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ABSTRACT 

In this paper we discuss a two-phase Stefan problem with convection in a non-cylindrical 
(time-dependent) domain. This work is motivated by phase change phenomenon arising 
in the Czochralski process :>f crystal growth. The time-dependence of domain is a mathe­
matical description of the situation in which the material domain changes its shape with 
time by crystal growth. We consider the so-called enthalpy formulation for it and give its 
solvability, assuming that the time-dependence of the material domain is prescribed and 
smooth enough in time, and the convective vector is prescribed, too. Our main idea is to 
apply the theory of quasi-Lnear equations of parabolic type. 

1. INTRODUCTION 

Czochralski process is widely used for the production of a column of simple crystal 
from the melt . But its theoretical analysis seems still incomplete, though many interesting 
phenomena are observed in this process from the mathematical point of view. Recently, 
the modelings of the Czochralski process were discussed by Pawlow [10[ in a more general 



setting, and some special cases of those modelings have been analysed theoretically by 
the authors (see [41) . 

In the original model of crystal growth the shape of material (crystal and melt) is 
determined by three (unknown) interfaces between solid-liquid, liquid-gas and solid-gas. 
But, in this paper, supposing that the material domain is prescribed and under this 
situation, we consider the solid-liquid phase transition in the material domain (see Fig.I). 
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We use the following notation (see Fig.2): For O < T < oo and t E [O,T], 
Ot(t) : liquid (melt) region, 
n.( t) : imlid ( crystal} region, 
S(t) : solid-liquid interface, 
flm(t) := flt(l) U O,(t) U S(t) : material domain, 
I'(t) := af!,,.(t) = rt(t) ur.(t): material boundary, 
v = v(t, x): 3-dimensional outward unit vector normal to r(t) at x E f(t), 
n = n(t,x): 3-dimensio:ial unit vector normal to S(t) at x E S(t) pointing to Ot(t), 
Q;:= LJ {t}xf!;(t), i=m,l,s, 

IE(O,T) 

E: = LJ {t}xr(t), E, := LJ {t}xf;(t), i = f,s, 
!E(O,T) !E(O,T) 

s := u {t} X S(t) . 
!E(0,1') 

Note that l't(t) is the union of the the liquid-gas interface and the liquid boundary 
attached to the crucible, and r.(t) is the solid-gas interface. 

Next, we denote by vi; := vi;(t,x) the normal speed of r(t) at (t,x) EE. Then the 
4-dimensional outward unit vector normal to Eat each (t,x) EE is given by 
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Similarly, with the normal speed vs:= vs(t,x) of S(t) at (t,x) ES, the 4-dimensional 
unit vector normal to S, p0inting to the liquid region, is given by 

These notations will be used in the derivation of our weak formulation. 
IL is easily understood that by the crystal growth the shape of material domain !l,,.(t) 

changes with time and hence a 3-dimensional convective vector field v := v(t, x) is caused 
in Qm. The determination of v is also one of the important questions in the mathematical 
modeling of the Cwchralski crystal growth process. It is reasonable to postulate that vis 
equal to the pulling velocity Vp in the crystal and is a solution of the incompressible Navier­
Stokes (or simply Stokes) equation in the melt (see Crowley Ill, DiBenedetto and O'Leary 
131). Nevertheless, in this :i;apar, we suppose that the convective field vis prescribed, too, 
assumed to be sufficiently smooth and satisfying 

divv = 0 in Qm, 

v • v '--" vi.: on E. 

(1.1) 

(1.2) 

Now, from the usual energy balance lows we derive the following system to determine 
the temperature field 0 := O(t, x) and interface S(t); note that O(t, x) together with S(t) 
is a solution of the two-phase Stefan problem with prescribed convection v formulated in 
the non-cylindrical domain Qm, 

0,,1 - k;!:l.0; + v • VO; = f in Q;, i = l, s, 

(SPC) 
Ot - o. - 0, (kt~~ - k. ~;) = L(v • n - vs) on S, 

{)0; 
k;- + n0 k;0; = p on E;, i = l,s, av ' . 
0(0, •) = 00 on !1(0), S(O) = So, 

(1.3) 

(1.4) 

(1.5) 

(1.6) 

where Ot and 0, denote the temperature in the liquid and solid region, respectively, and 
the phase change temperature is supposed to be O for simplicity; kt, k, and L are positive 
constants which are the heat conductivities and latent heat, respectively; f is a given heat 
source on Qm, p is a boundary datum prescribed on E and no is a positive constant; Oo is 
the initial temperature on !1,,.(0) and Su is the initial location of the solid-liquid interface, 
satisfying that 

Ou > 0 on !1t(O), Oo < 0 on !1,(0), Oo = 0 on So. (1.7) 

When the material domain dose not change in time, the Stefan problem without 
convection was skillfully treated by Darnlamian 121 in the time-dependent subdifferential 
operator theory and the problem with convection was discussed by Rodrigues and Fahuai 
Yi I 121 and Rodriques I llj as models of the continuous casting process of steal. On the 
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other hand, the case of non-cylindrical domains was treated by Kenmochi and Pawlow [7] 
and only the existence result was there obtained, but the uniqueness question has been 
left open. The main difficulty apparently comes from the time-dependence of the material 
domain and the analysis is much harder, for instance, in getting uniform estimates for 
approximate solutions. Another point of our approach is to use the properties (1.1) 
and (1.2) required to the <;onvection vector v. The main result of this paper says that 
these properties of convecti~n vector v are significant especially for our weak variational 
formulation. 

This paper is organized as follows. In section 2 we derive a weak variational formula­
tion, which is called the enthalpy formulation, from the system (1.3)-(1.6). In sections 3 
and 4 we propose regular approximate problems for it and give various uniform estimates 
for approximate solutions. In the final section we discuss the convergence of approximate 
solutions and construct a weak solution of our problem as a limit, and the uniqueness is 
also proved. 

2. WEAK FORMULATION 

The enthalpy u is defined as follows: 

{
0+L 

u:= rL] if 0 > o, 
if 0 = 0, 
if 0 < 0. 

Moreover we define a function /3 : R • R by 

{ 
k,r 

f3(r) := 0 
kt(r - L) 

if r < 0, 
if O::; r::; L, 
if r > L. 

Then (J is a non-decreasing Lipschitz continuous function on R, and its Lipschitz constant 
is L/3 := max{kt,k,}. 

By using the enthalpy u our problem (SPC) is reformulated as an initial-boundary 
value problem for a degenerate parabolic equation in the non-cylindrical domain Q.,,,. of 
the following form 

(E) l Ui - 6.(J(u) + v · Vu = / in Qm, 

8/J('u) a-;;- -~ nufJ(u) = p 011 E, 

u(0) = uu on l1m(0) , 

where uu := 00 + Lxn,(O) with the characteristic function xn,(o) of l1c(0) . In fact , multiply 
equations (1.3) by any test function .,, E C 2(Qm) with '1 = 0 on l1m(T) , and then integrate 
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them over Qt and Q., respectively, and add these two resultants. Then, with the help of 
the Green-Stokes' formula and the relations dE; = (lvEl 2 + 1)112df;(t)dt, i = f, s, utilizing 
the first condition in (1.4) , we have 

{ 0tt1Jdxdt + { 0. t1/dxdt 
}q, ' }q. ' 

= - f 0t1Jtdxd.' + f 0t11(-fi/dS + f 0t11(vldEt - f 0011(0)dx 
}q, ls lE, ln,(o) 

- { 0,r,1dxdt + { 0tr,(n)1dS + { 0,r,(iJ)tdE, - { 00r,(O)dx 
}q. J s lE, ln,(o) 

= - f u·r1tdxdt - f uo·f/(O)dx 
}q,,. ln,,.(o) 

+ { L11,dxdt + / Lr,(O)dx - { 0t1JVEdft(t)dt - { 0.qvEdf.(t)dt, 
}q, ln,(O) JE, lE. 

where (iJ)t and (ii.)' denote the time-axis component of vectors iJ and ii, respectively. 
Next, by (1.4) and (1.5) we have 

- { ktf!;.0t1Jdxdt --1 k.f!;.0,r,dxdt 
}q, q. 

= { kt('i10t · V11)dxdt - fr { { k/{)Ot1Jdft(t) + { kt {){)Ot77dS(t)} dt 
}q, lo lr,(t) 11 ls(t) n 

+ { k,(V0, · '1117 ,dxdt - {T { { k/{)0•11df,(t)- { k, {){)O,'f/dS(t)} dt 
}q. lo lr.(t) 11 ls(t) n 

= { V {3(u) · V11dxdt + { (nof3(u) - p)77df(t)dt - { L(v · n - vs)r,dS(t)dt . 
}qm lE ls . 

Moreover, recalling (1.1) and (1.2), by the first condition in (1.4) and the continuity of 
v •non S(t), we see that 

f (v • V0t)'f/dxdt + 1 (v • V0, )'f/dxdt 
}q, Q. 

T T 
- - { Ot(v · V ·r1)dxdl + / / Ot(v · (-n))·qdS(t)dt + { { Ot(v · 11)r1dft(t)dt 

}q, lo ls(i) lo lr,(1) 
T T 

- { O.(v · Vr1)dxdt + / / O,(v · n)r1dS(t)dt + { { 0.(v · 11)r,df,(t)dt 
}q, lo ls(t) Ju lr.(t) 

= -1 u(v · Vr1)dxdt + 1 L(v · 'v·f/)dxdt + l OtVE'f/df,(t)dt 
~ ~ ~ 

+- { 0,vEqdl', (t)dt. 
l E. 

Summing up these equalities , we obtain that 

- f w1idxdt + 1 V {J(u) • 'vf/dxdt + no h {3 (u)f/dr(t)dt -1 u(v · Vq)dxdl 
}q,,. Q,,. E q,,. 
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+ f LTJ,dxdt + f LTJ(O)dx - f L(v · n - vs)TJdS(t)dt + f L(v. 'v11)dxdt {2.1) k. k~ h k. 
- f fTJdxdt + f prJdr(t)dt + f UoTJ(O)dx . lQm J.r; lnm(O) 

Here, with the help of the •Jreen-Stokes' formula, we see from conditions {l.l)-{1.2) again 
and the relation dS = (lvsl2 + l) 112dS(t)dt that 

f L1J1dxdt + f L17(0)dx + f L(v . 'vTJ)dxdt 
lq, ln,(o) lq, 

= - f L17vr;drt(t)dt - f L17vsdS(t)dt + f LTJ(v • v)drt(t)dt + f LTJ(v · n)dS(t)dt 
lr;, · ls lr;, ls 

= h L(v • n - vs)TJdS(t)dt . 

Therefore it follows from (2.1) and the above equalities that 

-1 u111dxdt + 1 V{J(u) · 'v17dxdt + no h {3(u)17dr(t)dt -1 u(v • V17)dxdt 
~ ~ E ~ 

-' f f 17dxdt + f P'ldr(t)dt + f UoT/(O)dx 
lqrn lr; lnm(O) 

(2.2) 

for all T/ E C 2 ((J.;;") with T/ := 0 on !1m(1'). As usual, this is regarded as a variational form 
of (E). 

Now, we define a weak solution of our problem. 
Definition 2.1 A function u is called a weak solution of (SPC), if u,{J(u) E L2 (Qm) 
and {J(u(t, ·)) E H 1 (0rn(t)) for a.e. t E [O, T] with 

. foT j{J(u(t))Ji,(nm(t))dt < oo, 

u(t, •) E L2(!1m(t)) for all t E [O, Tl, the function 

t >-+ f u(t,x)~(x)dx is continuous on JO,T] for each~ E LloAR3), 
ln ... c,> 

and n salisfies lhe varialional identity (2.2) . 

We suppose that the material domain !1m(t) depends smoothly on time tin the sense 
that there is a transformation y = X(t,x) of C2-class from Qrn into R3, satisfying that 

{ X(t, •) :""- (Xi(t, •), Xi(t , •), X3 (t, •)) maps Drn(t) onto Dm(O) for all t E [O, T] . 
X(O,·) = I (identi'.y) on Dm(O). 

Now, fix the following notation: 

no: = !1m(O) , ru: = 1'(0), Qo := (0,T) x !1o , ~o := (0,T) x ru , y = (v1,1/2 , Y3)E!1u; 
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and denote the inverse of y = X(t, x) by x = Y(t, y) := (Y1(t, y), Y2(t, y), Ya(t, y)). 

Under some assumptions on the data v, J, p and uo, we prove: 
Theorem 2.1 Assume that f E L2(Qm), p E C1(f::), uo E L2(0o) and,B(ua) E H 1 (0o) . 
Also, assume that v E C1(Qm)3 and (1.1), (1.2) are satisfied. Then there is one and only 
one wenk solution u of (SPC) . 

The proof of our theorem is given through sections 3 to 5. 

As will be understood from our proof given in section 5, the presence of convection 
term v plays an important role for the uniqueness of weak solutions of Stefan problems 
formulated in non-cylindri,:al domains. This is one of interesting aspects of Theorem 2.1. 

3. REGULAR APPROXIMATION FOR (SPC) 

In this section, let us consider an approximate problem (SPC)6 in the non-cylindrical 
domain Qm, with parameter J E (0, 11, for (SPC): 

1 
U6,, - t),,f36(u6) + v · Vu6 = /6 in Q,,., 

(SPC)6 B(3~~u6) + nof36(u6) = P6 on E, 

u6(0) = Uo6 on Oo, 

(3.1) 

(3.2) 

(3.3) 

where (36, h, P6 and Uo6 are regular approximations of (3, J, p and Uo, respectively, as 
follows: 

( 1) (36 is a smooth, increasing and Lipschitz continuous function on R such that 

for a positive constant Co independent of J, and such that 

f36 -t fJ uniformly on R as J -t O; 

we put {36(r) := J~-/30(s)ds as well as {3(r) := J; /3(s)ds for all r ER. 

(2) h is a smooth function on Qm such that 

(3) P6 is a smooth function on E such that 

P•--+ p iu C 1(E) as J--+ 0. 
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(4) UoJ is a smooth function on n0 such that uo. • Uo in L2(0o), ,B6 (Uo6 ) • .B(Uo) in 
H 1(flo) as o • 0 and. the compatibility condition 

on f 0 (3.4) 

holds. 

We give first an existence-uniqueness result for the approximate problem (SPC)6. 
Lemma 3.1 (SPC)& has one and only one solution u5 such that u5 and all the derivatives 
U&,t, U6,x, and U6,x,x., i, k '" 1, 2, 3, are Holder continuous on Qm-

Proof. By y = X(t,x), we transform (SPC)5 to a problem (SPC)6 formulated in the 
cylindrical domain Qu: 

U6,t - L, -a . a;;-a-- + W1. V{35(u6 + W2. '\lu5 = h m Qo, (3.5) 
i,i=I Yi t Y; I-~ a f 8,85(u6)} _ ) _ - . 

(SPC)6 8,B6(u6) _ _ _ 
- 8 - + nuf35(u6) = P6 on Eu, (3.6) 

VA 

fL6(0) = U06 on no. (3.7) 

Here u6(t, y) := u6(t, Y(t, y)), h(t, y) := h(t, Y(t, y)), no(t, y) := (lllv(t, Y)II/IIJy(t, y)ll)no, 
p5(t,y) := (lllv(t,y)II/IIJv(t,y)ll)p5(t, Y(t,y)), where Jy denotes the Jacobian of x = 
Y ( ·, y) with its determinant II Jv II, and II ]y II denotes the ratio between the surface ele­
ments dr(t) and dfo, which is determined by the restriction of x = Y(-,y) on fo; hence 

dx = ll.!vlldy Oil no, dr(t) = lllvlldfo on fo. 

Moreover 
3 ax; ax; .. 

a;;(t, y) := I: -8 (t, Y(t, y))-8 (t, Y(t, y)), i, 1 = 1, 2, 3, 
k = I Xk Xk 

( ) . ~ a (ax,) ax; 
W1 := Wu,W12,1U13 with wli := L, -a -a -a > 

k,l= I Yt Xk Xk 
i = 1,2,3, 

ex B . l , 3 . B (8X;) 
W2 := 8t + V Wit I 3 X matrix := 8x; ' 

and 
8(-) ~ a(-) _ liJvll 8(-) 
-0 := L, a;;-0 . v, = -IIJ ll-0 on Eu, 

VA i ,j . I y, y V 

where v = (v1,v2 ,v3 ) is the unit outward normal vector to 1'0 . 

Since X(O, •) . l on 0 1, , the matrix {a;,(0, y)} is the unit on !1i, and hence {ai1(t,y)} 
is strictly positive definite on rlo for t E ID, T') with a certain positive T'(~ T) . There­
fore (SPC) 6 is (uniformly) parabolic quasi-linear equation with smooth coefficients on 
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Q0(T') := (0, T') x !10, and by (3.4) the compatibility condition for initial and bound­
ary data is satisfied. Now, apply the general existence and uniqueness theorem due to 
Ladyzenskaja, Solonnikov and Ural'ceva [8; Chapter 5, section 7] to (SPC)6. Then we see 
that (SPC)6 has a unique solution ii.6 in the Holder space H2+<>,1+<>f2 (Qo(T1)) for a certain 
exponent a E (0, 1). It is e.lso easy to check that u6(t,x) := ii.5(t,X(t,x)) is a solution of 
(SPC)6 on Qm(T') :~ U,e(O,T'){t} x Dm(t), satisfying the required regularities. If T' < T, 
then the solution U6 can be extended beyond time T' by repeating the same argument as 
above with initial time T'. Finally we can construct a unique solution u5 of (SPC)5 on 
Qm in the 1-li:ilder class. D 

Next we prepare two lemmas about uniform estimates of approximate solutions. 
Lemma 3.2 There exis-'.s a positive constant M1, independent of pammeter o E (0, 1], 
such that 

Proof. We use essentia,ly conditions (1.1) and (1.2) in order to get the uniform esti-
mates (3.8) . For each t E to, Tl, put Qm(t) := Ure(O,t){r} x !1m(T). 

First, multiplying (3.1) by f36(u5) and integrating the resultant over Qm(t), we have 

= l '5{35(u5)dxdr. 
Q,.(t) 

Here, by the Stokes' formula, 

and by the boundary condition (3.2) , 

-l L'::,.(35(u,;)/J,;(u,;)d1:dr 
Q..,(t) 

= { IV,60(u0}12dxdr - {' { fJ{3f),;(u,;) f36(u,5)df(r)dr 
} Q ..,(t) lo Jl'(T) V 

(3.9) 

..c. { IVfJ5(u.WdcdT - {' { p,5/35(u.)dr(r)dr -1- nu {' { J{3,;(u.Wdr(r)dr . 
JQ..,(t) lo lr(T) lo lr(T) 
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Moreover, we have by (1.1) and (1.2) 

f (v · 'vu6),B6(u6)dxdr 
lQm(t) · 

= { V · v{36(u6)dxdT 
lQm(t) 

= {' f {36(u6)(v · v)df(r)dr 
lo lI'c-r> 

= f' { /3&(u6)VEdf(r)dr. 
loll'(,,.> 

Now, substituting the above expressions in (3.9), we obtain with the help of Young's 
inequality that for any c: > 0 

::; ~ { l/61 2dxd7' + € { I.B6(u6)l 2dxdT + ~ rt { IP612df(r)dr (3.10) 
4c: l<J-<t> l<J-<t> 4€ lo 1£"<-r> 

+ { {36(Uo6)dx for all t E [0, T] . lno 
From the definitions of ,86 <ind /36 it follows that there exist positive constants CfJ and c'fJ, 
independent of parameter J E (0, lj, such that 

{36(r) ~ CfJjrj 2 - Cp and lf:l&(r)j 2 ~ cfJlrl 2 - Cp for all r ER. (3.11) 

Therefore, by choosing c: > 0 small enough in (3.10), we obtain a uniform estimate of the 
form (3.8) for a positive constant M 1 independent of fi E (0, 1] . D 

Lemma 3.3 There exists a positive constant M2, independent of fi E (0, 1], such that 

{ ,B~(u6)j'vu6j2dxdt::; M2 far all fi E (0, l]. lqm (3.12) 

Proof. Just as the proof of Lemma 3.2, multiplying (3.1) by U6 and integrating over 
Qm, and noting that (v • 'vu&)u6 = 1/2(div(ujv)), we get 

Now, by using (1.2), (3.8) :1nd Young's inequality, 
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+ IT I (P6 - nof36('U6))u6dr(t)dt + ! I l/61 2dxdt + ! I lu61 2dxdt lo Jl'<t> . 2 Jq"' 2 Jqm 

~ ! IT I IP61 2df(t)dt + ni IT I lf36(u6)1 2df(t)dt + IT I lu61 2df(t)dt 
2 Jo lP(t) 2 lo 1£'(1) Jo lP(t) 

+ ~l/6li•(Qm) + G + f) M1. 

By (3.11) again we have 

2 1 2 c'p 
lu6(t,x)I ~ -l,86(u6(t,x))I + - for all (t,x) E Qm, 

Cp Cp 

so that there exists a posit.ive constant M2, independent of Ii E (0, 11, such that 

I f:¼(u6)1Vu61 2dxdt 
}q,. 

I IT ( 2 1 12 11 12 ( 1 T) ~ M2 Jo l/36('U6 t))IH•(Om(t)}dt + 21P6 L2(E) + 2 /6 £2(Qm) + 2 + 2 M1 , 

This together with (3.8) gives a uniform estimate of the form (3.12) for a constant M2 
which is independent of Ii E (0, ll. D 

4. ESTIMATES OF REGULAR APPROXIMATE SOLUTIONS 

In this section we prove some uniform estimates of the time derivative of f36(u6) and 
the H 1-norm of f36(u6) - These estimates seem more complicated in the non-cylindrical 
case than in the cylindrical one. 

Lemma 4 .1 11ier-e exists a positive constant Ma, independent of parameter Ii E (0, 1], 
such that 

2 

I 1~/36(u6)1 dxdt + sup lf36(u6(t))l}1•cn ... (t)) ~ Ma /o-r all Ii E (0, l]. (4.1) 
}q,.. at tEfO,TJ 

Proof. For each Ii E (0, ll and t E (0, Tj we consider the time-dependent convex func­
tional 4>6(t, ·) on L2(!lo) defined by 

11 ~ 1 OZ OZ 11 2 , 1 ( ) , . J( ) 
( ) ·- 9 L.. a.,(t),,,,dy + - , no(t)z dI o - P6 t zdI o 1f z EH flo , 

4>6 l,z .- -,,j= I no uy;uy1 2 lo l'o . 

+oo if z E L2(0u) \ H 1(0o) -

Theu it is easy to see that iC>.s(t, ·) is proper and lower semi-continuous on £ 2(00 ) and 
4>6(·, z ) is Lipschitz continuous on I0, Tl for each z E J-1 1(0u); actually, it holds that 

~iJ.>0(t ,z) ~ K 0 (K~ ~ il>.s(t ,z)) for a.e. l E [0,TI and all z E f/ 1(0u) , (4.2) 
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where Ko and K~ are positive constants determined only by the Lipschitz constants of 
a.;1 , n0 and p0; they can be chosen so as to be independent of o, too. It is derived from 
this property in the same way as in [5; Lemma 1.2.5] (or [6; Lemma 2.31) that if v E 
W 1•2 (0,T;L2(rlo)), 8<1>6 (-,v(•)) E L2(0,T;L2(rl}} and v(O,·} E H 1(rlo), then <1>6 (-,v(•)) is 
absolutely continuous on [O, T] and 

~<J>0(t, v(t)) - (vi(t), 8<I>.(t, v(t)))P(no) ~ Ko(K~ + <I>o(t, v(t))) (4.3) 

for a.e. t E [O, Tl, where 8<I>0(t, •) is the subdifferential of <J>0(t, ·). In fact, for each 
s, t E [O, T] withs~ t by the definition of the subdifferential and (4.2) we get 

1 
- { <J>0(t, v(t)) - <J> 0(s, v(s))} 
t-s 

1 = -{<J>0 (t,v(t)) - <J>0 (t,v(s)) I <I>0 (t,v(s)) - <I>0(s,v(s))} 
t-s 

( v(t) - v(s)) 1 J.1 , ~ 8<I>6(t,v(t)),-'---'--.....C...C... +-.- K0(K0 +<I>o(T,v(s)))dr, 
t - s P(!lo) t - s • 

where (·, •)P(nu) stands for the standard inner product in L2(rlo) , For a.e. t E [O, T] 
at which <J>6(-,v) and v are differentiable, we have (4.3) by letting s )' t. Moreover 
o<I>6(t, v(t)) is characterized by 

3 1 ov(t) aw 1 fr (a<I>6(t, v(t)), w)P(!lul = L a;;(t)-,,--8 dy + flo(t)v(t)wdfo - Po(t)wdfo 
i,i=I no uy; Yi l'o ro 

for all w E H 1(rlo) and herlce 

a<i>.(t,v(t)) = - I: - a;;(t)-· 3 a ( ov(t)) 
. i,j=I oy, oy; 

in the distribution sense on no, Since I:l,,=I a/ay, {a;;B.B.(u.)/oy;} = Uo,t +w1 · v'.B.(u.)+ 
w 2 • v'ii.0 - ] 6 (cf. (3.5)), it follows from (4.3) by taking ,B0(u0) as v that 

~<I>.(r,,B.(u.(r))) -1- { ~(u.(r))luor(r)l 2dy 
dr Jn0 " ' 

for a.e. T E [O, Tl. Here , integrating ( 4.4} over [O , t[ with respect tu T and using Lemmas 
3.2 and 3.3, we obtain for an arbitrary small positive number E and with notation Qo(t) := 
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• 

(0, t) x no that 

<I>6(t,,86(u6(t))) + 1 /JHu6)1uhl 2dydr 
Qo(t) ' 

S -1 (w1 · V,86(u6)) 8
8 /J6(u6)dydr -1 (w2 · Vu6)/JHu6)u6,rdydr 

Qo(t) T Qo(t) 

+ 1 l6aa /J6(u6)dydr + Ko ri(K~ + <1>6(r,/J6(u6(r))))dr + <1>6(0,,86(iio.1)) 
Qo(t) r lo 

1 I a 12 S -lw1lc(Qo)31 IV/J6(u6))12dydr + e(lwilc(Qo)3 + 1) 1 -8 /J6(u6) dydr 
4e Qo(t) Qo(t) T 

+ 41 !w2lc(Qo)31 1Vu612/J~(u6)dydr + elw2lc(Qo)31 ,B~(u6)lu6,rl2dydr 
€ Qo(t) Qo(t) 

1 - 2 {' I 
+ 4elhlL'(Qo) +Kolo (Ko+ <1>6(r,/J6(u6(r))))dr + <1>6(0,/J6(Uo6)) 

. 2 

s e(lw1lc(Qo)3 + 1) 1 laa /J6(u6)1 dydr + C,lw1lc(Qo)3M1 (4.5) 
Qo(t) T 

+ elw2lc(Qo)31 ~(u6)1u6,rl 2dydr + Celw2lccQ0)3Af2 
Qo(I) 

1' 

+ C,IJ6li,(Qo) + KoK~T +Kolo <1>6(r,/J6(u6(r))dr + <1>6(0,/J6(iio6)), 

where C, is a positive constant depending only one, and Mi, M2 are the same constants 
as in Lemmas 3.2 and 3.3. Since l8(,86(ii6))/8tl S C0 ju6,,I, it follows that 

Therefore it follows from (4.5) with a small e > 0 and Lemma 3.2 that 

for all t E [O, T], (4.6) 

where M4 is a positive constant independent of o E (0, lj . From the definition of <1>6 and 
( 4.6) it follows immediately that 

(4.7) 

for a positive constant /\{~ independent of o E (0, l] . Finally, describe the quantities of 
the left hand side of {'1.7) in the (t, x)-coordinate of the non-cylindrical domain Qm- Then 
we uuLain a uniform eslimaLes of Lhe form (cl.l). • 
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5. PROOF OF THE THEOREM 

Existence: 

Let {u6heco,iJ be the family of approximate solutions of (SPC)6. By Lemmas 3.2, 
3.3 and 4.1 with the standard compactness argument we can find a sequence { on} with 
On • 0 as n • +oo and a function u such that 

u,. := U5n • U weakly in L2(Qm), 

/36n(un) • ,'3(u) in L2(Qm) and weakly in H1(Qm), 

We now show that u is a weak solution of (SPC). To do so, multiply (3.1) by any 
test function 7'/ E C2(Qm) with ri(T, •) = 0 and integrate it over Qm, Then, just as in 
the derivation of our weak formulation, we see by the Green-Stokes' formula that the 
approximate solution Un Sc..tisfies 

-h ... Unf'/tdxdt - L Un1JVEdr(t)dt + h ... V,Bdun) · 'Vridxdt + no L ,Bdun)ridr(t)dt 

- f u,.(v • 'VrJ)dxdt + / u,.ri(v • v)df(t)dt 
}qm }i; 

= l /6.,ridxdt + £P6nT/dr(t)dt + lo Uo6,.T/(O)dx. 
Qm u 0 

Here, noting condition (1.2) again and passing to the limit in n yield 

- f uriidxdt + / V ,B(u) • Vridxdt + no / ,B(u)ridr(t)dt - fc u(v • Vri)dxdt 
}Qm }Qm }r, Gm 

{ f'TJdxdt I { pfJdr(t)dt i { Uor1(0, •)dx, 
)Qm IE lno 

which is the required variational identity. Moreover, on account of the uniform estimates 
obtained in sections 3 and 4, we see that u,,B(u) E L2(Qm) and 

LT l,B('u(t))lt1cnm(t))dt :S M1, 

Finally, let us check the continuity property of u in time. To do so, we use the weak 
continuity of the function ii.(t) := u(t, Y(t, •)) in L2 (f!0 ), which is easily seen from the 
fact that {u6,i} is bounded in £ 2(0, T; H-1(!"!0)) (cf. (3.5)) . For each smooth function 
c; E H 1(R3 ), we observe 

f u(t + D.t, x).;(x)dx - f ·u(t, x).;(x)dx 
ln,..(1+t:,.t) ln ... (t) 

= l u(t + D.t,y)((t ~ D.t,y)det.Jy(t + D.t,y)dy- f u(t,y){(t,v)IIJy(t,y)lldy 
~ ~ 

= f {u(t + D.t,y) - u(t,y)}((t + D.t,v)IIJ1•(t + D.t,y)lldy 
lno 

+ f u(t, y){[(t + D.t, v)IIJi-(t + t::.t , v)II - ((t, v)IIJ1•(t, v)ll}dy, 
lno 



where IIJy(t, ·)II is the Jawbian determinant of the transformation x = Y(t, y) (see the 
proof of Lemma 3.1) . Clearly, as b.t • 0, the right hand side of the above equalities 
goes to 0, so that the integral fnm(t)u(t,x)~(x)dx is continuous int. This completes the 
existence proof. 

Uniqueness: 

The idea of our uniqueness proof is due to Ladyzenskaja, Solonnikov and Ural'ceva [81, 
and this was also extensively used in Niezg6dka and Pawlow [91, Rodrigues [111, Rodrigues 
and Yi 1121 and Fukao, Kenmochi and Pawlow [41. 

Let u 1 and u 2 be two weak solutions and take their difference. Then 

+no f (f3(u1 ) - f3(u2))17dr(t)dt - f (u1 - u2)(v · "v17)dxdt = 0 (5.1) 
}r, }qm 

!or all 'f/ E C2(Qm) with T/(T, •) = 0. 

As usual, consider the function 

{ 
/;l(u1(t,x)) - f3(u2(t,x)) 

b(t, x) := u1(t, x) - u2(t, x) 
0 

if u1(t, x) # u2(t, x), 

if u1(t,x) = u2(t,x), 

which is non-negative and bounded on Qm, Then, by (5.1), 

- lm (u1 -u2){T/t +M.,,+v • "v'f/}dxdt + h: (f3(ui)-f3(u2)) { :: + no'f/} dr(t)dt = 0 (5.2) 

for all T/ E C2( Qm) with T/(T, ·) = O; 

it is easy to see that (5.2) holds for any function T/ E W 1•2(Qm) with D.'f/ E L2(Qm) and 
T/(T,·) = 0. 

Now take a smooth an,l strictly positive approximation b, of b such that 

b ~ b, a.e. on Qm, c: ~ b, ~ C1 a.P., on Qm, 

b, • b a.e. on Qm as c: • 0, 

where C1 is a positive const.ant independent of the approximation parameter c: E (0, l), and 
consider the following auxiliary linear parabolic problem formulated in the non-cylindrical 
domain Qm for any given e E C0 (Qm): 

(P), 
I f/,·,t + b,. t:..·,,.. + v . 'ilf/, = e 

a-,,,. 
fJv + nurh = 0 on E, 

l f/, (T, ·) = 0 on Dm(T) . 
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This problem has a unique Holder continuous solution T}, such that T},, T},,t, TJ, ,x, and T/e,x,x;, 
i, j = 1, 2, 3, are Holder continuous on Qm. In fact, this is reformulated as the following 
backward problem (P), formulated in the cylindrical domain Q0 : 

{P), I-0 - a { ar,,} - _ -
1J,,t + _L bf-81 . 11-ij-8 . + (-b,w1 + w2) · 'vTJ, = l in Q0, 

,,, =! y, Y, 

a-
11• + - - 0 ~ av A noT}e = On O, 

ri, (T, ·) = 0 on fl0 , 

where w 1, i = 1, 2, and flo are the same as in section 3, f/,(t, y) := 17, (t, Y(t, y)), 
b, (t,y) := b, (t, Y(t,y)) and l(t,y) := l(t, Y(t,y)) . We can solve (P,) by applying the 
general theory of quasi-linear parabolic equations in [8] and see that it has a unique solu­
tion f/, E f12+o.,l -H>/2(Q0 ) for ,'.\ certain exponent O < o < 1. It is also easy to check that 
TJ, (t , x) := ij, (t, X(t, x)) is a solution of (P), on Qm, satisfying the required regularities. 

Here we are going to show some uniform estimates for T/, with respect to c. 
Lemma 5.1 There exist. , a positive constant M6, which depends on land is independent 
of parameter c E (0, lJ, sui:h that 

JVry, (s)Ji,(o •• (•Jl + J.T lim(t) b,JLiTJ,J2dxdt 

~ M6 J.T J'i7·'1,(t)Ji,(o;,.(t))dt + no J.T { 8
8 ry;dr(t)dt + no J.T { TJ;dr(t)dt 

• • /r(1) t • lr(t) 
1' . 

+no!. { v · 'il(TJ;)df(t)dt + M6 f (Yf all s E [O, T] and c: E (0, l] . (5.3) 
; /r(t) 

Proof. Multiplying the first equation in (P), by Li17, and integrating it over flm(t) 
with respect to x, we get f:.ir any t 

f 1J, ,,Li·q, dx + f b,JLi17, J2dx + f (v · Vr1,)Liry,dx = - f 'ill • 'i7r1,dx. (5.4) 
/n,..(tl /0,..(1) /o ... (t) /0,..(1) 

Here we observe that 

{' r1, ,,Lir1, dx 10 ... (1) 

1 1 ari = - ('i7r,,,, . 'il·q, )dx + ·q, ,, -8 ' dr(t) 
O,..(t) l'(t) I/ 

11 a 2 'Tto1 a 2 = - - -;- lv'r1<l dx - -;-- -;- q, dr(l) 
2 n ... (,) at 2 r(,) at 
l d 1 2 l J. 2 , no 1 8 2 ~ - :- - J'i7r1. J dx l :- J'i7'1, I vi:;dl (t) - - - r1 dr(t) . 
2 dt n ..,(1) 2 r(1) 2 r(,) at ' (5.5) 
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Also we have by ( 1.1) 

- f (v • V17,)b..17,dx 
lnm(t> 

= f V(v · V17,) • 'v17,dx - f (v • V11,/8
11'dr(t) (5.6) 

lnm(t) fl'(t) V 

1 ~ { av; 817, 011, a211, 811, } 1 ( ) ( ) = L., --- + v;--- dx + no v · V17, 11,r t 
!lm(t) i,j=l 8X; 8x; 8X; 8x;8X; 8x; r(t) 

~ 3jvlc,(Q)' f IV11,l 2dx + f !div (IV17,j 2v) dx + no f v · V(11:)df(t), 
m lnm(t> lnm(t> 2 2 f Pct> 

and by (1.2) 

f -21 div (IV11, 12v) dx -' f -21 JVr1,l 2(v · v)dr(t) = ~ f IV17,j2vi::dr(t). (5.7) 
ln. .. <1> fret> 2 fret> 

Integrating (5.4) in time over [s, T] and using (5.5)-(5.7), we get 

f jVl),(s)j 2dx + J.T f b,jb..17,j2dxdt 
ln...c,> , lnm(t> 

T T 
~ (6jvJc,(Qm)' + 1) /. / IVr1,j2dxdt + J. f jVfj2dxdt 

._ • ln,.c1> • ln..<t> 

!.Tl a. _ J.rl. /.Tl + no -8 1J;dI'(t)dt + no 11;dr(t)dt + n0 v · V(11:)dr(t)dt. 
f'(t) t • l'(t) • l'(t) 

Thus a uniform estimate of the form (5.3) is derived. • 

Lemma 5.2 There exists a positive constant M7 , '!J)hich depends on l and is inde-
pendent of pammeter c: E (0, lj, such that 

Ir 8 2 , d Ir 2 . 2 -8 '7,(t) dI (t) ~ M1- '7,(t) dr(t) + M1l11,(t)li2c£'<t» 
r(t) t dt r(t) 

(5.8) 

for all t E j0, Tl and c: E (0, lj . 

Proof. Our geometric condition (*) ensures that there exists a finite open covering 
{ Uk(t)}t 1 of r(t) and a kcal coordinate system y = (Yi, Y2, y3) = Xk(t, x) := (Xk1 (t, x), 
Xk 2(t,x),Xk3 (t,x)) from Uk(t) onto an open subset Uk of they-space for all t E [0,Tj 
such that 

• Xk(t, Uk(t) n l1rn(t)) = [rk n {y; 1/3 < 0} and Xk(t, Uk(t) n I'(t)} = Uk n {y; y3 = 0} 
( C R2) for all /,; 1, 2, . .. , N and all l E IO, Tl, that is, every point (t, x) with 
x E Uk(t)nl'(t) is rrw.pped Lo (l , y) (I., Xk 1(l , x) , Xdl, x), O) for all k = 1, 2, .. . , N 
and all l E IO, Tj; 
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• {){)( ·) = a><(l, y')°{)( ·) on (·\n{y; y3 = 0}, where y' := (Y1, Y2, 0) and a><(t, y') is positive 
V Y3 

and of C2-class on I0 . Tj x ( Uk n {y; y3 = 0}) for all k = l, 2, ... , N and all t E [0, T]; 

• dl'(t) := S1<(l, y')dy' on Uk n {y; y3 = Ol for k = l, 2, • • •, N, where Sk(·, •) is a 
positive function of C1-class on [0, T] x (Uk n {y; y3 = 0}) 

Moreover, take a partition of unity { <Pk(t, •)} on I'(t), namely 

N 

:L>l>k(t, ·) = 1 on r(t), t E [0, T), 0 ~ <Pk ~ l, k = l, 2, ... , N, 
k = I 

and put iJ.(t,y) : r1,(t, Yk(t,y)) and Jk(t,y) :~0 ¢,(t, Yk(t,y)), where Yk(t, •) := x;1(t, •): 
Uk • Uk(t) for all k = l, 2, . . . , N and all t E [0, T]. 

Since 
" 2 =2 3 <>.-2 <> -
~ = _v•_t, + L ~ uXki, 
al Ol ;~ I Gy; {)t 

it follows that for any t E [O, T) 

(5.9) 

The first term of the last equality in (5.9) is estimated as follows: 

Now, note that 
B·iJ; l iJTJ; 2nu 2 - = - -= - - ry 
8y3 ak8V ak ,, 
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where ak(t,x) := ak(t,X(t,x)) . Then the second term of the last equality in (5.9) is 
estimated as follows: 

N 3 - 2 -E t1 fa, ¢k(t) a~;~) ax;;(t) sk(t)dy' 

-t t r ~ (Jik(i) a.xk;(t) sk(tl) iJ:dv' + t r, Jk(tl afJ,(tl 2 axkl(t) sk(t)dv' 
k=I i = I la, fJy; fJt k= l la {)y3 fJt 

~ frc1/1,(t)2 t {J~1 ( ¢k(t/x;t> sk(t)) + ~2 (Jik(t/x;;(t) sk(t)) J sk~t)} dr(t) 

+ r 1/, (t)2 t I 2nu_ {).Xk3(t) I dr(t) ; 
jl"'(t) k= I ak( t) fJt 

in the first integral of the last inequality we consider the integrands as functions of (t, x) 
by the inverse tranformation of y - · Xk(t, x) . Therefore (5.8) holds for a constant M7 > 0 
having the required properties. • 

Lemma 5.3 There exist.~ a positive constant M8 , which depends on i and is inde­
pendent of parameter,;; E (0, lj, such that 

{5.10) 

for all t E ID, Tj and ,;; E {O, lj. 

Proof. We can obLain a uniform estimate of the form {5.10) in the same way as (5.9) 
.in the proof of Lemma 5.2. • 

Now, by Lemmas 5.1-5;3 and utilizing that no> 0 we see that there exists a positive 
constant M9 , which depends on f and is independent of parameter,;; E (0, lj, such that 

(5.11) 

for all s E [0, Tj . Accordingly, applying the Gronwall's inequality to (5.11), we finally 
have 

(5.12) 

where M10 is a positive constant, which depends only on f (it is independent of,;; E (0, 11) . 
Taking 1/, as a test function T/ in (5.2) , we have 

0 cc -1 (u, - u2){·'1,., + bt:.11, + v · V11, }dxdt 
Q,., 

~ - { (u, - u2){T/,.t + b, t:.1/, + v · 'il'fJ, }dxdt + { (u 1 - u2)(b, - b)t:.1/,dxdt k . k. 
= -1 (u1 - u2) fdxdt + 1 (u1 - u2)(b, - b)t:.11, dxdt. 

Qm Qm 
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Thanks to {5.~2) and e: • 0, we have 

1/4 .. (u1 - u2)(bc - b)~11cdxdtl ::; {/4m Ju1 - u2J 2Jbc - bJdxdt} ½ (2M10)½ 

• 0. 

Therefore 
f (u1 - u2)idxdt = 0 for all i E cr(Qm), 

]q,. 

which implies that u 1 = u2 a.e. on Qm. 

References 

D 

1. A. B. Crowley, Mathematical modelling of heat flow in Czochralski crystal pulling, 
IMA J. Appl. Math., 30(1983), 173- 189. 

2. A. Damlamian, Some results on the multi-phase Stefan problem. Comm. Partial 
Differential Equations, 2{1977), 1017- 1044. 

3. E. DiBenedetto and M. O'Leary, Three-dimensional conduction-convection prob­
lems with change of phase, Arch. for Rat. Mech. Anal., 123(1993), 99-116. 

4. T . Fukao, N. Kenmochi and I. Pawlow, 'I'ransmission problems arising in Czochralski 
process of crystal growth, pp. 228-243 in Mathematical Aspects of Modeling Struc­
ture Formation Pheno11,1ena, GAKUTO Intern. Ser. Math. Sci. Appl., Vol.17, 
Gakkotosho, Tokyo, 2001. 

5. N. Kenmochi, Solvability of nonlinear evolution equations with time-dependent con­
straints and applicati.ons, Bull. Fae. Education, Chiba Univ., 30(1981), 1- 87. 

6. N. Kenmochi and I. Pawlow, A class of nonlinear elliptic-parabolic equations with 
time-dependent constraints, Nonlinear Analysis, 10(1986), 1181- 1202. 

7. N. Kenmochi and I. Pawlow, Controlled Czochralski crystal growth, J . Soc. Instr. 
Control Eugin., 35(1996) , 944- 950. 

8. 0 . A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and quasilinear· 
equations of parabolic type, 1'ranslations of Mathematical Monographs, Amer. Math. 
Soc., Vol.23, 1968. 

9. M. Niezg6dka and I. Pawlow, A generalized Stefan problem in several spaces vari­
ables, Appl. Math. Optim. , 9(1983), 193- 22,1. 

10. I. Pawlow, Three-phase boundary Czochralski model , pp. 203- 227 in Mathematical 
Aspects of Modeling Structure Formation Phenomena, GAKUTO Intern. Ser. Math. 
Sci. Appl. , Vol.17 , Gakkotosho , Tokyo, 2001. 

20 



11. J. F. Rodrigues, Variational methods in the Stefan problem, pp.147- 212 in Phase 
1ransitions and Hysteresis, Lecture Notes Math. Vol.1584, Springer-Verlag, 1994. 

12. J. F. Rodrigues and Yi-Fahuai, On a two-phase continuous casting Stefan problem 
with nonlinear flux, European J. Appl. Math., 1(1990), 259-278. 

21 














