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P. O. Lindbergi

Abstract

We exhibit useful properties of ballstep subgradient methods for convex optimiza­
tion that use level controls for estimating the optimal value. Augmented with simple
averaging schemes, they asymptotically find objective and constraint subgradients
involved in optimality conditions. When applied to Lagrangian relaxation of convex
programs, theyfind both primal and dual solutions, and have practicable stopping
criteria. Up till now, similar results have only been known for proximal bundle meth­
ods, and for subgradient methods with divergent series stepsizes, whose convergence
can be słow. Encouraging numerical results arepresented for łarge-scale nonlinear
multicommodity network flow problems.

Key words. Convex programming, nondifferentiable optimization, subgradi­
ent optimization, Lagrangian relaxation, level projection methods.

1 Introduction

We consider subgradient methods for the convex constrained minimization problem

f*:= min{f(x): x E S} (1.1)

under the following assumptions, S is a nonempty closed convex set in lRn, f : lR~t --? lR
is a convex function, we can find the value f(x) and a subgradient 9j(X) E 8f(x) of f at
any x E S, and for each x E lRn we can find Psx := arg minj Ix- ·1, its projection on S in
the Euclidean norm I. I. We assume that the optimal setS* := Arg min., f is nonempty,

The ballstep subgradient method [KLL99b] finds [, as follows. Given the kth iterate
xk in the feasible set S and a target level fl~v that estimates f*, it uses the linearization

. (1.2)
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and its halfspace
Hk := {x : I»(x) Ś s:}

to approximate the level set of f
(1.3)

(1.4)

Then, following the original algorit hm of [PoI69], it generates the next iterate

xk+1 := Ps(x k + tk[PHkXk - xk]) = Ps(x k - tk[f(xk) - f~v]g~/lg~12), (1.5)

where
tk E T := [tmin, tmax] for SOlne fixed O< tmin Ś tmax < 2. (1.6)

The targets are chosen via a ballstep strategy that works in groups of ·iterations. Within
each group, the target s: is fixed, and the method attempts to minimize f over a ball
around the best point found so far, shifting the ball and lowering the target when sufficient
progress occurs, Ol' shrinking the ball and increasing the target upon discovering that it is
too low. The two łevel schemes of [KLL99b, §§2 and 5] ensure inf), f(x k ) = l. and provide
efficiency estimates when the optimał set S* is bounded. Although (1.5) with the stepsizes
Vk := tk[f(xk) - f~v]/lg'12 conforms with the standard subgradient iteration

X
k+1 := Ps(x k

- vk9~) with ·Vk > O,

such stepsizes needn't obey the popular divergent series condition

(1.7a)

00

LVk = 00 and
k=l

00

Lv2< 00
k=l

(1.7b)

Ol' other conditions typically required for convergence of subgradient methods [Kiw03].
In this paper we augment the ballstep method with simple averaging schemes that

asymptotically find objective and constraint subgradients involved in optimality conditions
for problem (1.1). When applied to Lagrangian relaxation of convex programs, they find
both primal and dual solutions, and provide practicable stopping criteria. Up till now, for
subgradient methods similar results have only been known [Zhu77], [8h079, §4.4], [AnW93,
LaL97, LP898, LP899, 8h096]"for the iteration (1.7), whose convergence can be słow.

Our results parallel ones in [FeKOO] obtained recently for the proximal bundle method
[HUL93, §XV.3], [Kiw90]. At first sight, this method has little in common with our simple
subgradient algorithm, since it accumulates many linearizations for its QP subproblems,
and uses the QP multipliers for averaging. But in fact there are more similarities than
differences. Our key observation is that, from the convcrgence viewpoint, a group of iter­
ations of the ballstep method is similar to one iteration of the proximal bundle method,
Thus, once suitable estimates for a group of ballstep iterations are established, the re­
mainder of our convergence analysis is almost identical to that of [FeKOO]; to stress the
analogies, we quote freely from [FeI<OO]. Also the efficiency analysis of both methods is
quite similar [I<iwOO, KLL99b]. Up till now, the literature has only contrasted simple
subgraclient methods with more aclvancecl proximal bundle methods, whereas our paper
highlights their similarities.
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Good reviews of the subgradient algorithm may be found in [Ber99, BSS93, IVlin86,
Po183, Sh079]. It is widely used, mainly due to its simplicity and good performance,
especially in Lagrangian relaxation [Bea93]. In many applications it solves the dual of
an LP relaxation of the original problem; then even quite approximate primal solutions
delivered by our averaging schemes could be useful, e.g., in primal heuristics, variable
fixing, etc. [BBPOO, BaC96, BaCOOa, BaCOOb, BaLOl, CFT96 , CNS98].

Also the recent volume algorithm [BaAOO] performs well in practice [BaA98]. Its aver­
aging is similar to that of a version of our method that employs past aggregate subgradients
to avoid zigzags (cf. (6.2)-(6.3) and Ex. 6.5). However, in contrast with our method, the
volume algorithm has no proof of convergence [BMS01]. We hope, therefore, that our
results may stimulate research on.the development of simple subgradient methods that are
both theoretically convergent and practically effective.

As a partial justification of our hope, we give numerical results for the traffic assignment
and message routing problems [Ber98] on apparently the largest instances reported in the
literature. For modest solution accuracy (typical in such applications) our implementation
seems to be competitive with the methods reviewed in the recent survey [OMVOO].

The paper Is organized as follows. In §2 we review briefly the simplest ballstep method
of [KLL99b] and its convergence properties. In §3 we show how averaging may produce
affineminorants of f and is (the indicator of S), and corresponding optimality estimates
and stopping criteria. Their uses for indentifying subgradients of f and ~s involved in
optimality conditions for mins f are discussed in §4. Applications to Lagrangian decom­
position of convex programs are studied in §5. Extensions to the accelerations of [KLL99b,
§7]are given in §6. Applications to multicommodity network flows are reported in §7. The
Appendix contains proofs of certain technical results.

Ournotation is fairly standard. B(x, r) := {y : Iy - z] ::; r} is the balI with center x
and radius r. do(') := infy EO I· -yl is the distance function of a set C C lRn

.

2 The ballstep level algorithm

In the simplest version of the ballstep subgradient method [KLL99b] stated below, x~cc

is the record point with the best objective value f~c encountered till iteration k. The
iterations are split into groups K, := {k(l): kCl + 1) - l},l 2:: 1. In group l, starting frOIU

the point x~~~), the method attempts to reach the [rożen target level fl:v := fl~~) - 8,within
the ball of radius R , centered at x~J~), where the level gap 8, > Ocontrols the stepsize. If
sufjicient descent f(xk ) ::; f~~) - !8l occurs, group l + 1 starts with 81+1 := 8, and Rl+1 :=
R1• Otherwise, target infeasibility is eventually discovered when the accumulated sum Pk+1
of squares of subgradient and projection steps grows to about R~ due to oscillations; then
group l +1 starts with contracted 8,+1 := !81 and R'+1 := R,/2f3 , where f3 E [0,1). Further
comments on the rules of the method are given belowand in §3; also see [KLL99b].

AIgorithm 2.1.
Step O (Initiation). Select an initial point xl E S, a level gap 81 > O, ballstep parameters
R > O, f3 E [0,1), and stepsize bounds tmin , tmax (cf. (1.6)). Set j~c := 00, Pl := O. Set
the counters k := l := kCl) := 1 (k(l) is the iteration number of the lth change of f1:v)'
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Step 1 (Objective eval'l.tation). Calculate f(xk) and 9f(Xk). If f(xk) < f:~-;;\ set f~c :=
f(xk) and x~ec := xk, else set fl~C := f~-;;l and x~ec := x~e~1 (so that f(x~cc) = minJ::::1 f(xi )) .

Step 2 (Stopping criterion). If gj := 9f(X k) = O, tenninate (x k E S*).

Step 3 (Sufficient descent detection). If f (xk) ::; f~~) - ł8l, start the next group: set
k(l + 1) := k, 8l+1 := 8l , Pk := Oand increase the group counter l by 1.

Step 4 (Pro.iections). Set the level f~v := f~~) - 8l. Choose the relaxation factor tk ET
(cf. (1.6)). Set Xk+1/2 := xk + tk(PHkXk - x k), Pk := tk(2 - tk)d'jh(xk), Pk+1/2 := Pk + Pk,
xk+1 := psxk~1/2, Pk+1/2 := Ixk+1 - xk+1/2

1
2, Pk+1 := Pk+1/2 +Pk+1/2'

Step 5 (Target infeasibility detection). Set the ball radius R; := R(8l/81)f3 . If

(Rl -lxk+1 - xk(l) 1)2 > R; - Pk+b (2.1)

i.e., the target level is too low (see below), then go to Step 6; otherwise, go to Step 7.

Step 6 (Level increase). Start the next group: set k(l + 1) := k, 8l+1 := ł81' Pk := O,
replace xk by x~ec and g' by 9f(x~ec)' increase l by 1 and go to Step 4.

Step 7. Increase k by 1 and go to Step 1.

Assuming the method doesn't terminate, wenow recall some results of [KLL99b, §2-3].

Remarks 2.2. (i) If at least half of the desired objective reduction 81 is achieved at Step
3, group l +1 starts with the same 8l+1 := 8l, but f~~+l) ::; f~~) - ł81 with xk(l+1) = X~~~+1)

(since f(xk) > fr~~) - ł81 Vk E Kl)' Thus by Step 6, we have 81+1 ::; 8l, xk(l) = x~~~) E S
and f:~) = f(xk(l») for aU l. Hence inf f(xk(l») 2:: f. > -00 gives 8l ! O [KLL99b, Lem.
3.6] (otherwise we would have f(xk(l)) ! -00); in particular, the target infeasibility test
(2.1) is met for infinitely many l such that 81+1 := ł81 at Step 6. .

(ii) At Step 4, xk+1/2 = xk - tk[f(xk) - fl~v]g'/lg'12 and dHk(xk) = [f(xk) - f~v]/lg'l
with f(xk

) > f~v, so the Fejer quantities Pk, Pk+l/2 and Pk+l are positive, since Pk may
only decrease to Oat Steps O, 3 and 6. The role of these quantities will be explained in §3.

(iii) At Step 5, the ball radius R; := R(81/81)f3 ::; R is nonincreasing; R, == R if (3 = O.
Ideally, R1 should be of order ds. (Xk(l») , and hence shrink as xk(l) approaches S.. For
convergence it suffices to choose R, so that 81/ R,~ O [KLL99b, Rem. 3.9(i)].

(iv) Algoritlun 2.1 is a ballstep method, which in group l attempts to minimize f ap­
proximately over the intersection of the balI B(xk(l) , R,) with the feasible set S, shifting the
balI when sufficient progress occurs, or increasing the target level otherwise. By [KLL99b,
Lem. 3.1(v)] or Lem, 3.1(iv,v) in §3, the target infeasibility test (2.1) implies

s: := f;~) - 8, < mini f(x) : x E B(xk(l), R,) n S}, (2.2) .

Le., the target is too low, in which case 8l is halved at Step 6, fl~v is increased at Step 4
and x k+1 is recomputed, Note that l increases at Step 6, but k does not, so relations like
fl~v:= f~~) - 8l always involvethe current values of the counters k and l at Step 4.

(v) Since IXk+ 1 - Xk(l) I > 2R, suffices for passing the infeasibility test (2.1), this test
also ensures at Step 1 the basie local boundedness property: {Xk}kEI<1 C B(xk(l), 2Rl).

(vi) By [KLL99b, Thm 3.7 and COl'. 3.8], f(xk(l») ! I, and each eluster point of {xk(l)}
lies in the optimal set S*; moreover, {xk(l)} is bounded if S* is bounded. These results
only require finiteness of f on S and local boundedness of gf on S [KLL99b, Rem. 3.9(ii)].
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Figure 3.1: Target infeasibility Il~v < minB(xk(I),Rd [s if dfIk (xk(l») > Rl •

3 Dual subgradient interpretations

For theoretieal purposes, it is eonvenient to regard our eonstrained problem 1* := mins 1
(ef. (1.1)) as the uneonstrained problem 1* = min Is with the essential objective

[s > 1+'ls, (3.1)

where is is the indicator function of the feasibleset S (~s(x) = Oif x E S, 00 if x tf. S).
Clearly, 1s is eonvex. Let Ns := 8~s denote the norrnal cone operator of S.

We now outline our main results. Suppose iteration k deteets target infeasibility
I~v < l! := minB(xk(l),RI) [s [i.e., (2.2)) via the Fejer test (2.1). First, we eonstruet
affine minorants lk and i~ of 1 and is by eombining their past subgradient linearizations
with suitable weights. Then 1~ := lk + i~ is an affine minorant of 1s := 1+is and henee
L/s(II:v) C fIk := Lj~(I~v), so that s: < f! if B(xk(l),R l ) n it, = 0 (see Fig. 3.1); the
latter eondition is shown to be equivalent to (2.1) by fairly simple algebra. Next, we get
\lj~ E 85Ifs(x

k(l») with 1\l1~1 :::; Ól/ R, as in Fig. 3.1; sinee Ól ~ O and Ól/ R l ~ O, this
ensures asymptotie optimality and suggests praetieal stopping eriteria.

3.1 Aggregate linearizations

We first derive a dual subgradient interpretation of the test (2.1) by identifying below
linearizations [affine minorants) ik, i~, i~ of f, is, fs, respeetively. At Step 4, let

Vk := tk[fk(Xk) - f~v]/lgjI2,

g~ := X k+1/2 _ x k+1 ,

k

vj := Vj/fJj for j = k(l): k with fJj:= L Vj'
j=k(l)

5
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Here Vk is the subqradient stepsize such that xk+1 = Ps(xk - Vkgj) (cf. Rem. 2.2(ii)),
g~ is the constraint suhqradien: of 'ts at xk+1 stemming from Xk+1 := Psxk+1

/
2, iJj is the

cumulatiue stepsize, whereas {vj}j=k(l) are positive convex weights summing to 1. We shall
employ the following aggregate linearizations of f, 'ts and fs (cf, (3.1)):

k

i~(.):= E (g1, . - Xi+1) / iJj ,
i=k(l)

(3.5)

and the corresponding aggregate halfspace and the aggregate level

k- -k -k -k . -k k .u; := .cj~(flev) = {x : fs(x) ~ flev} with flev:= E Vif~v' (3.6)
i=k(l)

The following technical result lists their basie properties, which are commented upon below.

Lemma 3.1. (i) At Step 4,

k

Xk+1
- xk(l) = - E (Vi9~ +g1), (3.7)

i=k(l)

Lk := -!I t Vjlt+!is12 + t {vj[h(xk(l)) - ft.v] + (!is,xk(l) _:d+1
) } = !Pk+\. (3.8)

i=k(l) i=k(l)

(ii) ik < f ik < 'ts . f-k < fso Further iJkVf-k = xk(l) - xk+1
J, - , S - , s - 'f s ,

2iJj[j~(Xk(l») - j~v] = Ixk+1
- xk(l) 1

2 + Pk+l' (3.9)

(iii) f~(xk(l)) > it:v,
dHk(xk(l») = [j~(xk(l») - j~v]/IVj~1 ~ Pk~l' (3.10)

(iv) Let J! := minB(xk(l),R,) [s- If n: ~ f;, then dHk(xk(l») ~ u; Consequently,
n: < J! if diI

k
(xk(l») > u;

(v) dHk(xk(l») >,R, ijj (Rl -lxk+1 - xk(l) 1)2 > Rr - Pk+l'

Proof, (i) Since at Step 4 (cf. Rem. 2.2(ii), (3'.2)-(3.3)) Xk+1/ 2 - xk = -vkgj and Xk+1
­

xk+1/ 2 = -g~, (3.7) follows by induction. Let flLk := Lk - Lk-l' Since xk ~ xk(l) =
- L;~~(I)(Vi9~ + g1) in (3.8), using (1.2)-(1.3),xk+1

/
2 - xk = -vkgj and (3.2), we get

flLk= -łlvkgj+ g~12 + (Vk9J+ g~,xk - xk(l») + Vk[Jk(xk(I») - J~v] + (g~,xk(l) - xk+1
)

= -łl vk9jl2 + Vk[Jk(xk(I») + (gj, xk - xk(l») - f~v] + (g~, xk - xk+ 1
- vk9j - łg~)

= -łlvkgjl2 + Vk[Jk(Xk}- f~v] + (g~,xk+l/2 - xk+1
- łg~)

= (-łt~ + tk){(Jk(Xk) - J~v]/lgjl}2

+ (Xk+1/ 2 _ xk+t, Xk+1/ 2 _ xk+1 _ ł(Xk+ 1 /2 _ Xk+1) )

= ł{ tk(2 - tk)d~k (xk
:) + Ixk+1

- xk+1
/
212} = ł(Pk + Pk+l/2) = ł(Pk+l - Pk)
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(cf. Step 4), so (3.8) follows by induction, using Lk(l)-l := Pk(l) := O (cf. Step 6).
(ii) At Step 4 (cf. (3.2), (1.2)) Vk > O, so vj > O, ~J=k(l) vj = 1 in (3.4). Use (cf. (1.2))

fj ~ f, (3.3) with (cf. Step 4) xj+1 := Psxj+1/ 2 and the well-known projection property

(g~, x - xi+1
) = (Xj+1

/
2 - PsX

j+1
/
2,X - PSXj+1

/
2) ~ O \;Ix E S

to get (cf. (3.5)) Jk ~ f, i~ ~ 'ts via positive combinations, and hence j~ := Jk + i~ ~
f + 'ts =: fso Since (cf. (3.4), (3.5), (3.7)) i/j\lJ~ = ~j=k(l)Vjg} + g~ = xk(l) - Xk+1 and

k

f;j[J~(xk(l») - ~:v) = L {Vj[fj(Xk(l») - f~v) + (g~, xk(l) - x j+1)}

j=k(l)

(cf. (3.4)-(3.6)), (3.9) follows from (ef. (3.8) and Rem. 2.2(ii))

i; = -~If;j\l1~12 + f;j[f~(x_k(l)) -l~v] = ~Pk+l > O. (3.11)

(iii) By (3.11), Lk = -~a2 + b = ~c2 with a := li/j\ll~l, b := f;j[l~(xk('») - ~~v],

c:= Pk~l > O. Then b = ~(a2 + c2) ~Iacl; so (cf. (3.6)) diIk(xk(l») = b/a ~ c> O.

(iv) If f: ~ J~v, then ArgminB(xk(l),RI)fs C Hk from (3.6) and j~::; fs (cf. (ii)).
(v) (Rl - Ixk+ 1 - xk(l) 1)2 > R~ - Pk+l <=> Ixk+1 - xk(l) 12+ Pk+l > 2Rllxk+1 - Xk(l) I <=>

2i/j[J~(xk(l)) -l~v] > 2R,i/jl\l1~1 <=> [l~(xk('») -l~v)/I\ll~1 > Rl <=> diI
k
(xk(l») > Rh where

we have used (3.9), Ixk+1 - xk(l) I= f;jl\lf~1 (cf. (ii)) and (3.10). D

Remarks 3.2. (i) By Lem. 3.1(v), the Fejćr test (2.1) is equivalent to the distance test

diI
k
(xk(l») > R1• (3.12)

The fact that the Fejćr test (2.1) implies fl~v < f; (cf. (2.2)) was derived in [KLL99b, Lem,
3.1(v)] from Fejćr estimates via analytic arguments, whieh are quite difficult to interpret.
In contrast, the distance test (3.12) has a straightforward interpretation: with ~~v = fl~v
in (3.6), (3.12) means that the minimum of J~ over B(xk(l) , R1) , and henee also that of fs
(since j~ underestimates [s}, is greater than fl~v, i.e., fl~v < f;.

(ii) To cover the modifications of [KLL99b, §6], which need not use f~v = fl~v for
j = k(l): k (cf. §5), note that the proof of Lem. 3.1 holds if at Step 4 we only have

f~~) - 81 ~ f~v < min{fl~~)' f(xk)}. (3.13)

In general, since (cf. (3.6), (3.4)) ~~v ~ minj=k(l) f~v, if minj=k(l) f~v ~ f:e~) - 81 then
(3.12) yields fl~~) - 81 < f;; thus Lem. 3.1(iv,v) subsumes [KLL99b, Lem. 3.1(v)).

(iii) Suppose momentarily that S = lRn
, so that g~ == O. It is instructive to observe

that our algorithm acts like a dual coordinate ascent method for the QP subproblem

min { ~Ix - Xk(l) 12 : fj(x) == fj(xk(l») + (g}, x - xk(l»).~_ f~v, j = k(l): k }. (3.14)

Indeed, the Lagrangian of (3.14) with multipliers Vj is minimized by X
k+1 (cf. (3.7)) to

give the dual function value Lk (cf. (3.8)), and Vk = tkvk (cf. (3.2)), where Vk := [fk(Xk) ­
fl~v]/lgjI2 maximizes tlLk = -łlvkgj l 2 + VJ.~[jk(xk) - fl~v) (cf. the proof of Lem, 3.1(i)).
Thus our algoritlun may be regarded as a poor man's version of proximal level methods
[I(iw95, LNN95) that employ subproblem (3.14) with u: = f~v'
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3.2 Global optimality estimates

We now derive SOlne global optimality estimates from the aggregate linearizations ik, i~
and j~ (ef. (3.5)). The latter are deseribed by their eonstant gradients, as well as their
linearization errors at xk(l) (ef. Fig. 3.1):

-k ._ f( k(l») _ j- (k(l») -k._ _ -k(k(l») -._ f( k(l») _ j-k( k(l»).EJ'- X k X , ES'- 'ts X , Ek·- X S X , (3.15)

note that 'ts(xk(l») = Oand fs(xk(l») = f(xk(l») from xk(l) E S. Suppose that (3.13) holds.

Lemma 3.3. We have Vik E 8ekf(x
k(l»), Vi~ E 8ek'tS(xk(l»), Vj~ E 8ekfs(xk(l»), with

f s

E1 ~ O, E~ ~ O, Ek = E1 + E~ ~ O. Further, j~(xk(l») > i~v ~ minJ=k(l) f~v ~ f:e~) - 81,

fs(x) ~ j~(x) = f(xk(l») - Ek + (Vj~, x - xk(l») \Ix, (3.16)

€k := f(xk(l») - i~(xk(l») < f~~) - i.~v ::; 81, (3.17)

IVj~1 = [i~(xk(l») - j~v]ldflk (xk(l») ::; 8lldflk(xk(l»), (3.18)

f(x) ~ ik(X) ~ i~(x) \Ix E 8, (3.19)

f(xk(l») - fs(x) ::; 81max{lx - xk(l)l/dflk(xk(I»), l} \Ix. (3.20)

Proof. By (3.5) and Lem. 3.1(ii), ik is an affine minorant of f; thus, by (3.15),

- - k(l) / - k(l») k(l) -k / - k(l»)f(·) ~ fk(') = fk(X' ) + \'1 fk,' - X = f(x ) - EJ + \'1 fk,' - X

means V ik E 8e~f(xk(I») with E1 ~ O. Arguing similarly for i~ and i~ yields the first

assertion, (3.16), and (3.19) (sinee i~(x) ::; 'ts(x) = O \Ix E S). The inequalities in
(3.17) stem from f(xk(l») = f:e~) (Rem. 2.2(i)), i~(xk(l») > i~v (Lem. 3.1(iii)) and (ef.
(3.6), (3.4), (3.13)) n. ~ ~inJ=k(l) f~v ~ f:e~) - 81• Then (3.18) follows from (3.10),
.f~(xk(l») ::; fS(xk(l») = f:C~) (Lem. 3.1(ii) and Rem. 2.2(i)) and the finał inequality of
(3.17). To prove (3.20), use (3.16)-(3.18) and E := €kl(f:e~) - J.~v) E [0,1] to develop

f(xk(l») - fs(x) ::; €k + (Vi~, x - xk(l» ::; €k + IVj~"x - Xk(l) I
= (f~) - i.~v)[E1 +(1- €)Ix - xk(l)l/dflk(xk(l»)]

::; 8l max{l, Ix - xk(I)lldHk(xk(I»)}. O

Remark 3.4. At Step 6, (3.12) and (3.20) yield the estimate of [KLL99b, Lem. 3.3]:

f(xk(l») - fs(x) ::; 8l max{lx - xk(l)11Rl, l} = max{lx - xk(l)18l-,88fl R, 8l} \Ix.
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3.3 First asymptotic results

Our asymptotic resułts will eoneentrate on Step 6, using the groups and iterations

L := {l : 8l+1 = ~8l} and ](:= {k(l + 1) : l E L}. (3.21)

Thus L eomprises groups l terminating at Step 6when the distanee test (3.12) (=:(2.1)
by Rem, 3.2(i)) hołds at Step 5 with k = k(l + 1) in Ule set of "interesting" iterations 1(.
Of eourse, it woułd be niee to have resułts for the remaining iterations as well, but our
estimates (3.18) and (3.20) invołve the quantities 81/ dih (xk(l)), whieh in generał eonverge
to Oonły for k E K, as will be seen bełow.

We now begin our study of asymptotic properties of the aggregate linearizations t; i~,

l~ of (3.5). First, we show that their errors Ej, E~, Ek (ef. (3.15)), as well as the gradient of

j~, vanish for k E K, Our further resułts will require łoeal boundedness of the gradient of
lk. Sinee \lIk is a eonvex eombination of the past subgradients {g}}j=:=k(l) (ef. (3.4)-(3.5)),
its Ioeal boundedness will follow from the loeal boundedness of gj.

Lemma 3.5. (i) In the notation of (3.15), (3.5) and (3.21), we haue

k k - -k -k O d r1f-k r1 i ,,-k J( OEj-+O, ES-+O, €k=€j+€S-+ an v S= VJk+V'lS~ .

(ii) Suppose {Xk(l)hEL has a eluster point X OO sueh that xk(l)~ X OO with L' C L, and
let K' :='{k(l + 1) : l E L'} (ej. (3.21)) .. Then X

OO E S*, f(xk(l») ! l. = f(xOO
) , and both

{Xk}kEKt,IELI and {9j}kEKt,IEL' are bounded, where K, := {k(l): k(l +1) - l}.

Proof. (i) By Lem. 3.3 and (3.17), O~ Ej,E~, Ek ~ 8, ! O (ef. Rem. 2.2(i)). Then 1\l1~1 ~

81/dih(x
k(l») (ef. (3.18)) with dih(xk(l») > R; for k = k(l + 1) (ef. (3.12)), Rl := R(81/8t}{3

(ef. Step 5) and (3 E [0,1) (cf. Step O) give 81/ R1 -+ O and hence vn~ O.
(ii) Of course, XOO E S* by Rem. 2.2(vi), but (3.16) combined with (i) and the fact that

{xk
} lies in the elosed set S on which f is continuous provide an independent verifieation:

fs (.) ~ f s (XOO
) . The final assertion follows from {x k}kEJ(t C B (xk(l) , 2Rl) (Rem. 2.2(v) ),

sinee gj := 9j(Xk) and 9j is locallybounded on S. D

Remark 3.6. To relate our preeeding results wit h those of [FeI<OO], Iet pj := Vlk,
p~ := \li~, pk := vn. Our xk(l) , xk and the index set k(l): k usualły correspond to
x k , yk and Jk in [FeKOO]. In this notation, Lem. 3.3 eorresponds to [FeKOO, Lem. 3.2].

However, our Lem, 3.5 says less than [FeI<OO, Lem. 3.3]. First, we onły have \lj~ ~ O,
instead of pk -+ O. Second, in [FeKOO, Lem. 3.3(ii)], xk -+ XOO and v" -+ X OO with 9j(yk)
bounded, i.e., "everything converges" and "everything is bounded", whereas Lem. 3.5(ii)
onły speaks about suitable subsequences. Hence using the anałysis of [FeKOO] one may
derive "subsequential" versions of the remaining results of [FeI<OO], as will be seen below.
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3.4 Stopping criteria

The usual stopping criterion 8l ::; €opt(l + If~cl) with €opt > O [KLL99b, Rem. 3.4(iii)]
tends to work quite well, but it does not guarantee that f(x~cc) - f* ::; €opt(l + If~cl) upon
termination. The following result may be used for developing alternative stopping criteria
when the feasible set S is bounded, as happens in many applications.

Lemma 3.7. Suppose the feasible set S is bounded. Let i~in := min., i~ for aU k ~ 1.

Then i~in ::; min» ik < i- for aUk, and i~in .s; f*, where I( is given by (3.21).

Proof. Use Rem. 3.6 and the proof of [FeKOO, Lem. 3.5], Ol' see the Appendix. D

Remark 3.8. When S is bounded and simple enough, we may compute the lower bounds

-k { . - -k-l}flow := max mm-, fk, flow for k ~ 1,
. -o

with flow:= -00. (3.22)

Since i~w i I, (cf. Lem. 3.7), whereas f~c ! i, (Rem. 2.2(vi)), for any e > Othere is k such
that f:Cc - it~w ::; € (implying f(x~cc) ::; f* + E). This validates a stopping criterion of the
form fr~ - n: ::; E, Note that it is better to use lk instead of l~ in (3.22), since lk ~ l~
on S (cf, (3.19)). If the computation of min-, ik is difficult, but it is easier to find min§ l~
for some "simpler" bounded set § :) S, then min§ i~ may replace mine ik in (3.22) (since

min s l~ ::; f* and min§ i~ ~ [; by the proof of Lem. 3.7 with S replaced by S); in fact
it may be more efficient to use i~w := maxiInin§ i~, minś ik, i~-;/}.

3.5 Ballstep modifications

We now consider two more efficient modifications of [KLL99b].
To detect minj=k(l) f~v < f; more quickly, Step 5 may use the additional test

(Rl _IXk+1
/
2 - xk(l)1)2> R~ - Pk+l/2, (3.23)

replacing (2.1) by "(3.23) Ol' (2.1)". In view of the results of [KLL99b, §3], Step 4 may set
X

k+1 := xk+1/ 2 if (3.23) holds, so that Pk+l = Pk+l/2 and (2.1) holds; then all the preceding
and subsequent results remain valid. Further, we may replace x k+1/ 2 and Pk+l/2 in (3.23)
by PHkX

k and Pk+ dk
k
(xk ) , as if tk = 1 [I(LL99b, Rem. 3.2(ii)].

Similarly, our preceding and subsequent results hold for the "true" ballstep version of
[I(LL99b, Lem. 3.10], which additionally projects xk+1 on B(xk(ł), Rl) to ensure {Xk}kEKI C

B(xk(l) , Rl) (instead of {Xk}kEKI C B(xk(l) , 2Rl) as before). Since this only needs more
complicated notation, we refer the interested readers to [KLL99a, Lem. 3.10].

4 Optimal objective and constraint subgradients

Returning to the asymptotic setting of Lem. 3.5, let X OO be an arbitrary eluster point of
{~l;k(l)hEL corresponding to groups L' and iterations 1<' such that (cf. (3.21))

Xk(l) -S X
OO with L' C L := {l : 8l+1 = ł8l}, [(':= {k(l + 1) : l E L'} C te. (4.1)
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We now show that the eorresponding subsequenees of the aggregate subgradients \IJk and
- \li~ converge to the optimal subgradient set of our problem min , f:

(4.2)

this set does not depend on X
OO (9 = Df(x) n -Ns(x) \Ix E S* jBuF91, Lem, 2]) and is

elosed eonvex (so are Df(xOO) and D~s(xOO)). We also show that I» and i~ eonverge to the
eorresponding set of "optimal" linearizations of f and ie at X

OO . Similarly to [FeKOO, Thm
3.4], this fairly abstraet result will fonn the basis of the more eonerete results of §5.

Theorem 4.1. Suppose {xk(I)hEL has a eluster point X OO such that xk(l)~ X OO with
L' C L J and let K' := {k(l + 1) : l E L'}. Then:

(i) {\llk}kE](1 is bounded and each eluster point of {\llk}kE](1 lies in 8f(xOO).

(ii) Let \1100 be a eluster point of {V'Jk}kE](I. Let 1(" C 1(' b~ sucłi that \lIk s:
V'100' Then V'100 E 9. Moreouer,

where

(iii) {V'i~}kEKI is bounded and each eluster point of {\li'~}kE](1 lies in Ns(xOO).
- ](1 k ](1

(iv) dg(\lfk) ~ O and dg(-\li's)~ O.

Proof. Use Rem. 3.6 and the proof of [FeKOO, Thm 3.4], Ol' see the Appendix. D

Corollary 4.2. If {xk(l)} is bounded(e.g'Jso is S*)J then {\llk}kEK and {-\li'~}kE]( are
bounded, their eluster points lie in 9 J dg (\IJk) .s; O and dg(- \li'~) .s; O.

Proof. This follows from Rem, 2.2(vi) and Thm 4.1. D

Coneerning Thm 4.1 and Cor. 4.2, not e that {xk(l)} is bounded if so is the feasible
set S; also having S bounded is useful for stopping eriteria (ef. Rem, 3.8). As observed
in [FeKOO, §3], in some applieations (ef. Rem, 5.4(ii)), one wants to find mins f for an
unbounded set 8, but one eanfind a bounded set S that interseets Arg mins f. Then it
is natural to solve, instead of the original problem mins f, its restrieted version min , f

-, with S = 8 n S bounded. Both problems have the same optimal subgradient set 9 if the
"bounding" set S is "large enough", as explained below.

Fact 4.3 ([FeKOO, Lem, 3.7]). Suppose min., f is a restriction of the original problem
Inins f in the sense that S = S n S for two convex sets S and S. Let S* := Arg min s f.
Suppose S*n int S -1= 0. Then 0 t= S* C S*J and we have both 9 = Df(x) n -Ns(x) for
every x in S*J and g = Df(x) n -Ns(x) for every x in S*.
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Remark 4.4. Under the assumptions of Fact 4.3, N!; may replace Ns in Thm 4.1; then
g := 8f(xOO)n-N!;(xOO

) characterizes "optimal" subgradients for both min-, f and luin!; f,
also in COl'. 4.2. In general, if EJ* =I- 0 then it suffices to choose S "large enough" but
compact to have S bounded as well,

Following [FeI<OO, §4], the results of this section can be specialized [KLL99a, §5] to
the cases where we have explicit representations of f as a finite-max-type function, and
of S as the solution set of finitely many nonlinear inequalities and linear equalities. The
resulting schemes for identifying multipliers of objective pieces and constraints work under
more general conditions than those in [AnW93, LPS98]; cf. [KLL99a, Rem, 5.15].

5 Lagrangian relaxation

Following [FeKOO, §5], we now consider the special case where problem (1.1) (i.e., min s f)
is the Lagrangian dual problem of the following primal convex optimization problem:

1/J~nax := max 1/Jo(z) s.t. 1/Jj(z) ~ 0, j = 1: n, z E Z, (5.1)

where 0 =I- Z C lRm is compact and convex, and each 1/Jj is closed (upper sernicontinuous)
proper and concave wit h dom 1/Jj ::) Z. The Lagrangian of (5.1) has the form'l/Jo(z) +
(x, 'l/J(Z)) , where 'l/J := ('l/Jl, ... , 'l/Jn) and x is a multiplier. Suppose that, at each multiplier
x in the dual feasible set EJ := lR~, the dual function

f(x) := max] 'l/Jo(z) + '(x, 'l/J(z)) : z E Z}

can be evaluated by finding a partial Lagrangian solution

z(x) E Z(x) := Argmax{ 'l/Jo(z) + (x, 'l/J(z)) : z E Z}.

(5.2)

(5.3)

Thus f is finite convex and has a subgradient mapping 9f(') := 'l/J(z(·)) on EJ. In view of
Rem. 2.2(vi), we suppose that 'l/J(,~(.)) is locally bounded on EJ (e.g., f is the restriction to
S of a convex function finite on an open neighbarhood of EJ, Ol' inf z minj=l 'l/Jj > -00, or

'l/J is continuous on Z). Assuming nonemptiness ofthe dual optimal set S* := Arg minj, f
(e.g., Slater's condition 1/J(z) > O for some z E Z), we consider the following two choices:

8 := ~g := ]H,~ or 8:= {x : O$ x $ X UP} with X UP > x for some x E EJ*" (5.4)

For the second choice, min., f is a restricted version of the classical dual problem min!; f
in the sense of Fact 4.3.

We shall employ the partial Lagrangian solutions and their constraint values

(5.5)

(5.6)

for generating and analyzing the following estimates of solutions to the primal problem
(5.1). Using the weights {vf}1=k(l) (cf. (3.4)), we define the kth aggregate prirnal solution

k

Zk:= L vjzj
.

j=k(l)

12



This construction is related to the aggregate linearization ik := L:1=If{L) vj fi (cf. (3.5)). By
expressing each fi in terms of 'l/Jo(zi) and 'l/J(zi), below we derive bounds on 'l/Jo (zk) and
'l/J(zk) that are useful for both asymptotic analysis and stopping criteria.

Lemma 5.1. (i) For each k, fk(') = 'l/Jo(zk) + (-, 'l/J(zk)).

(ii) zk E Z, 'l/Jo(zk) ~ ik(O) ~ f(xk(l») - €k - (\1i~, xk(l»), 'l/J(zk) ~ \1i; where

Vik ~ \1i~ if S = lR~.

Proof, (i) Use (cf. (1.2)) fk(') = f(xk) + (gj,. - xk), (5.2), (5.3) and (5.5).

(ii) We have (ef. (3.4)) L:1=k(l) vj = 1 with vj > O. Hence zk E co{zi}j=k(l) C Z,
'l/Jo(zk) ~ L:i vj'l/Jo(Zi) , 'l/J(zk) ~ L:i vj'l/J(zi) by eonvexity of Z and concavity of 'l/Jo, 'l/J.
Next, using (3.5) and (i), we get

ikO := L j IIjhO = L j IIj [l/Jo(zj) + (O, l/J(zj»)] = L j lIjl/Jo(zj) + (\1ik,-)

with \1ik = L:i vj'l/J(zj). The above equality, i~ := ik + i~ (cf. (3.5)), i~(O) ~ 'ts(O) = O
(cf. Lem. 3.1(ii) and (5.4)) and (3.16) imply

Li vj'l/Jo(zi) = ik(O) = i~(o) - i~(O) ~ i~(o) = f(xk(l») - €k - (\1i~, xk(l») .

Finally, if S = lR~ then (cf. Lem. 3.1(ii)) i~ ~ 'ts gives \1i~ ~ O, and hence \1ik =
\1i~ - \1i~ ~ Vi~. Combining the preceding relations gives the conclusion. O

Let Z* denote the solution set of the primal problem (5.1). We now show in the setting
of (4.1) that the aggregate primal solutions {zk}kEK" generated via (5.6), converge to Z*.

Theorem 5.2. Suppose {xk(l)h~L has a eluster point xoo such that xk(l) ~ xoo with
L' C L, and let K' := {k(l + 1) : l E L'}. Then:

(i) {zk}kEK' is bounded and all its eluster points Ue in Z.

(ii) f(xk(l»)! f(xoo), €k + (Vi~,Xk(l») ~ O, and limkEKJluinf=l(Vik)i ~ O.

(iii) Let ZOO be a eluster pointof {zk}kEKI. Then ZOO E Z*. Further, 'l/Jo1ax = f(xoo)

and ZOO E Z(Xoo) ic]. (5.3)).
(iv) dz. (zk)~ O, and f(xk(l)) ! 'l/Jbnax as k ~ 00.

Proof. (i) By Lem, 5.1(ii), {zk} lies in Z, which is compact by our assumption,

(ii) By Lem. 3.5, f(xk(l») ! f(xoo), €k + (\1i~,xk(l)) ~ O. By Thn14.1(i,ii), (5.4) and

Rem, 4.4, {Vik}kEKI is bounded and its eluster points lie in g C -Ns(xOO
) C 1R~.

(iii) By (i), ZOO E Z.Using (ii) in Lem. 5.1(ii) gives 'l/Jo(Zoo) ~ f(xoo), 'l/J(Zoo) ~ O
by closedness of 'l/Jo, 'l/J.. Since 'l/Jo(Zoo) ~ 'l/J81ax ~ I(xoo) by weak duality, ZOO must solve
(5.1) and 'l/Jo(Zoo) = 'l/Jbn ax = f(xoo). Further, 'l/J(Zoo) ~ O and xoo ~ O yield 'l/Jo(Zoo) +
(Xoo , 'l/J(Zoo)) ~ f(xoo), so ZOO E Z(Xoo ) by (5.2)-(5.3), using ZOO E Z.

(iv) This follows from (i-iii) and the eontinuity of dz•. O
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Corollary 5.3.' If {xk(l)} is bounded (e.g., so is S*), then {Zk}kEJ( is bounded, all its

cłuster poinie lie in Z*, dz. (zk)~ 0, and f(xk(l») ! 'ljJijlaX as k ---+ 00.

Remarks 5.4. (i) Given an (absolute) accuracy tolerance E > 0, the method may stop if

Then 'l/Jo(zk) 2:: 'ljJgmx - E from f(xk(l)) 2:: 'ljJgmx (weak duality), so zk E Z is an e-solution .
of (5.1). This stopping criterion will be satisfied for some k if S := lR~ and IXk(l) I f+ 00,

e.g., if S* is bounded (cf. Rem. 2.2(vi)), orS := {x : O :s; x :s; XUP} with xUP > x for some
fi E S* (cf, Lem. 5.l(ii) and Thm 5.2(ii)).

(ii) If 'ljJ(z) > °for some z E Z, then for any x E S* := Arg minR+ f and x 2 0,

(since 'l/Jo(z) + (x, 'ljJ(z)) :s; f(x) :s; f(x) by (5.2)). Such bounds may be used for choosing
X

up > x in (5.4).
(iii) Our results may mitigate common critiques of subgradient optimization (see, e.g.,

[SeS86]), which claim that such methods need heuristic stepsizes, lack effective stopping
criteria and are not dual adequate (cf. (i) above).

(iv) For the standard subgradient iteration (1.7), the results in [LPS99] and [ShC96]
(where each 'ljJj is affine and L:k v~ < 00 is replaced by the assumption that xk ---+ X E S*)
correspond to {l, 2, ...} replacing K in COl'. 5.3, with 1 replacing k(ł) in (5.6). Hence
our estimates may be expected to converge faster , since information from early steps is
explicitly discarded. Further, [ShC96] gives partial results only for defiected subgradient
approaches, which are easily handled in our framework; cf. Rem. 6.4(ii).

In some applications [Bea93], using the current multiplier xk one may find a primal
feasible point ~k E Z1/J := {z E Z : 'ljJ(z) 2 O}; then 'ljJo(~k) :s; f*. Such lower bounds may
be exploited in the following modification of AIgorithm 2.1 (ef. [KLL99b, §6]). At Step 0,
set s: := -00, L. := 0. At Step 1, find ~k E Z1/J' and set fl~w := 'ł/Jo(~k) and z~w := ~k

if 'l/Jo(~k) >f~-;'l, f~w := fl~;/ and z~w := zt~1 otherwise. At Step 2, stop if f~c = fl~w
(since then x~ec E S*). Step 3 is replaeed by

Step 3'. (i) If f~w 2 f~c - ~Jl, set k(l + 1) := k, L.~ L. U {l}, zk := z~w' Pk := 0,
J1+1 := f:Cc - f~w' replace xk by x~ec and gj by 9f(X~cc), increase l by 1 and go to Step 4.

(ii) If f(x k
) :s; f~~) - ~Jl' set k(l + 1) := k, Pk := 0, J1+1 :~ 81 and increase l by 1.

At Step 4, set Jfcv := max{f~~) - 8l , f~w}' At Step 6, set 81+1 := min{~Jl,j~~c- j~w}'
This louier bounding scheme is analyzed in the following remarks.

Remarks 5.5. (i) The current lower bound f~w, = 'l/Jo(z~w) = nlaxj=1 'l/Jo(~) :s; f* is used
for adjusting 81 and fł~v' As shown in [KLL99b, §6], the eonvergence results of Rem, 2.2(vi)
remain valid, with J1 LO as l ---+ 00 due to our assumption f* > -00.

(ii) If fl~w 2:: f:C~) - ~Ól at Step 3'(i) then Jl+1 := fr~c - f~w :s; ~8l.' Henee if ]( :=

{k(l+l): l EL.} is infinite, then 'l/Jo(zk) 1& f* from J/ ! 0, 'l/Jo(zk) =f~w ::; [, :s; fl~C' This
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yields the following result. If #[< = 00, then {zk}kEK is bounded, all its eluster points lie

in Z* and dz.(zk) Ą O. Indeed, {zk}kEK C Zt/J,where Zt/J is compact (so is Z and 'ljJ is

closed), and if zk~ ZOO with I<' C [(, then ZOO E Zt/J and 'l/Jo(ZOO) 2:: i. ('l/Jo is closecl) give
ZOO E Z* by weak duality, whereas dz, is continuous.

(iii) As before,.let L index groups Z that tenninate at. Step 6. Note that f~~) - 6l ~

lł:v < min{/~~), I(xk ) } , as required in (3.13). Hence, in view of (i,ii), we have #L = 00 if
#L.< 00, in which case Lem. 3.5 remains valid. In effect, Thrn 5.2 remains true, whereas
in Cor. 5.3, L and te are replaced by L U L.and I< U K, respectively.

We now comment briefły on possible extensions.

Remarks 5.6. (i) Consider the equality constrained version of the primal problem (5.1)

'l/JgH\X := max 'l/Jo(z) s.t. 'l/J(z):= Az - b = O, z E Z, (5.7)

where A E lRn xm , b E lRn
• Then S := lRn and S := S or S:= {x : xłow ~ x ~ XUP } with

xłow < x < X UP for some x E S* (cf. (5.4)). Clearly, Lem. 5.1 holds with 'l/J(zk) = \1ik
(where \1fk = \1f~ if S = R"), and Thm 5.2 holds with 'l/J(Zk) = V fk~ O in (ii) (use
Ns(xOO ) = {O}) and hence 'l/J(ZOO) = Oin (iii).

(ii) Instead of assuming Z compact, suppose Z isclosed and (cf. (5.3)) z(·) is locally
bounded on Z. The preceding results are not affected, since Thm 5.2(i) follows from
(5.5)-(5.6) and Lem. 3.5(ii); This observation can also be used in [FeKOO, §5].

6 Accelerations

As shown in [KLL99b, §9], we may accelerate Algorithm 2.1 by replacing the subgradient
linearization fk with a more accurate modeló, of fs from the family <I>~ definedbelow.

Definition 6.1. Given J.L E (0,1], let <P; := {et> E <I> : d.c(<jJ,fl~V)(xk)2:: pdHk(Xk)}, where
<P:= {et>: lRn

~ (~oo,oo]: et> is closed proper convex and et> ~ Is}, .c(<p,.):= .c<jJ(')'

Examples 6.2. (i) If et>k E <P and <Pk 2:: fk then <Pk E <Pt (cf. (1.4)).
(ii) Let i" := maxiEJk fj, where k E Jk C {l: kl. Then jk E <Pt.
(iii) Note that <Pk E <I> if et>k is the maximum of several accumulated linearizations

{fi }j=l' Ol' their convex combinations, possibly augmented with 'ts Ol' its affine minorants.

Fixing /lI E (0,1], suppose at Step 4 of AIgorithm 2.1 we choose <Pk E <P~ and set

Xk+1
/
2 := xk+ tk(P.ckXk - xk), Pk := tk(2 - tk)d'ik(xk) with .ck := L<jJk (/I~v), (6.1)

i.e., .ck replaces Hi: Since the convergence analysis of [I(LL99b, §7] covers this extension,
we only need to exhibit suitable expressions of fk and i~ in terrne of the linearizations
of I and 'ts that contribute to <Pk, Our fairly complex technical developments hinge on a
simple idea. Namely, we may a posteriori replace cPk by its linearization (f;k that uncovers
the weights with which X k+1/ 2 in (6.1) is infiuenced by the past linearizations of I and 'ts.
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Lemma 6.3. (i) Suppose cPk is polyhedral and Lk =I- 0 in (6.1). Let yk := PL:.kxk. Then
ihere exist a subgradient g~ E8cPk(yk) and a stepsize Vk > O s.t. yk - xk = -vkg~. Let

Then yk = PBkXk, de; (xk)
= dBk(xk) = [~k(xk) - f~v]/lg~1, Xk+l/2 -xk

= -Vk9i, Vk =
tkvk > O, ~k :s; cPk. Further, if cPk = cP' + cP~ and 9~ = g~f + g~s with cP1 :s; f, cP~ :s; is,

9~f E 8cP'(yk), 9~s E 8cP~(yk), then ~k = ~, + ~~ with

~j(.) := cPj(yk) + (g~f" - yk) :s; f(·), ~~(.):= cP~(yk) + (g~s" - yk) :s; ~s(')'

(ii) Suppose Lj =I- 0, Vj and ą>j = cP~ +4Js are used as in (i) for iterations j = k(l): k.
Then Lent. 3.1 holds with (3.4)-(3.8) modified by

k k

Jk('):= L (Vj/vj)~}(.), i~(.):= L [(g1,' - xj+l)+vj~1(·)]/vj, J~(.) := jk(·)+i~(.),
j=k(l) j=k(l)

kk. k
-k ~ - f-k ~ (- I -k) fj > . fj"i ?" L.J Vj, lev:= L.J Vj "i lev _ ~rrlln lev i

j=k(l) j=k(l) ]=k(l)

Xk+1 _ xk(l) - _v-knj-k L'- _1Ivkn j-kI2+ v-k[j-k(x·k(l») _ jk ] = !p- I v s, k .- 2 I v s I s J lev 2 k+1·

(iii) Suppose in (ii), ~1 = Lj=k(l) i/jls with i/j 2:O, Lj i/j = 1, and if k > k(l) then

k-l
i - ~ (-k-l/-k-l)!.
Jk-l - L.J Vj "i J

j=k(l)

k-l

W ,jth -k-l ~ -k-l-k-l > O
(I vI = L.J Vj , Vj _.

j=k(l)

Then

where

k
j " (-ki -k)j'Jk = L.J Vj VI j

j=k(l)

k

d -k ,,-kan vI = L.J Vj,
j=k(l)

i/t := Vki/t, i/j:= iJki/j + i/j-l 2:O for j = k(l): k - 1 if k > k(l).

Hence (3.3)-(3.6) and Lem. 3.1 hołd with Vj, 91, (g1,' - X i +1) replaced by vj, 91 + iJjg~s'

(91" - x j+1
) + iJj~1(')' respectively, except that now ~~v := Lj=k(l)(vj/vj)f~v'

Proof. (i) Use the I(I(T conditions for yk = arg~in{łlx - xk
l
2

: cPk(X):S; fl~v} and note
that yk =I- xk (since dL:.k (xk) 2: J-LdHk (xk) > O) and cPk :s; cPk by convexity.

(ii) Use (i) and the proof of Lem. 3.1, replacing fj by ~j.

(" ') D l j (- i» -k-l i )/-k (- "k "kj "k-l -k-lj )/-k D
111 eve op i» = Vko/I + VI su-: vI = Vk L...Jj=k(l) Vj j + L...Jj=k(l) Vj u, "i:

The generał constructions of Lem. 6.3 may be specialized as follows.
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Remarks 6.4. (i) If <Pk = lnaxjEJk fj, where Jk C {k(l): k}, then in Lem. 6.3(iii) we may
,.. k > O k ~,.. k j ~ Ak 1'"k[rI. (k) f ( k)] O I f t l Akuse Vj _ s.t. g</> = LJjVjgj' LJjVj = 'Vj 'f/k y - j y =. n ac, SUCI Vj are

scaled Lagrange multipliers of the QP subproblem min{łlx - xk
l
2 : fj(x) :s; fl~v,j E Jk}.

[ii) If i» (1 ) f »-» itl [O 1] d J..k-l ~k-l Ak-l! ł11 'f/j = - ak Jk + ak'f/j Wl 1 ak E , an 'f/j = LJj=k(l) Vj j, w iere

Dj-l ~ O and I:j Dj-l = 1, then in Lem, 6.3(iii) ~1 = I:j=k(l) Djfj with D~ := 1 - ak, and

Dj := akDj-l for j < k. The examples of [I<LL99b, Rem. 7.6] use ak = O if k = k(l).
(iii) In view of Lem. 6.3(iii), the weights iJj/iJj may replace vj in (5.6), so that

k k

zk:= L (iJj/iJj)zj = (iJk/iJj)Z~ + (1 ., iJk/iJj)zk-l wit h z~:= L oj zj, (6.2)
j=k(l) i=k(l)

where the multiplier iJk is given in Lem. 6.3(i); note that in (ii) above we may update

(6.3)

Indeed,

k-l k

zk = (iJkDt/iJj)zk+ L (iJkvj + iJj-l)zi/iJj = (iJk/iJj) L vjzi + (iJj-l/iJj)zk-l
j=k(l) j=k(l)

with iJj = iJk + iJj-l, and z~ = (1 - ak)zk + ak I:;:~(l) Dj-l zj in (ii).
(iv) If we allow ak(l) =I=- O, then 1 replaces k(l) in (ii,iii). Then for the proof of Thm

4.1(i), one may assume that gj is bounded on S (e.g., S is bounded, 'ljJ(z(·)) is bounded
on S Ol' 'ljJ is continuous in §5). Similar modifications may handle Jk et {k(l): k} in (i).

(v) If <Pk is polyhedral and .ck = 0, then min <Pk > f~v and g~ := O E 8<pk(yk) for any

yk E Arg min <Pk, Hence if ~k, <p1, <p~, ~1 and ~~ are as in as in Lem. 6.3(i), then fk := ~1 :s;
f, i~ := ~~ :s; ss, f~ := fk + i~ = ~k :s; [s, with Vf~= O, f~(·) = <Pk(yk) > fl~v' Letting
ffcv := fl:v in (3.6), we have it, = 0, dfh (xk(l») = 00. Clearly, Lem. 3.3 remains valid and

the tests (2.1), (3.12) and (3.23) hołd with X k+1 = xk+1/ 2 = xk and Pk+l = Pk+l/2 = 00,

since .ck = 0 in (6.1). Hence if ~1 = I:j=k(l) vj fj as in Lem. 6.3(iii) (and (i,ii,iii) above),
then Dj replaces vj in (5.6), i.e., zk = z~ as if iJk = iJj in (6.2).

(vi) The simplest <Pk employing some constraint information is <Pk = fk + (ak,. - xk)

with ak E Ns(xk) (cf. [KLL99b, Rem. 7.8]); e.g., the "optimal" ak = PNs(xk ) ( -gj) maxi­

mizes d.ck(Xk) [Kiw96, §7]. Then i~(.) = I:j=k(l)[iJj (aj,. - xj )+(g1,' - xi+1)]/iJj if.ck =I=- 0
(cf. Lem. 6.3(ii)), i~(') = (ak,. - x k

) otherwise by (v).

(vii) Suppose <Pk = fk + Zs for all k. Then g~ = gj + ak, ak E Ns(yk) in Lem. 6.3(i), so

we may replace <Pk by ~k and xk by yk in (vi). Similar arguments apply to <Pk = l" + Zs
Ol' <Pk = maxjEJk fj + (PNS(xk ) ( -g}),. - xk) [I{LL99b, Rem. 7.8], since (cf. (i)) suitable lk
and i~ may be defined as in Lems. 6.3(ii,iii) and (v) above.

Example 6.5. For simple bounds S = {x : x10w :s; x :s; X UP } , our preliminary implemen­
tation employs
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lk(') := fk(Xk) + (gk,. - Xk), ~k-l('):= ~1-1(Xk)+ (g~-l,. - Xk),

where gk := gj + PNS(xk)(-gj) and g~-l := g~;l+ PNS(xk)(_g~;l) are reduced subqradietits

(cf. Rem, 6.4(vi)), updating

~1 := (1- ak)fk + ak~1-1, ~~:= fI,

aur choices of ak [1<:LL99b, Ex. 7.4(v) anel Rem. 7.6] incluele:
(i) the ordinal'Y subgradient strategy (OSS): ak := O;

vk vk-l

(ii) the conjugate subgradient strategy (CSS): ak:= vk v;_~9 __lvk- 112 if / gk, g~-l) < O and
9 ,9~ 9q, \

~k_l(xk) 2: fl~v, ak := Ootherwise (cf. [1<:LL99b, Rern. 7.6]);

(iii) the average direetion stmtegy (ADS): ak := lii.I~~~-11 if 9;-1 =/= Oand Jk-l (x k
) ~ u:

ak := Ootherwise (cf. [KLL99b, Rem. 7.6]);
(iv) the aggregate subqrtulieti; strategy (ASS): ak is s.t. PJ:,k x k = PJ:,(max{jkl~k_tlJl~V)xk if

Lmax{A'~k_d(f~v) =1= 0, ak is s.t. Lk = 0 otherwise (cf. [Kiw96, Rem. 4.1]).
ForOSS and ASS, if nlax{flc(X k+1), ~1(xk+l)} > f~~) - łl5l at Step 6, then Step 4 is re­
peated with xk and ~1-1 replaceel by x lc+1 and ~1. Such repeated projections are justifieel
by [KLL99b, Rem. 7.11] (but not for CSS and ADS). They provide an inexact impłemen­
tation of the "best" single projection PJ:,(max{fk!;j,~-l},Jl~)nsxlc, which woułd require rnore

sophisticated QP.

7 Application to multicommodity network fl.ows

In this section we discuss an application of our method to the traffic assignment and
message routing probłems, which are important instances of nonlinear mułticommodity

netwerk flow problems; see, e.g., [Ber98, Chap. 8] for a textbook introduction, [OMVOO]
for a recent survey, [Fuk84a, Fuk84b] for the pioneering dual developments, and [GGSV96,
GSV97, LLP97, LPS99] forrecent comparable approaches. In particular, in §7.4 we relax
the standard assumption of strictly convex arc costs, because our real-life instances include
linear costs. Incidentally, our theoretical developments also łay ground for the application
of the proximal bundle method [Fel<:OO, §5] to such problems.

7.1 The nonlinear multicommodity flow problem

Let (.Ar, A) be a directed graph with N nodes and n arcs.LetE E lRN x n be its node-arc
incidence matrix, There are m commodities to be routed through the network. For each
commodity i there is a required flow r, > Ofrom its source node o, to its sink. node di . Let
s, be the supply N-vector of commodity i, with SiOi = ri, Sidi = -Ti, Sil = O if l =1= oi, di .

aur muliicommoditu flow probielu is stated as follows: .

11

min ~o(zo):= L ~Oj(ZOj)
j=l
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m

s.t, 'l/Jj(Z):== ZOj - L Zij == o, j == 1:n, (7.1b)
i=l

Z :== (zo, Zł,"" zm,) E Z :== Zo x Zł X ••. X Zm' (7.1c)

Zo :== lRn
, Z, :== {Zi : EZi == s., O~ Zi ~ Zi}, i == 1: m, (7.1d)

where z, is the fioui o] cornmodity i E {I: rn}, Zo :==L:~1 Zi is the toial flow, and Zi are
fixed positive vectors of jlou: bounds. We assume that each arc cost function ;[;Oj is closed
proper strictly convex and increasing on its effective domain that equals [O, Kj) or [O, Kj],
where either Kj > O is finite Ol' Kj == 00 and lim,......oo ;[;bj(t) == 00, where ;[;bj denotes the

right derivative of ;[;Oj. (Here and in what follows, we assume basie familiarity with convex
univariate functions [Ber98, §9.1], [Roc70, pp. 227-230].) Finally, we suppose that

20 E rt. [O, Kj) for some 2 E Z with 1/)(2) == O. (7.2)

7.2 Dual approach

In the framework of Rem. 5.6(i), letting 'l/Jo(z) :== -;[;o(zo) and S :==lRn
, we have f(x) ==

L::ofi(X) and z(x) == (zo(x), ... ,zm(x)) in (5.2)-(5.3) with fO(x) == L:j=l JJ(Xj) and

o v v

f j (Xj) :== max.] xjt - 'l/JOj(t) } ==: 'l/J~j(Xj), j == 1:n, (7.3a)

ZOj(x) :== arg min.] ;[;Oj(t) - xjt} == V';[;~j(Xj) == V'fJ(xj), j == 1: n, (7.3b)

fi(X) :== max{ - (z, Zi) : EZi == Si,O~ Zi ~ Zi}, i == l:m, (7.4a)

Zi(X) E Arg min{ (x, Zi) : EZi == s., O~ z; ~Zi} == -8fi(X), i == 1: m, (7.4b)

where ;[;Oj, the conjugateof ;[;Oj, is continuously differentiable due to the strict convexity

of ;[;Oj. Thus z(·) and 9f(') :== 'l/J(z(·)) are locally bounded.
The set S* :== Arg min f of Lagrange multipliers of problem (7.1) is nonempty. Indeed,

since each ;[;Oj is increasing on its domain, problem (7.1) is equivalent to the following:

;[;;:in :== min ;[;o(zo) s.t. 'l/J(z) 2: O, z E Z, (7.5)

whereas (7.2) is equivalent to Slater's condition for (7.5) ('l/J(z) > O for some z E Z with
Zo E dom ;[;0), so (cf. [Roc70, Cors. 28.4.1 and 29.1.5]) the set S* :== ArgminR+ f of

Lagrange multipliers of problem (7.5) is nonempty and bounded; cłearly,8* C S*.
Following [Fuk84a], we now consider using the restricted dual feasible set

(7.6)

With S* :== Arg min., f, we have 0 =1= S* C 8*. Indeed, x}ow 2: O, since each ;(;Oj is
nondecreasing on its domain, whereas for Xj .~ x}ow, fO(x) is constant and each fi(X),
i == 1:m, is nonincreasing (cf. (7.3b), (7.4a)). Thus S* is bounded (so is 8*).

Further, the conclusions of Fact 4.3 hołd. Specifically, 8f(x) n -Ns(x) == {O} for each

x E S*, and although S* n int S == 0 is possibłe, \ve still have g :== 8f(x) n -Ns(x) == {O}
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for every x E S*. Indeed, let x E S*, g E g. If Xj > x}ow then gj = O from -g E Ns(x),
otherwise Xj = x}ow gives O= ZOj(x) = [\7fO(x)b by (7.3b), so 8f(x) = ~i::o 8fi(x) with
8fi(X) C -lR~ by (7.4b) yield gj ~ O, and hence gj = Ofrom -g E Ns(x).

Suppose Zij ~ r. for all i and j. Then for x E S, ignoring Zi in (7.4b), we may find
Zi(X) by solving a shortest path problem with nonnegative arc lengths, since Zij(X) ~ ri
for all j. Thus, if the bounds Zi are omitted in (7.1d) and (7.4b), as happens in rnany
applications, then Zi(') are still bounded on S (although 8fi may be unbounded).

Since ;f;o is strictly convex, the primal solution set of (7.1) has the form

Z*= {z~} x zE with zE:= { (Zł, ... , zm) E Z1 X •.• X Zm : z~ = 2::
1

z, } , (7.7)

where z~ is the unique optimal total fłow. On the othel' hand, if each ;f;oj is differentiable

on (0,00), then (cf. (7.3b») \7fJ(xj) = \7;f;~j(xj) is increasing for Xj > ;f;&j(O) (since

\7;f;~j = (\7;f;oj)-}); in effect, jO and f are strictly convex on S, and S* is singleton.

7.3 AIgorithmic constructions and convergence

The convergence results of §5 may be specialized as follows. Although the kth aggregate
zk E Z (cf. Lem. 5.1(ii» need not be feasible in the primal problem (7.1), we may use the
kth aggregate total flow .

m
uk ~-kZo := L-JZi

i=l

(7.8)

to produce the primal feasible aggregate zk := (z~, zf, ...,Z~J E z with 'ljJ(zk) = O. Then
(cf. (5.1), (7.5» we have _;f;oin = 'ljJoax ~ f(x~ec) (weak duality), and hence

;f;o(z~) - ;f;;rin ::; ;f;o(z~) + f(x~ec)' (7.9)

Proposition 7.1. (i) {xk(l)}, {gj}, {zk}, {zk} and {zk} are bounded, and all the eluster
points of {zk}, and {zk} lie in Z.

(ii) f(xk(l» l i-, t, + (\7i~, xk(l»)~ O, and z~ - z~ = 'ljJ(zk) = vt, ~ O.

(iii) All the eluster points oj {zk}kEJ( and {zk}kEJ( lie in Z*. Furiher, 'ljJoax = i-.
(. ) -k J( * uk I( * d (( -k .-k» K O d f( k(l» I I)l.min - 1)1. ( *)IV Zo ---+ Zo, Zo ---+ Zo, z! Z}, ... , Zm ---+ ,an x + -«PO - ...... «p0 Zo .

(V) If z~ E I1j=l[O, ~j), the~ ;f;o(z~) .s; ;f;oin and -,/Jo(z~) + f(x~ec) .s; O.

Proof. (i) Since S* is bounded, so is {xk(l)} (cf. Rem. 2.2(vi». But Ixk - xk(l) I ~ 2R at
Step 1 (Rem. 2.2(v», whereas z(·) and 9f(') are locally bounded, so the conclusion follows
from the definitions (5.5)-(5.6) and (7.8), since zk E co{zj}j::;k C Z and Z is closed.

(ii) By Lem. 3~5, f(xk(l» ! I-, Ek + (\7i~, xk(l») ~ o. As discussed in §7.2, the

conclusions of Fact 4.3 hold with g = {O}, so vl, ~ O by COl'. 4.2, where vt, =
'ljJ(zk) '= z~ - z~ by Rem. 5.6(i), (7.1h) and (7.8).

(iii) Argue as for Thm 5.2(iii), with 'ljJ(ZOO) = Oand Izk - zkl = Iz~ - z~1 ~ Oby (ii).

(iv) By (i-iii) and the continuity of dz., f(xk(l» l 'ljJoax = _(~olin and dz; (zk) ~ O.

Hence the conclusion follows from the form (7.7) of Z*' since z~ - z~ ~ Oby (ii).
(v) This follows from (iv), since -,/Jo is continuous on I1jl=1[0, ~j). D
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7.4 Extension to linear costs

Retaining the remaining assumptions, suppose for a fixed n < n and all j > n, each cost
{JOj is linear: (JOj(t) := (J~j(O)t if t ~ O, 00 otherwise, with ~~j(O) > O. Then (cf. (7.3),
(7.6)) JJ(Xj) = o and ZOj(x) = O if Xj < x}ow, JJ(Xj) = 00 and ZOj(x) is undefined if
Xj > x}ow, but for Xj = x}ow, JJ(Xj) = Oand ZOj(x) could be arbitrary in lR+. Exploiting
this freedom, we may restrict attention to the following subset of S (cf. (7.6)):

letting

S:= { x : Xj ~ x}ow for j ~ n, Xj = x}ow for j > n},

nt

ZOj(x) := L Zij(X) if x E S, j > n.
i=l

(7.10)

(7.11)

Thus gfj(X) := 1/Jj(X) = O if x E S, j > n. Hence, for an initial point xl E S, by induction
we always have xk E S, gjj := 1/Jj(xk) = O and hence (cf. (5.6), (7.8)) 1/JjCik) = O and
Z~j = Z~j for j > n. In other words, for arcs with linear costs, the multipliers are fixed
at their optimal values, and the aggregate flows are primal feasible. Clearly, z(·) and
9f(') := 1/J(z(')) are locally bounded on S (so are Zi(') and ZOj(') for j ~ n as before, and
then by (7.11) also ZOj(') for j > n).

The above observations suffice for proving parts (i,ii,iii) of Prop. 7.1. In part (iv), since

Z { ( * * )} ZA ith Z'" l h d l h -k J( * vk K * . < unow * = zOl, ... , Z011 X * WI * po y e ra, we ave ZOj ~ ZOj' ZOj ~ ZOj' J _ n,

dż• ((Z~,n+1" .. ,z~n' z~, .. . .e,»~ O. In part (v), it can be shown that 1/Jo(zk)~ 1/Jffax
(hint: if zk ~ ZOO then 1/Jo(ZOO) ~ limkEKf 1/Jo(zk) ~ li!nkEKf 1/Jo(zk) ~ J(XOO

) in the

proof of Thm 5.2(iii))j thus ;(Jffin J5- (Jo(z~) = ;(Jo(z~) + I:j~n[;{JOj(z~j) - ;(JOj(z~j)] with

"j;Oj(z~j)' ;(JOj(z~j) ~ ;(JOj(z~j)' since Z~j' Z~j ~ Z~j and ;(JOj are continuous on [O, ~j) for

j ~ n, so ;(Jo(z~) ~ ;{Jffin, as desired.

7.5 Numerical results

Our method was programmed in Fortran 77 and run on a notebook PC (Pentium II 400
MHz, 256 MB RAM). We used {3 = ~, 81 = ~80 and R: := R(8l/80)f3 with 80 = RIg1

1

for consistency with [KLL99b, §8], tk == 1, the third projection of §3.5 and the aggregate
subgradient strategy of Ex. 6.5, updating the total flows (cf. (6.2), (6.3), (7.8))

m m
uk (- /-k) vk (1 - /-k) uk-1 itl vk ~ k (1 )~ k uk-1Zo = Vk Vf Zc/JO + - Vk Vf Zo WI l Zc/JO:= L.JZc/Ji = - ak L.JZi + akZc/JO ,

i=l i=l

where Z~o := zg := L~~l zł. Letting z;ec := zl, every tenth iteration Ol' when l increased at

Steps 3 Ol' 6, we set z~ec := zk if (Jo(z#) < {;o(z~cco), z:cc := z:c-;l otherwise. aur stopping
criterion ;(Jo(z:cco) + J(x~ec) ~ €opd1 + l;{Jo(z:cco)1] (cf. (7.9)) ensured a relative objective
accuracy of 100€opt in %. We used €opt = 10-i

/ 2 for i = 4, 5, 6.
We first give results for the CNET collection of [ONIVOO], which describes message

routing problems in a real-life telecommunication network with 106 nodes and 904 arcs.
The instances have m = 4452,6678,8904 Ol' 11130 commodities, and five load factors
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Table 7.1: Results for the CNET instances, with R = 10.

fopt = 10-2 fopt = 10-2.5 fopt = 10-3 Optimal
m Load Dclay k Time Dclay k Timc Delay k Tiule Delay

4452 1.0 12.6131 110 1 12.5881 180 2 12.5856 600 6 12.5847
1.5 19.1949 150 2 19.1832 310 3 19.1814 620 6 19.1799
2.0 25.9926 190 2 25.9833 300 3 25.9788 460 4 25.9755
2.5 33.0326 200 2 33.0012 336 3 32.9835 1300 11 32.9809
3.0 40.2486 220 2 40.2177 490 4 40.2125 1450 12 40.2072

6678 1.0 19.6691 170 2 19.6513 350 4 19.6494 490 5 19.6481
1.5 30.2017 240 3 30.1828 460 5 30.1795 983 9 30.1776
2.0 41.2699 160 2 41.2265 354 3 41.2095 697 6 41.2066
2.5 52.8099 270 3 52.7880 726 7 52.7830 1390 12 52.7790
3.0 64.9984 386 4 64.9754 550 5 64.9520 1539 14 64.9460

8904 1.0 26.4872 230 3 26.4872 238 3 26.4745 1080 11 26.4730
1.5 41.0065 230 3' 40.9884 390 5 40.9785 550 6 40.9742
2.0 56.4728 460 4 56.4316 658 6 56.4295 779 7 56.4233
2.5 73.0581 380 4 72.9577 560 6 72.9456 864 8 72.9392
3.0 90.8231 416 4 90.7027 630 6 90.6700 1260 12 90.6620

11130 1.0 33.5348 190 2 33.4984 410 5 33.4952 680 7 33.4931
1.5 52.4137 200 2 52.2741 640 7 52.2721 766 8 52.2677
2.0 72.6954 470 5 72.6571 710 7 72.6474 1090 11 72.6434
2.5 95.0557 325 4 94.9119 690 8 94.8916 1470 15 94.8838
3.0 119.406 1240 13 119.353 1340 14 119.313 2280 23 119.306

that scale up the standard requirements rio The costs are Kleinrock's average delays
;r;Oj(ZOj) := ZOj/(Kj-ZOj) on [O, Kj). We used x} := Kjl(1-p*)-2, with p*.= l estimating the
maximum trafłic intensity maxj ZOj/Kj [Gof87] (which sometimes exceeded t). In Table 7.1,

Delay := ;r;o(z:ecO), times are given in seconds, and the optimal delays (communicated to
us by A. Ouorou) are rounded to six digits. The accuracy attained was usuaIly higher than
that guaranteed by the stoppingcriterion; e.g., for Eopt = 10-3 , [;r;o(Z:ccO) - ;r;oin]/;r;[)in <
10-4 for the unit load instances. Since each instance had 106 common sources, most work
per iteration went into solving 106 shortest path subproblems via subroutine L2QUE of
[GaP88]. Our machine is about three times faster than the one employed in [OMVOO].
Hence Table 7.1 suggests that our method is highly competitive with aIl the methods
tested in [OMVOO, Tables 2 and 3], at least for modest accuracy requirements that are
typical for such applications.

We next give results for five real-life trafłic assignment problems described in Table
7.2. These problems have nonlinear BTR delays ;POj(ZOj) := ajZOj + f3jzrij on lR+ with

aj ~ O, j3j > O, Ij > 1, as weIl as linear costs ;r;Oj(ZOj) := ajZOj with aj > O. The first three
medium-sized problems were used in [LaP92, LPR97] ([HLV87] solved a slightly different
version of Winnipeg). The Chicago problem [TEB98] is much bigger than the largest
(random) problems considered in [GSV97, OJvIVOO]. The Skane problem (not reported
so far) is reaIly huge. We used xl = x 10w and R = 100, except R = 104 for Linkóping.
Concerning Table 7.3,\ve add that again for Eopt = 10-3 the final accuracy was quite high:
1.5e-4 for Barcelona, 2.8e-4 for Linkoping. 4.5e-4 for Winnipeg, 1.8e-4 for Chicago, 5.1e-4
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Table 7.2: Trafłic assignment problerns and their best known primal values

Problem
Barcelona
Linkoping
Winnipeg
Chicago
Skane

Nodes
930
335

1040
2552
7722

Arcs
2522
882

2836
7850

18344

OD pairs
7922

12372
4344

137417
712466

Sources
97

118
135
445

1057

Linear costs
565

O
1176

O
2262

Best delay
1.26846e+6
4.05602e+8
8.853270+5
4.0379ge+6
7.63642e+7

Table 7.3: Results for the trafłic assignment problems

Eopt = 10-2 Eopt = 10-2.5 Eopt = 10-3

Problem Delay k Time Delay k Time Delay 'k Time
Barcelona 1.2727ge+6 140 11 1.26938e+6 320 25 1.26865e+6 910 72
Linkoping 4.060500+8 120 4 4.05774e+8 150 4 4.05716e+8 720 21
Winnipeg 8.89731e+5 56 5 8.86426e+5 116 10 8.85725e+5 220 20
Chicago 4.0648ge+6 80 74 4.04218e+6 130 120 4.04004e+6 269 249
Skane 7.64631e+7 20 172 7.63957e+7 44 377 7.63712e+7 80 685

for Skane,
Acknowledgment, We thank D. Boyce for the Chicago data, H. Edwards for the

Skane data, and A. Ouorou and J.-P. Vial for the CNET data.
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A Appendix

Proof of Lem. 3.7. The inequalities [, ~ min., ik ~ ~~in follow from (ef. (3.19))

f(x) ~ fk(X) = f~(x) - i~(x) ~ i~(x) for eaeh x in S
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(sinee i~(x) :s; zs(x) = o\Ix E S). Let fik E Arg min., 1~, so that 1~(fik) = l~in :s; f* :s;
f(xk(l») for k = k(l + 1). Set x = fik in (3.16) and use the Cauehy-Sehwarz inequality

together with €k, Iv1~1 ~ O (ef. Lem.3.5(i)) and boundedness of {x k}, {fik} C S to get

O<f( k(l» t: - f( k(l» j-k(-k) - - /"j-k -k 1;(1») < - +I"f-kll-k k(I)1 K O_ X - min - X - S X - €k-\ v S, x - X _ €k v S X -X --t.

But f(xk(l» ! t. [Rem, 2.2(vi», so the preeeding relation gives l~in ~ t.. D

Proof of Thm 4.1. (i) By (3.4)-(3.5), Vlk E eo{g}}j=k(l)' so {VJk}kEKI is bounded by

Lel11. 3.5(ii). Next, V lk E 8i~f(xk(I» (Lem. 3.3) with xk(l) .s; X
OO and i1 .s: O (Lem.

3.5(i» imply that eaeh eluster point of {Vlk}kEKI lies in 8f(xOO
) , sinee the approximate

subdifferential mapping (x, €) H 8Ef(x) is elosed [HUL93, §XI.4.1].
(ii) Using (3.5), the faets that i1 := f(xk(l» -lk(xk(I» -ł Oand f(xk(l» ! f(x OO

) (ef.
- K" -(3.15) and Lel11. 3.5), and our assumption V fk --t V foo, we obtain

1k(') = f(xk(l» - i~ + (v1k" - xk(l») ~ f(xOO
) + (vioo, .- xoo) =: 100(')'

By (i), V100 E 8f(xOO
) . Next, V1~-Vlk = Vi~ E 8ik'ts(x

k(I» (ef. (3.5) and Lem. 3.3) with
s

V1~ .s; O, €~ -ł O(ef. Lem. 3.5(i» yield Vi~ s: -V100 E 8zs(x OO
) by the elosedness of

8EzS (x ). Sinee i~ := -i~(xk(l» (ef. (3.15», i~(.) = i~(xk(l»+ (Vi~,. - xk(l»)~ i8 (·).
(iii) {Vi~ = V1~-Vlk}kEKI is bounded, sinee V1~ ~ Oby Lem. 3.5(i) and {Vlk}kEKI

is bounded by (D. If {Vi~}kEKI has a eluster point Vis:>' then by {i.ii), {VJk}kEKI has a
eluster point Vf 00 sueh that Vis = - Vf 00 E Ns (XOO

) .

(iv) This follows from (i)-(iii) and the eontinuity of dg (e.g., pick Kil C K' sueh that

dg(V ik) s: limkEK' dg(V Jk) and VJk s: Vl; E g to get dg(V Jk) s: O). D
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