which is easily seen from the
fact that {5} is bounded in L*(0,T; H=*(Sp)) (cf. (3.5)). For each smooth function
£ € H'(R®), we observe
/ u(l + Aty z)é(z)ds — / u(t, z)é(z)dz
Qu(t-+AL) Qu(t)
= [t r ALyt ALy)dery (et Mgy — [ alt,y)Ewv)I1y () lldy

0 0
=/n {a(t + At,y) = a(t,y) Yt + At y)|| Ay (¢ + At,y)|ldy

0
+ [ alt y)EE + ALY+ AL )| = EE VI (vl Yy,

0
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where ||Jy (t,)]] is the Jacobian determinant of the transformation z = Y'({,y) (see the
proof of Lemma 3.1). Clearly, as At — 0, the right hand side of the above equalities
goes to 0, so that the integral o ) u(t,z)¢(z)dz is continuous in ¢. This completes the
existence proof.

Uniqueness:

The idea of our uniqueness proof is due to LadyZenskaja, Solonnikov and Ural’ceva (8],
and this was also extensively used in Niezgédka and Pawlow [9], Rodrigues [11], Rodrigues
and Yi [12| and Fukao, Kenmochi and Pawlow [4].

Let u; and uy be two weak solutions and take their difference. Then

~ [ = waymdode — | (Bur) — Plun))Andadt + [ (Blur) ~ ) grdl (e

g /E (B(ur) — Bluz))ndT(t)dt — /Q (1~ wa)(v - Vn)dadt = 0 (5.1)
for all n € C*(@,,) with n(T,-) =0.

As usual, consider the function

b(t,z) := { Alllyz)) = Plallr2) ui(t, ) # ua(t, z),

u(t, ) — ua(t, )
0

if w(t,z) = uy(t, ),

which is non-negative and bounded on Q,,. Then, by (5.1),
_ on "
=l (ua —ug){me +bAn+v-Vn}dzdt + z(ﬂ(ul) B(uz)) Ew + non 3 dI'(t)dt =0 (5.2)

for all n € C¥(Q,,) with n(T,-) = 0;

it is easy to see that (5.2) holds for any function n € W'%(Q,,) with An € L*(Q,,) and
n(Tv ) =0.
Now take a smooth and strictly positive approximation b, of b such that

b<b ae onQn e<b<C; ae onQmn,

be b ae. on@,ase—0,

where C} is a positive constant independent of the approximation parameter ¢ € (0, 1], and
consider the following auxiliary linear parabolic problem formulated in the non-cylindrical
domain @, for any given ¢ € C5°(Qyn):

Nep + AN +v-Vne =€ in Qn,

e
@ | 2 0 on

 7(T,-) =0 on Qu(T).
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This problem has a unique Hélder continuous solution 7, such that 7., 7,4, 7 -, and 7 Zig)
i,j = 1,2,3, are Holder continuous on Q. In fact, this is reformulated as the following
backward problem (P). formulated in the cylmdncal domain Qq:

AT o
’7€‘+Zb {”‘-JBZ}+(—beW1+W2)-V7)g=Z ano,
Yi j

i,j=1
(F)E 6‘5 -
% + ngfe =0 on Xy,

7:(1",-) =0 on £y,

where wy, ¢ = 1,2, and 7y are the same as in section 3, 7(¢,y) = 7:(¢t,Y(¢,y)),
be(t,y) := be(t,Y(t,y)) and £€(t,y) := £(t,Y(t,y)). We can solve (P.) by applying the
general theory of quasi-linear parabolic equations in [8] and see that it has a unique solu-
tion 7, € H?t®!+e/2(Qy) for a certain exponent 0 < o < 1. It is also easy to check that
ne(t, ) := 7 (t, X(¢,z)) is a solution of (P), on Qn, satisfying the required regularities.

Here we are going to show some uniform estimates for 7. with respect to e.

Lemma 5.1  There exist: a positive constant Mg, which depends on ¢ and is independent
of parameter € € (0,1|, such that

5 T r .
|VTIE(S)|i2(n,,.(a))+/ / be|Ane|*dzdt

<us [ V2Ol opt + mo [ [, grtar@aena [ [ tar

+ 1o / / v nE)dF(t)dt +Ms forall s€[0,T] and € € (0, 1. (5.3)
$ r'(t)

Proof.  Multiplying the first equation in (P). by A7, and integrating it over Q,(t)
with respect to z, we get for any ¢

L".(t) ne.LA"]edz + </(.)"|(l) be'A"klzdm + A'"(‘)(V : VTIE)AWde — (¢ ve. Vnedz. (5'4)
Here we observe that
/ Ne,t AN dx
Qun(t)
= — (Ve - V) da +/ r)” dl‘(t)
Qan(t)
1 2 f() 8 2
e V. Zptdr(t
2 /,,.u) ()Ll e 2 Jr@) ()t,'c *)
1d 9 1 ; o 0
pe e Vi |d: -/ V'c.ldl‘t—— n2dL(¢). .
T n...ml ne|"dz + 5 m)l 7| vpdl() — 5 TG I'(¢) (5.5)
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.

Also we have by (1.1)

- - V1) Argedh
[V Vn)An.ds
One
= dz —
/M V(v-Vn,) - Vids / (v- V) () (5.6)

_ Ov; One Q”k 9? Ne 6"75
T Jom(t) ”Zl {azi dz; Oz; + Bz,az, oz; de 1o ./1:(:) (v Vne)nel'(t)

< ey / 1. 2 "0/ . 2
< 3Vlergmye / oVl ¢ Qmmzdw (1Vnfv) do+ 5 [ V),
and by (1.2)
1
—di *v) dz - = e|? \
Jo o 3 (V) o [ ()2|v1,5| (v-v)dr(t) = 5 / Vneffondl().  (5.7)

Integrating (5.4) in time over [s, T'] and using (5.5)-(5.7), we get

T’
Va(s)dz+ [ [ blandede
oy 1)zt [ [ bl

T T
S(ﬁlvlc.(o—m)a+l) / / Ve [Pdzdt + / /nm(t)IVllzdzdt'
iz
2 0 2 (2
rn // SmdD(E) dt+n0// ndl"t)dt+nq/8 /m)v V(n2)dT(¢)dt.

Thus a uniform estimate of the form (5.3) is derived. ]

Lemma 5.2  There ezists a positive constant My, which depends on £ and is inde-
pendent of parameter € € (0,1], such that

9 2 d 2 2
Jrgy VA0 < Mo [ ne(d0) + Molne(6) s (538)

Jor all t € 10,T) and € € (0, 1].

Proof.  Our geometric condition () ensures that there exists a finite open covering
{Ux(t)}2Z, of ['(t) and a lccal coordinate system y = (y1,2,y3) = Xi(t,z) := (X (t, 7),
Xia(t, ), Xea(t, ) from U (t) onto an open subset Uy of the y-space for all ¢ € (0,7
such that

o Xi(t, U(t) N Qn(t) = U 0 {y;ms < 0} and Xi(t, Ur(t) N T(t)) = Uk N {y; 55 = 0}
(Cc R?) for all & - 1,2,...,N and all ¢ € 0,7, that is, every point (£, z) with
£ € Ue(t)NI(t) is mapped to (L,y) (b, Xk (L, z), Xpa(t,2),0) forallk = 1,2,..., N
and all t € 10,7';
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3
( ) ak(t,y )L) on Ukﬂ{y,y.s = 0}, where ¢/ := (y1,¥2,0) and ax(t,y’) is positive
and of C?-class on |0 T) % (UN{y;ys =0}) forallk =1,2,..., N and all t € [0, T};

o dl'(t) := Sk(t,y')dy on Ui N {y;ys = 0} for k = 1,2,-+-, N, where Si(,-) is a
positive function of C*-class on [0,T"] X (Ux N {y;ys = 0})

Moreover, take a partition of unity {¢(¢,-)} on I'(t), namely

&k € CEQ(RI x Rg)v supp(qﬁk(t,-)) c Uk(t)’

¢k(t )=1 onl(t), te[0,T], 0<¢ <1, k=1,2...,N,

||Mz

and put né( ,_/) 7e (L, Yk( ,y)) and ¢k(t y) = ¢(¢, Yk(t,w )), where }-’k(t, )= X{l(t, )
Up — Ug(t) for all k = 1,2,..., N and all t € [0,T].

Since

605 B dnE BX,;,
N Z 6y, o’

it follows that for any t € |0, 7

TR,
/m S 7e(t)d0(t)

i

BIE .
N A; /r‘(t)nu.,(t) L ’0(:) Akt (5.9)
Z / "5 Sk(t)d./ + ZZ / a"f axak:(t)Sk(t)dy'.

k=11i=1

The first term of the last equality in (5.9) is estimated as follows:

i/ 302, iy
,ﬂ{z / e (£) e (£) i ( t)dy} Z / ne(t)ﬂat B (t)Sk(t ))dy
S RO CRY A {zim (3x()5:00)| g7 | 0

Now, note that
o 1 ot 21
=- = =-"_pn

Oys  ak Ov ak
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where ai(t,z) := ax(t, X(t,z)). Then the second term of the last equality in (5.9) is
estimated as follows:

3, #0200
- _k_zlz}/ : o (‘ﬁ()"x*‘”sk(t)) Ty +Z et )a"s(:) OXalt) s, (ay

IN

JRACD> {j— (% (t)ax““’sk(t))+—(¢ 0Z05,0)| 55} ar0

Oy
271() an:;(t)
+/x.‘(n)n€( )y ,‘2::1 a(ty ot

dl'(t);

in the first integral of the last inequality we consider the integrands as functions of (¢, z)
by the inverse tranformation of y -~ Xi(¢,z). Therefore (5.8) holds for a constant M; > 0
having the required properties. 0

Lemma 5.3  There exists a positive constant Mg, which depends on ¢ and is inde-
pendent of parameter € € (0, 1], such that

Jogy ¥ V1Y) < M (0o (5.10)

for all t € |0,T) and € € (0,1].

Proof. We can obtain a uniform estimate of the form (5.10) in the same way as (5.9)
in the proof of Lemma 5.2. (m]

Now, by Lemmas 5.1-5.3 and utilizing that ng > 0 we see that there exists a positive
constant My, which depends on ¢ and is independent of parameter ¢ € (0, 1], such that

T T
l”E(S)I%h(Qm(J)) +L '/ﬂ ® b[,:'A'r]Elzd:L‘dt < Mg {‘/" |Tle|§1l(n...(c))dt + 1} (511)

for all s € [0,T]. Accordingly, applying the Gronwall’s inequality to (5.11), we finally
have
sup 1c()fnaney + [, belOnfdadt < M, (5.12)
0<tLT Qm

where M,y is a positive constant, which depends only on ¢ (it is independent of € € (0, 1]).
Taking 7. as a test function 7 in (5.2), we have

0 = — ; (w1 — w2){me,e + bAN + v - Ve }dzdt

= —/ (wr — ug){mee + bANe + v - Vi }dzdt +/ (uy — ug)(be — b)An.dzdt
Qm Qm

== [ (wr — w)edadt + [ (ur = ua)(b ~ ) Amedoct.
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Thanks to (5.12) and € — 0, we have

The

1
| / (1 — ug) (be — b)AnEdmdtl < { /Q s — waf2Jbe — bldwdt}z (2Myo)?
Qum -
- 0.
refore
/Q (u1 — up)ldzdt = 0 for all £ € C(Qm),

which implies that u; = uy a.2. on Q. (m}

9.

10.
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