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Abstract

We exhibit useful properties of ballstep subgradient methods for convex optimiza-
tion that use level controls for estimating the optimal value. Augmented with simple
averaging schemes, they asymptotically find objective and constraint subgradients
involved in optimality conditions. When applied to Lagrangian relaxation of convex
programs, they find both primal and dual solutions, and have practicable stopping
criteria. Up till now, similar results have only been known for proximal bundle meth-
ods, and for subgradient methods with divergent series stepsizes, whose convergence
can be slow. Encouraging numerical results are presented for large-scale nonlinear
multicommodity network flow problems.

Key words. Convex programming, nondifferentiable optimization, subgradi-
ent optimization, Lagrangian relaxation, level projection methods.

1 Introduction

We consider subgradient methods for the convex constrained minimization problem
for=min{f(z):z€ S} (1.1)

under the following assumptions. S is a nonempty closed convex set in R", f : R* — R
is a convex function, we can find the value f(z) and a subgradient g;(z) € 0f(x) of f at
any z € S, and for each z € R" we can find Psz := arg ming |z — -|, its projection on S in
the Euclidean norm | - |. We assume that the optimal set S, := Argming f is nonempty.
The ballstep subgradient method [KLL99b) finds f, as follows. Given the kth iterate
z* in the feasible set S and a target level fE, that estimates f,, it uses the linearization

Ful) 1= f(@*) + (g, —a*) < F() with g} = g;(a*) € Of(a") (1.2)
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and its halfspace

Hy = {1: : fu(z) < f,’fw} (1.3)
to approximate the level set of f
Ly(fiey) = {z: f(2) < fies} € He = Ly (fiey)- (1.4)
Then, following the original algorithm of [Pol69], it generates the next iterate
gl = P(a® + ty[Pr,a* — 2¥]) = Ps(a® — tu[f(2*) = ficulof/1951%), (1.5)
where
tr € T := [tmin, tmax ] for some fixed 0 < tmin < tmax < 2. (1.6)

The targets are chosen via a ballstep strategy that works in groups of iterations. Within
each group, the target f£, is fixed, and the method attempts to minimize f over a ball
around the best point found so far, shifting the ball and lowering the target when sufficient
progress occurs, or shrinking the ball and increasing the target upon discovering that it is
too low. The two level schemes of [KLL99b, §§2 and 5] ensure infy, f(z*) = f. and provide
efficiency estimates when the optimal set S, is bounded. Although (1.5) with the stepsizes
v, == t[f(a*) — fif,]/|g}|* conforms with the standard subgradient iteration

ot = Ps(z* — vigh)  with v >0, (1.7a)

such stepsizes needn’t obey the popular divergent series condition

ve=o00 and Y v <00 (1.7b)
1 k=1

M3

k

or other conditions typically required for convergence of subgradient methods [Kiw03].

In this paper we augment the ballstep method with simple averaging schemes that
asymptotically find objective and constraint subgradients involved in optimality conditions
for problem (1.1). When applied to Lagrangian relaxation of convex programs, they find
both primal and dual solutions, and provide practicable stopping criteria. Up till now, for
subgradient methods similar results have only been known [Zhu77), [Sho79, §4.4], [AnW93,
LaL97, LPS98, LPS99, ShC96] for the iteration (1.7), whose convergence can be slow.

Our results parallel ones in [FeK00] obtained recently for the proximal bundle method
[HUL93, §XV.3], [Kiw90]. At first sight, this method has little in common with our simple
subgradient algorithm, since it accumulates many linearizations for its QP subproblems,
and uses the QP multipliers for averaging. But in fact there are more similarities than
differences. Our key observation is that, from the convergence viewpoint, a group of iter-
ations of the ballstep method is similar to one iteration of the proximal bundle method.
Thus, once suitable estimates for a group of ballstep iterations are established, the re-
mainder of our convergence analysis is almost identical to that of [FeK00]; to stress the
analogies, we quote freely from [FeK00]. Also the efficiency analysis of both methods is
quite similar [Kiw00, KLL99b]. Up till now, the literature has only contrasted simple
subgradient methods with more advanced proximal bundle methods, whereas our paper
highlights their similarities.



Good reviews of the subgradient algorithm may be found in [Ber99, BSS93, Min86,
Pol83, Sho79]. It is widely used, mainly due to its simplicity and good performance,
especially in Lagrangian relaxation [Bea93]. In many applications it solves the dual of
an LP relaxation of the original problem; then even quite approximate primal solutions
delivered by our averaging schemes could be useful, e.g., in primal heuristics, variable
fixing, etc. [BBP00, BaC96, BaC00a, BaC00b, BaL.01, CFT96, CNS98].

Also the recent volume algorithm [BaA00] performs well in practice [BaA98]. Its aver-
aging is similar to that of a version of our method that employs past aggregate subgradients
to avoid zigzags (cf. (6.2)—(6.3) and Ex. 6.5). However, in contrast with our method, the
volume algorithm has no proof of convergence [BMS01]. We hope, therefore, that our
results may stimulate research on the development of simple subgradient methods that are
both theoretically convergent and practically effective.

As a partial justification of our hope, we give numerical results for the traffic assignment
and message routing problems [Ber98] on apparently the largest instances reported in the
literature. For modest solution accuracy (typical in such applications) our implementation
seems to be competitive with the methods reviewed in the recent survey [OMV00].

The paper is organized as follows. In §2 we review briefly the simplest ballstep method
of [KLL99b] and its convergence properties. In §3 we show how averaging may produce
affine minorants of f and s (the indicator of S), and corresponding optimality estimates
and stopping criteria. Their uses for indentifying subgradients of f and u5 involved in
optimality conditions for ming f are discussed in §4. Applications to Lagrangian decom-
position of convex programs are studied in §5. Extensions to the accelerations of [KLL99b,
§7] are given in §6. Applications to multicommodity network flows are reported in §7. The
Appendix contains proofs of certain technical results.

Our notation is fairly standard. B(z,7) := {y : [y — z| < r} is the ball with center =
and radius . dg(-) := infyec | - —y| is the distance function of a set C' C IR™.

2 The ballstep level algorithm

In the simplest version of the ballstep subgradient method [KLL99b] stated below, zk
is the record point with the best objective value f%  encountered till iteration k. The
iterations are split into groups K, := {k(l): k(! + 1) — 1}, I > 1. In group I, starting from
the point z}{), the method attempts to reach the frozen target level f£, := f0) —§, within
the ball of radius R, centered at z*{!), where the level gap & > 0 controls the stepsize. If
sufficient descent f(z*) < fEO — %61 occurs, group ! + 1 starts with 64, := & and Ry, ==
R,. Otherwise, target infeasibility is eventually discovered when the accumulated sum Pr+1
of squares of subgradient and projection steps grows to about R? due to oscillations; then
group [ +1 starts with contracted d;41 := 36; and Ry4y := R;/2°, where § € [0,1). Further

comments on the rules of the method are given below and in §3; also see [KLL99b).

Algorithm 2.1.

Step 0 (Initiation). Select an initial point 2! € S, a level gap 6, > 0, ballstep parameters
R >0, 8 €(0,1), and stepsize bounds tuin, tmax (cf. (1.6)). Set 2. := oo, p; := 0. Set
the counters k := 1 := k(1) := 1 (k(l) is the iteration number of the Ith change of f£,).




Step 1 (Objective evaluation) Calculate f(rk) and gf( kY. If f('x’“) < fl1 set ko=
f(z*) and o := z*, else set fX_ = fi-land ok, := ak2! (so that f(a¥,) = minf_, f(z/ ))

Step 2 (Stopping criterion). If gf = gf(a;k) = 0, terminate (z* € S.).

Step 3 (Sufficient descent detection). If f(z*) < fE — 18, start the next group: set
k(l+1) :=k, 841 := 0, pr. := 0 and increase the group counter [ by 1.

Step 4 (Projections). Set the level f,cv = f"(’) — &. Choose the relaxation factor ¢, € T

(Cf (1 6)) Set F+1/2 .= gk + tk(PH zF — o ) P = tk(2 - tk)de(z ), Prs1/2 = P+ Pk,
okt = PSJEHI/2 Prt1j2 i= |fbk+l k+1/2|2 Pr+1 '= Pr1/2 + Prt1/2-

Step 5 (Target infeasibility detection). Set the ball radius R, := R(6,/6,)°. If

(Rt — [&*+! = 2*O)? > R} — py, (2.1)
i.e., the target level is too low (see below), then go to Step 6; otherwise, go to Step 7.

Step 6 (Level increase). Start the next group: set k(I + 1) := k, 141 := %6[, pr =0,
replace zF by z¥_ and g'; by gs(zk,), increase I by 1 and go to Step 4.

Step 7. Increase k by 1 and go to Step 1.
Assuming the method doesn’t terminate, we now recall some results of [KLL99b, §2-3].

Remarks 2.2. (i) If at least half of the desired objective reduction & is achieved at Step
3, group [ +1 starts with the same 0 = &, but fEH+D < fEO — 15 with gh+D = ghl+D)
(since f(z*) > f¥O — 1§ Vk € K;). Thus by Step 6, we have 5;+1 < &, 2F0 = z"(l) es
and fFO = f(gk®) for all I. Hence inf; f(z*®) > f, > —oco gives & | 0 [KLL99b Lem.
3.6) (otherwise we would have f(z¥")) | —o0); in particular, the target infeasibility test
(2.1) is met for infinitely many I such that 04y 1= —6, at Step 6.

(i) At Step 4, o1/ = oF — 1[£(a*) — £ ]g5/lgtP? and dy, () = [F(a*) — fE,)/16}]
with f(z*) > fl’;v, so the Fejér quantities i, pr41/2 and pr41 are positive, since p, may
only decrease to 0 at Steps 0, 3 and 6. The rdle of these quantities will be explained in §3.

(iii) At Step 5, the ball radius R, := R(6;/61)° < R is nonincreasing; R, = R if 8 =0.
Ideally, R; should be of order dg,(z*®), and hence shrink as z¥") approaches S.. For
convergence it suffices to choose R; so that §/R; — 0 [KLL99b, Rem. 3.9(i)].

(iv) Algorithm 2.1 is a ballstep method, which in group [ attempts to minimize f ap-
proximately over the intersection of the ball B(z*®"), R;) with the feasible set S, shifting the
ball when sufficient progress occurs, or increasing the target level otherwise. By [KLL99b,
Lem. 3.1(v)] or Lem. 3.1(iv,v) in §3, the target infeasibility test (2.1) implies

= fHO _ 5, < min{ f(z) : € B(z*",R)N S}, (2.2)

i.e., the target is too low, in which case &, is halved at Step 6, ff, is increased at Step 4
and z**! is recomputed. Note that | increases at Step 6, but k¥ does not, so relations like
ko= f50 _ 5, always involve the current values of the counters k and ! at Step 4.

(v) Slnce [a*+1 — 2*| > 2R suffices for passing the infeasibility test (2.1), this test
also ensures at Step 1 the basic local boundedness property: {z*}rer, C B(z *0) 2Ry).

(vi) By [KLL99b, Thm 3.7 and Cor. 3.8], f(z*®) | f, and each cluster point of {z*®"}
lies in the optimal set S,; moreover, {z*®} is bounded if S, is bounded. These results

only require finiteness of f on S and local boundedness of g; on S [KLL99b, Rem. 3.9(ii)].
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Figure 3.1: Target infeasibility f£, < min B0 ,ry) fs if dg, (z*V) > R,

3 Dual subgradient interpretations

For theoretical purposes, it is convenient to regard our constrained problem f, := ming f
(cf. (1.1)) as the unconstrained problem f, = min fg with the essential objective

fs = f+as, (3.1)

where 15 is the indicator function of the feasible set S (1s5(z) =0 if z € S, 0o if z ¢ S).
Clearly, fs is convex. Let Ng := dug denote the normal cone operator of S.

We now outline our main results. Suppose iteration k detects target infeasibility
fE, < fH= ming ), R,) fs (i.e., (2.2)) via the Fejér test (2.1). First, we construct
affine minorants fj, and 7 % of Jfand g by combining their past subgradient linearizations
with suitable weights. Then fs = fi+ 7% is an affine minorant of fg := f + 15 and hence
Li(ff) c H = [.:fk(flev), so that ff, < f!if B(z*®, R)) N Ay, = 0 (see Fig. 3. 1); the
latter condition is shown to be equivalent to (2.1) by fairly simple algebra. Next, we get
Vit e 95, fs(z*®) with |Vf%| < 6/R, as in Fig. 3.1; since 6 — 0 and &;/R; — 0, this
ensures asymptotic optimality and suggests practical stopping criteria.

3.1 Aggregate linearizations

We first derive a dual subgradient mterpletatlon of the test (2.1) by identifying below
linearizations (affine minorants) fi, 7 i, f of f, 1s, fs, respectively. At Step 4, let

vi = telfi(2*) = £l )/ 1512, (3.2)
g5 = gt Y2 gkt (3.3)
k
1/;? = 19-/17}"‘ for j=k(l):k with V}" = > v (3.4)

J=k(l)




Here v, is the subgradient stepsize such that z*+' = Pg(zF — ukg’f"') (cf. Rem. 2.2(ii)),
g% is the constraint subgradient of 15 at £**! stemming from z**! := PszF+1/2, 17'; is the
cumulative stepsize, whereas {Vf};;k(,) are positive convex weights summing to 1. We shall

employ the following aggregate linearizations of f, 15 and fs (cf. (3.1)):

_ k koo ) . _
F)= 3 A0, B0 Z()<gg~,-—wf“>/o§, O = RO +EQ,  (35)
j=k J=k(l

and the corresponding aggregate halfspace and the aggregate level
~ ~ -~ k .
Hk = ‘C’f’sc(flﬁv) = {IL : f.‘ly‘c(z) -<— fl’zv} with fl’:v = Z U;fljcv' (36)
J=k(l)
The following technical result lists their basic properties, which are commented upon below.

Lemma 3.1. (i) At Step 4,

k
e — M0 = — 37 (597 + gb), (3.7)
J=k(l)
k 2 k
Ly==3 Y vigh+db| + 3 {nlfia* ) = fL]+ (g5, 2O — 27)} = Lpunr. (39)
i=k(l) j=k(l)

(i) fe < f, 3% <1s, f§ < fs. Further, 0§V f§ = g® — gk,

205(f§(a*0) — fig) = |2 — 2O + pyy. (3.9)
(iii) F5(=*0) > fk,,

di, (5 0) = [F5(*O) = FE/IVTEI > pilds. (3.10)
(iv) Let f! := minpgea gy fs. If fE, > 1, then d,;,k(zk(')) < R,. Consequently,

fi, < fLif dg, (a*0) > Ry.
) dgg, (&) > Ry iff (R —|a** = 2*O)) > R} — pyya.

Proof. (i) Since at Step 4 (cf. Rem. 2.2(ii), (3.2)~(3.3)) z*+1/2 — gk = —vkgk and ! —

ahtl/2 = —gg, (8.7) follows by induction. Let ALy := Ly — Lg—y. Since zk — b =

- Z;;é(l)(ujg} + g%) in (3.8), using (1.2)-(1.3), z**/2 — g¥ = —1yg} and (3.2), we get

AL = —Hongh + g7 + (gl + g 7% — 20 U [u(H0) — fE] + (gh, 240 — 241
= —3lugfl? + nlfu@®) + (gf, 2 - 2*0) = fh) + (b, 2" — o*F! — g — Go§)
= —Hgf? + vl (@) — fi] + (g, 12 — o1 — 1gk)

= (=38 + t){{fi(=®) — F)/Ig51}?
+ <z’"’+1/2 _ .,L.k+1’$k+1/2 gkt %(zk+l/2 _ zk+1)>
= Hte(@ — t)df, (%) + |2 = 252 P = L + prraye) = $(okn — 1)
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(cf. Step 4), so (3.8) follows by induction, using Lyy)—; := pxqy := 0 (cf. Step 6).
(ii) At Step 4 (cf. (3.2), (1.2)) v > 0, s0 V¥ >0, Z]L;k(,) V¥ =11in (3.4). Use (cf. (1.2))
fi < f, (3.3) with (cf. Step 4) 27+! := Psa9+1/2 and the well-known projection property

(o~ %) = (57172 — P2 4~ P™?) <0 Ve §

to get (cf. (3.5)) fi < f, & < 1s via positive combinations, and hence = fi+t <
f+1s=: fs. Since (cf. (3.4), (3.5), (3.7) FfVf& = Ti sy vig} + g5 = 2*O — 251 and
k

B0 - Tl = 3 {nlh@0) - f) + (dha® — 1)}
J=k(1)
(cf. (3.4)~(3.6)), (3.9) follows from (cf. (3.8) and Rem. 2.2(ii))
Ly = =3 7V P + F(f$(2*0) = Ji] = $puer > 0. (3.11)

(iii) By (3.11), Ly = —ja® +b = 3¢ with a := |V ]E|, b := F§[fE(a*®) — fk,],
ci= p,lcf1 > 0. Then b= 3(a®+ %) > |ac], so (cf; (3.6)) dg, (z*¥) = b/a>c>0.

(iv) If fI < f¥,, then Argmingrw gy fs C Hy from (3.6) and fE < fs (cf. (i)).

(v) (B = o+t = a*O)2 > RE — pryy & |24 — 2*OP 4 gy > 2RJa*H! — 240
25 f5(a*0) ~ i) > 2RFIV f§] & [f(a*D) = f)/IVF§ > Ri & dg, (z*®) > R, where
we have used (3.9), |z*+ — z*0| = 7§|V f4| (cf. (ii)) and (3.10). O

Remarks 3.2. (i) By Lem. 3.1(v), the Fejér test (2.1) is equivalent to the distance test
dg (z*0) > Ry. (3.12)

The fact that the Fejér test (2.1) implies £, < f! (cf. (2.2)) was derived in [KLL99b, Lem.
3.1(v)] from Fejér estimates via analytic arguments, which are quite difficult to interpret.
In contrast, the distance test (3.12) has a straightforward interpretation: with ff, = ff,
in (3.6), (3.12) means that the minimum of f% over B(z*®, R;), and hence also that of fs
(since f¥ underestimates fs), is greater than ff,, ie., f£, < fl. )

(ii) To cover the modifications of [KLL99b, §6), which need not use f, = f&, for
J = k(l): k (cf. §5), note that the proof of Lem. 3.1 holds if at Step 4 we only have

e =81 < fb, < min{ 30, f(z*)}. (3.13)
In general, since (cf. (3.6), (3.4)) &, > min;;k(,) fi,, if min;':k(l) fi, > fEO — 6 then

(3.12) yields f¥0 — 6 < f!; thus Lem. 3.1(iv,v) subsumes [KLL99b, Lem. 3.1(v)].
(iii) Suppose momentarily that S = ", so that g& = 0. It is instructive to observe

that our algorithm acts like a dual coordinate ascent method for the QP subproblem
min { |z — 2*O : f;(z) = f;(=*0) + (gho—a*OY < fh,, i=kQ):k}.  (3.14)

Indeed, the Lagrangian of (3.14) with multipliers v; is minimized by z**! (cf. (3.7)) to
give the dual function value Ly, (cf. (3.8)), and vy, =ty (cf. (3.2)), where &, := [fi(z*) —
fi)/|gf? maximizes AL, = —[ugh]? + vi[fi(a*) — fE,] (cf. the proof of Lem. 3.1(i)).
Thus owr algorithm may be regarded as a poor man’s version of proximal level methods
[Kiw95, LNN95) that employ subproblem (3.14) with fi, = f&,.
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3.2 Global optimality estimates

We now derive some global optimality estimates from the aggregate linearizations i ik
and f% (cf. (3.5)). The latter are described by their constant gradients, as well as their
linearization errors at z*" (cf. Fig. 3.1):

&= f0) - fu@), &= —h@0), &= f@0) - BE@O)  (.15)
note that t5(z*®) = 0 and fs(z*®) = f(z*?) from z*® € S. Suppose that (3.13) holds.
Lemma 3.3. We have Vi € O f(mk(')) A S O-A'LS(T’“(')), Vik € 9, fs(z*D), with

k>0,&>0, & =¢+e&>0. Further FE(0) > fE > min_ k(1) fi, > frO — g,

‘eC

fs(@) > fE@) = f(@*0) — &+ (ViE,o —2*0) Ve, (3.16)
wi= f(@0) = f§(@0) < 11O - fi, < &, 3.17)

V7§l = [F5(=*0) = fie)/dg, (@*0) < &/dg, (™), (3.18)
f(z) > fu(z) > (=) Vz €S, (3.19)

F(@*O) — fs(z) < & max{|z — mk(')|/d,-,k(m’“(')), 1} Vz. (3.20)

Proof. By (3.5) and Lem. 3.1(ii), f is an affine minorant of f; thus, by (3.15),
£ 2 i) = Ful@®) + (Vi = 20) = f@*O) = & + (Ve — )

means Vf, € du f (z*®) with €’f° > 0. Arguing similarly for 7% and f§ yields the first
assertion, (3. 16) and (3.19) (since #(z) < 15(z) = 0 V& € ). The inequalities in
(3.17) stem from f(z '"(')) = f’“(’) (Rem. 2.2(i)), f&(a*®) > fE, (Lem. 3.1(iii)) and (cf.
(3.6), (3.4), (3.13)) f, > minj_ fi, > FXO — &. Then (3.18) follows from (3.10),
fE@*0) < fo(z*®) = 5O (Lem. 3.1(ii) and Rem. 2.2(i)) and the final inequality of
(3.17). To prove (3.20), use (3.16)~(3.18) and ¢ := &/(f*® — f&,) € [0, 1] to develop

f(@*®) - fs(z) < &+ <Vf§,a: - zk(')> < & + |V fE|z — 20
= (fi0 = feler + (1 = e)la — 2" /dg, (=*0)]
< dmax{l, |z — o*O)/dg, («*@)}. D

Remark 3.4. At Step 6, (3.12) and (3.20) yield the estimate of [KLL99b, Lem. 3.3]:

F(@*) = fs(z) < 6 max{|z — 2*O|/ Ry, 1} = max{|z — z*O)6} Ps/R, &}  Va.



3.3 First asymptotic results

Our asymptotic results will concentrate on Step 6, using the groups and iterations
L:={l:5,+1=%61} and K:={k(l+1):leL}. (3.21)

Thus L comprises groups ! terminating at Step 6 when the distance test (3.12) (=(2.1)
by Rem. 3.2(i)) holds at Step 5 with k = k(I + 1) in the set of “interesting” iterations I.
Of course, it would be nice to have results for the remaining iterations as well, but our
estimates (3.18) and (3.20) involve the quantities 6,/d, (2*"), which in general converge
to 0 only for k£ € K, as will be seen below.

We now begin our study of asymptotic plopeltles of the aggregate linearizations fk, 5,
% of (3.5). First, we show that their errors & %, &, & (cf. (3.15)), as well as the gradient of
fS, vanish for k € K. Our further results will require local boundedness of the gradient of
fi. Since Vfj, is a convex combination of the past subgradients {g}}" rqy (cf. (3.4)-(3.5)),
its local boundedness will follow from the local boundedness of g% 5

Lemma 3.5. (i) In the notation of (3.15), (3.5) and (3.21), we have
&—0, &-o, &=&+&—0 and Vit=vi+vit 5o

(ii) Suppose {z*O}icp, has a cluster point T° such that z*® £ z with L' ¢ L, and
let K':={k(l+1):1€ L'} (cf (321)). Then 2 € S,, f(z*®) | f. = f(x*®), and both
{=*}eer e and {gf}LGK,,;EL: are bounded, where K| := {k(l): k(I + 1) — 1}.

Proof. (i) By Lem. 3.3 and (3.17), 0 < &,&%,& < & | 0 (cf. Rem. 2.2(1)). Then |V %] <
&i/dg, (z*0) (cf. (3.18)) with dg (z*V) > Ry for k = k(I + 1) (cf. (3.12)), Ry := R(61/6,)°
(cf. Step 5) and B € [0,1) (cf. Step 0) give 6;/R; — 0 and hence V /% <& K

(ii) Of course, z*° € S, by Rem. 2.2(vi), but (3.16) combined with (i) and the fact that
{z*} lies in the closed set S on which f is continuous provide an independent verification:
fs() > fs( ). The final assertion follows from {z*}rcx, C B(z*?,2R;) (Rem. 2.2(v)),
since g! = gs(z*) and g; is locally bounded on S. 0

Remark 3.6. To relate our preceding results with those of [FeK00], let pi = Vfi,
p'g = Vik, p* = VfE Our 2*®, 2% and the index set k(l):k usually correspond to
, y* and Jk in [FeKOO] In this notation, Lem. 3.3 corresponds to [FeK00, Lem. 3. 2]
Howevel our Lem. 3.5 says less than [FeK00, Lem. 3. 3] First, we only have V j" K
instead of p* — 0. Second, in [FeK00, Lem. 3.3(ii)], ¥ — z* and y* — 2° with 95 (y L)
bounded, i.e., “everything converges” and “everything is bounded”, whereas Lem. 3.5(ii)
only speaks about suitable subsequences. Hence using the analysis of [FeK00] one may
derive “subsequential” versions of the remaining results of [FeK00], as will be seen below.




3.4 Stopping criteria

The usual stopping criterion § < eops(1 + |fE.|) With €ope > 0 [KLL9I9b, Rem. 3.4(iii)]
tends to work quite well, but it does not guarantee that f(z*.) — f. < €opi(1+|fX.|) upon
termination. The following result may be used for developing alternative stopping criteria
when the feasible set S is bounded, as happens in many applications.

Lemma 3.7. Suppose the feasible set S 7's bounded. Let f,’,‘;in = ming ffg” forall k > 1.
Then f%. < ming fi < f, for all k, and f, 2, f., where K is given by (3.21).

Proof. Use Rem. 3.6 and the proof of [FeK00, Lem. 3.5], or see the Appendix. O
Remark 3.8. When S is bounded and simple enough, we may compute the lower bounds
fly = max{ming fi, fi' } for k>1, with fp, :=—oo. (3.22)

Since flow T fu (cf. Lem. 3.7), whereas ff, | f. (Rem. 2.2(vi)), for any € > 0 there is k such
that mc fLow < ¢ (implying f(z¥.) < f. + €). This validates a stopping criterion of the
form fk_— fk. < e. Note that it is better to use fi instead of fS in (3.22), since fi > fs
on S (cf. (3 19)). If the computation of ming fi is difficult, but it is easier to find ming f%
for some “simpler” bounded set § O S, then ming fs may replace ming fj, in (3.22) (since
ming f5 < f. and ming fk N f« by the proof of Lem. 3.7 with S replaced by S) in fact
it may be more efficient to use ff, := max{ming f% ming fy, fi=1}.

3.5 Ballstep modifications

We now consider two more efficient modifications of [KLLI9b].
To detect min;”-":k(,) fL, < f* more quickly, Step 5 may use the additional test

(i = |12 = o012 > B — pryaye, (3.23)

replacing (2.1) by “(3.23) or (2.1)”. In view of the results of [KLL99b, §3], Step 4 may set
ah+! = gh+1/2 if (3.23) holds, s0 that pri1 = pr41/2 and (2.1) holds; then all the preceding
and subsequent results remain valid. Further, we may replace 9:’°+1/ 2 and py1/2 in (3.23)
by Py, z* and py + d, (%), as if ¢ = 1 [KLL99b, Rem. 3.2(ii)].

Similarly, our preceding and subsequent results hold for the “true” ballstep version of
[KLL99b, Lem. 3.10], which additionally projects z*+! on B(z*®), R)) to ensure {z*}rex, C
B(z*®, R)) (instead of {s*}rex, C B(z¥",2R;) as before). Since this only needs more
complicated notation, we refer the interested readers to [KLL99a, Lem. 3.10].

4 Optimal objective and constraint subgradients

Returning to the asymptotic setting of Lem. 3.5, let z°° be an arbitrary cluster point of
{2*®},¢p, corresponding to groups L' and iterations K’ such that (cf. (3.21))
O g with I CLi={l:6 =18}, K':=={k(+1):leL}CK (41)
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We now show that the corresponding subsequences of the aggregate subgradients V fi, and
—Vi¥ converge to the optimal subgradient set of our problem ming f:

G = 0f(z®) N —Ns(z™); (4.2)

this set does not depend on 2z (G = f(x) N —Ns(z) Vz € S, [BuF91, Lem. 2]) and is
closed convex (so are df(z*) and dus(z™)). We also show that fi and #; converge to the
corresponding set of “optimal” linearizations of f and 15 at . Similarly to [FeK00, Thm
3.4], this fairly abstract result will form the basis of the more concrete results of §5.

Theorem 4.1. Suppose {z*D},c;, has a cluster point ™ such that z*®© X5 2% with
LI'CL, andlet K' := {k(l+1):1€ L'}. Then: _

i {v fk}kem is bounded and each cluster point of {V fi}rexr lies in Of (z*).

(i) Let Vfy be a cluster point of {V fk}kem- Let K" C K' be such that VJ, LA
Vfw. Then V foo € G. Moreover,

Vit v, f() 5 () and () K520,
where
Vi i= =V € Ns(a™),  faul) i= f@™) + (Vfoor =2%), () = (V= 2%).

(iii) {Vi%}rek is bounded and each cluster point of {Vik}rer: lies in Ng(z*).
(iv) dg(Vfi) 50 and dg(—V&) SNy

Proof. Use Rem. 3.6 and the proof of [FeK00, Thm 3.4], or see the Appendix. [

Corollary 4.2. If {z*"} is bounded (e.g., s0 is S.), then {V filrex and {—V5} ek are
bounded, their cluster points lie in G, dg(V fi) = 0 and dg(—ViE) 5 0.

Proof. This follows from Rem. 2.2(vi) and Thm 4.1. 0

Concerning Thm 4.1 and Cor. 4.2, note that {z¥(")} is bounded if so is the feasible
set S; also having S bounded is useful for stopping criteria (cf. Rem. 3.8). As observed
in [FeK00, §3], in some applications (cf. Rem. 5.4(ii)), one wants to find ming f for an
unbounded set S, but one can find a bounded set S that intersects Argming f. Then it
is natural to solve, instead of the original problem ming f, its restricted version ming f
_ with § = §N 3 bounded. Both problems have the same optimal subgradient set G if the
“bounding” set S is “large enough”, as explained below.

Fact 4.3 ([FeK00, Lem. 3.7]). Suppose ming f is a restriction of the original problem
ming f in the sense that S = 5N S for two convez sets § and 5. Let S, == Argming f.
Suppose S, Nint S # 0. Then ® # S, C 8., and we have both G = af(z) N —Ns(z) for
every x in S,, and G = df (x) N —Ny(x) for every z in S,.
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Remark 4.4. Under the assumptions of Fact 4.3, Mz may replace Ns in Thm 4.1; then
G := df(z™°)N—Njy(z°°) characterizes “optimal” subgradients for both mins f end miny f,
also in Cor. 4.2. In general, if 5, @ then it suffices to choose S “large enough” but
compact to have S bounded as well.

Following [FeK00, §4], the results of this section can be specialized [KLL99a, §5] to
the cases where we have explicit representations of f as a finite-max-type function, and
of S as the solution set of finitely many nonlinear inequalities and linear equalities. The
resulting schemes for identifying multipliers of objective pieces and constraints work under
more general conditions than those in [AnW93, LPS98]; cf. [KLL99a, Rem. 5.15].

5 Lagrangian relaxation

Following [FeK00, §5], we now consider the special case where problem (1.1) (i.e., ming f)
is the Lagrangian dual problem of the following primal convex optimization problem:

2 = max o(2) s.t. ¥j(2) >0, j=1in, z€ Z, (5.1)
where @ # Z C R™ is compact and convex, and each 1); is closed (upper semicontinuous)
proper and concave with domy; D Z. The Lagrangian of (5.1) has the form o(2) +
(z,9(2)), where 9 := (¢ e ¥,) and z is a multiplier. Suppose that, at each multiplier
x in the dual feasible set S := R}, the dual function

f(z) == max{vo(z) + (z,¢(2)) : z € Z} ‘ (5.2)
can be evaluated by finding a partial Lagrangian solution
2(z) € Z(z) := Argmax{9o(2) + (z,%(2)) : z€ Z }. (5.3)

Thus f is finite convex and has a subgradient mapping gy(-) := ¥(2(:)) on 8. In view of
Rem. 2.2(vi), we suppose that (z(-)) is locally bounded onu.(;' (e.g., f is the restriction to
S of a convex function finite on an open neighborhood of S, or infz minj_, ¥; > —o0, or

% is continuous on Z). Assuming nonemptiness of the dual optimal set S, == Arg ming f
(e.g., Slater’s condition (%) > 0 for some % € Z), we consider the following two choices:
§:=8:= RL or S:={r:0<z< 2"} with z'P > Z for some 7 € 3,. (5.4)

For the second choice, ming f is a restricted version of the classical dual problem ming f
in the sense of Fact 4.3.

We shall employ the partial Lagrangian solutions and their constraint values
2= z(2*) and g}"' = (2F) (5.5)

for generating and analyzing the following estimates of solutions to the primal problem
(5.1). Using the weights {u}"}f=k(,) (ct. (3.4)), we define the kth aggregate primal solution

k
k= > ufzj. (5.6)
j=k(l)
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This construction is related to the aggregate linearization f;, := E]_k(,) ¢ Y f; (cf. (3.5)). By
expressing each f; in terms of vo(27) and ¥(27), below we derive bounds on %,(2*) and
¥(3*) that are useful for both asymptotic analysis and stopping criteria.

Lemma 5.1. (i) For each k, fi.(-) = vo(2*) + <-, '/’(Zk)>-
(i) 2 € Z, go(#) = fi(0) > f@*) - & — (V5 2*0), w(z*) > Vi, where
Vi > Vikif S=Ry.

Proof. (i) Use (cf. (1.2)) fi(-) = f(z*) + <J}‘, - a:k> (5.2), (5.3) and (5.5).

(ii) We have (cf. (3.4)) i gyvF = 1 with f > 0. Hence * € co{z/}% Sy C Z,
() > 5 Vf'zﬁo(zj), P(iEF) > 3 VL’I/J(ZJ) by convex1ty of Z and concavity of 1, 9.
Next, using (3.5) and (i), we get

Fel) = 22 V5 50) = 32,0 [bo(2) + (4 9())] = 3, vhwo(#) + (vfk,)

with Vf, = ¥ Vip(27). The above equality, fE = fu+ & (cf. (3.5)), %(0) < 45(0) =0
(cf. Lem. 3.1(ii) and (5.4)) and (3.16) imply

32, vido(#) = fu(0) = f§(0) = 35(0) 2 FE(0) = f(2*®) — & — (V 1§, 2*0).

Finally, if S = R% then (cf. Lem. 3.1(ii)) #% < s gives Vi§ < 0, and hence V fi =
Vf¥ — Vi% > Vf% Combining the preceding relations gives the conclusion. 0

Let Z, denote the solution set of the primal problem (5.1). We now show in the setting
of (4.1) that the aggregate primal solutions {#*};c, generated via (5.6), converge to Z,.

Theorem 5.2. Suppose {2*"}i¢ has a cluster point £ such that z¢® L, 2 with
LI'CcL, andlet K':={k(l+1):1€ L'}. Then:
{#*}rek: is bounded and all its cluster points lie in Z.
(i) f(z*O) | f(z®), & + <Vf_'g°,a;’“(’)> X0, and limy,e o min?, (Vfi); > 0.
(iil) Let 2 be a cluster point of {Z*}rexr. Then 3° € Z,. Further, v9> = f(z*°)
and z2° € Z(z*) (cf. (5.3)).
(iv) dz. (2% X0, and F(z*®) | e gs k — oo.

Proof. (i) By Lem. 5.1(ii), {z*} lies in Z, which is compact by our assumption.

(ii) By Lem. 3.5, f(z*®) | f(z*), & + <st W)> £, 0. By Thm 4. 1(i,ii), (5.4) and
Rem. 4.4, {V fk}kem is bounded and its cluster points lie in § C —N3(z*°) C R}}.

(iii) By (i), 2 € Z. Using (ii) in Lem. 5.1(ii) gives ¥o(2°) > f(z*), ¥(3*) > 0
by closedness of 9o, 9. Since $o(2%°) < Y™ < f(z*) by weak duality, 2°° must solve
(5.1) and ¥o(2®°) = P> = f(z™). Further, ¥(2*) > 0 and 2® > 0 yield 1o(Z*) +
(&, 1(2°)) > f(x>), so 7° € Z(z*) by (5.2)~(5.3), using * € Z.

(iv) This follows from (i-iii) and the continuity of dz,. 0
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Corollary 5.3. If {z*®} is bounded (e.g., so is S.), then {#*}rex is bounded, all its
cluster points lie in Z,, dz, (%) %50, and F(aPOY | pmax g5 k — co.

Remarks 5.4. (i) Given an (absolute) accuracy tolerance € > 0, the method may stop if
q,bo(ék) > f(xk(l)) —¢ and wi(ék) > —€ i=1lin.

Then 9(z*) > P> — ¢ from f(z*B) > yrax (weak duality), so 2* € Z is an e-solution
of (5.1). This stopping criterion will be satisfied for some k if S := R’} and |z*®| 4 oo,
e.g., if S, is bounded (cf. Rem. 2.2(vi)), or S := {z : 0 < & < 2"°} with 2P > Z for some
# € 8, (cf. Lem. 5.1(ii) and Thm 5.2(ii)).

(ii) If 4(2) > O for some Z € Z, then for any Z € S, := Arg ming: f and z >0,

5 < [f@) - po(@)/Hi(2), i=Lin

(since 9o(2) + (%, %(2)) < f(Z) < f(z) by (5.2)). Such bounds may be used for choosing
" > T in (5.4).

(iii) Our results may mitigate common critiques of subgradient optimization (see, e.g.,
[SeS86]), which claim that such methods need heuristic stepsizes, lack effective stopping
criteria and are not dual adequate (cf. (i) above).

(iv) For the standard subgradient iteration (1.7), the results in [LPS99] and [ShC96)
(where each 1; is affine and Y, ¥} < o0 is replaced by the assumption that z* > z€s8,)
correspond to {1,2,...} replacing K in Cor. 5.3, with 1 replacing k(l) in (5.6). Hence
our estimates may be expected to converge faster, since information from early steps is
explicitly discarded. Further, [ShC96] gives partial results only for deflected subgradient
approaches, which are easily handled in our framework; cf. Rem. 6.4(ii).

In some applications [Bea93], using the current multiplier z* one may find a primal
feasible point z* € Zy := {z € Z : 9(2) > 0}; then 4(2*) < f.. Such lower bounds may
be exploited in the following modification of Algorithm 2.1 (cf. [KLL99D, §6]). At Step 0,
set 2, = —oo, L:=0. At Step 1, ﬁnd 2 e Z,/, and set ff, := 1o(z*) and zlow =2k

if 9o(2F) > f,ov_, , fE, = fEY and 2, = 285! otherwise. At Step 2, stop if fX, = ff,
(since then 2¥,_ € S,). Step 3 is replaced by

Step 3°. (i) If ff, > f%, — —6,, set k(l + 1):=k L« LU{l}, 3% :=2L,, pr =0,
Sig1 = fE. — fE., replace z* by k.. and g§ by gy(ak,), increase I by 1 and go to Step 4.
(i) If f(2*) < fEO — 15, set k(l + 1) := k, py := 0, 8141 := & and increase { by 1.

At Step 4, set ff, := max{f*® — &, fk,}. At Step 6, set di1 := min{3d, fX, — fif,}.

I"QC
This lower bounding scheme is analyzed in the following remarks.

Remarks 5.5. (i) The current lower bound ff, = o(2f,,) = maxk_, 4(27) < f. is used
for adjusting &; and fF,. As shown in [KLL99b, §6], the convergence rebults of Rem. 2.2(vi)
remain valid, with §, | 0 as | — oo due to our assumption f, > —oo.

(i) If ff, > fXO — 36, at Step 3'(i) then &4y = fE — ff, < 26 Hence if I :=

rec

{k(I+1) : | € L} is infinite, then y(z*) =N fu from & | 0, ¢o(3*) = fE, < fo < fE.. This
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yields the following result. If #K = 0o, then {#*}xe K is bounded, all its cluster points lie

in Z, and dz, (2’“) -lé» 0. Indeed, {#*}rex C Zy, where Z, is compact (so is Z and 1 is

closed) and if 3 %5 3% with K’ C I, then 7 € Zy and o(2%°) > fu (1o is closed) give
® ¢ 7, by weak duality, whereas dz, is continuous.

(iii) As before, let L index groups ! that terminate at Step 6. Note that fE _ g <
fE, < min{ f50), f(z*)}, as required in (3.13). Hence, in view of (i,ii), we have #L = oo if
#L < oo, in which case Lem. 3.5 remains valid. In effect, Thm 5.2 remains true, whereas
in Cor. 5.3, L and K are replaced by LU L and K U K, respectively.

We now comment briefly on possible extensions.

Remarks 5.6. (i) Consider the equality constrained version of the primal problem (5.1)
Y™ = max Yo(z) s.t. Y(2):=Az2-b=0, z€ Z, (5.7)

where A € R™™, b€ R". Then § :=R" and S := S or §:= {z : 2% < z < 2P} with
2 < 7 < g for some Z € S, (cf. (5.4)). Clearly, Lem. 5.1 holds with ¢(3*) = V
(where Vf, = Vf% if $ = R™), and Thm 5.2 holds with $() = Vi, 25 0 in (ii) (use
Ng(z*) = {0}) and hence ¥(2°) = 0 in (iii).

(ii) Instead of assuming Z compact, suppose Z is closed and (cf. (5.3)) z(-) is locally
bounded on Z. The preceding results are not affected, since Thm 5.2(i) follows from
(5.5)-(5.6) and Lem. 3.5(ii): This observation can also be used in [FeK00, §5].

6 Accelerations

As shown in [KLL99b, §9], we may accelerate Algorithm 2.1 by replacing the subgradient
linearization fi with a more accurate model ¢ of fs from the family <I>’; defined below.

Definition 6.1. Given p € (0,1}, let ®% := {¢p € & : d£(¢mv)(z’°) > pdy, (z¥)}, where
®:={¢:R" — (—00,00] : ¢ is closed proper convex and ¢ < fs}, L(d,:) := Ly().

Examples 6.2. (i) If ¢ € ® and ¢y > fi then ¢y € ®f (cf. (1.4)).

(ii) Let f*:= max;e gk fj, where k € JEc {1k} Then fke ok

(iii) Note that ¢ € @ if ¢y is the maximum of several accumulated linearizations
{ fj}le, or their convex combinations, possibly augmented with 2 or its affine minorants.

Fixing 1 € (0, 1], suppose at Step 4 of Algorithm 2.1 we choose ¢y, € ® and set
M
g2 = okt (Pra® — 2, pro=te(2 — te)dd (%) with L= Ly (£5), (6.1)

i.e., Ly, replaces Hy. Since the convergence analysis of [KLLQQb §7] covers this extension,
we only need to exhibit suitable expressions of f, and 7 i% in terms of the linearizations
of f and 15 that contribute to ¢;. Our fairly complex technical developments hinge on a
simple idea. Namely, we may a posteriori replace ¢y by its linearization & that uncovers
the weights with which 2**+1/2 in (6.1) is influenced by the past linearizations of f and ug.
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Lemma 6.3. (i) Suppose ¢y, is polyhedral and Ly, # 0 in (6.1). Let y* := Pg,a*. Then

there exist a subgradient g,’,‘; € 9¢1.(y*) and a stepsize by, > 0 s.t. y* — 2% = —Dkgﬁ. Let

o) =) + (gh- =), Bi= tk[&k(l‘k) = fed/\g5l? Hi = L5, (£%,).

Then y = PHAZ‘ ’ dgk(.’l}k) = dH ( ) [¢L fl(. ]/|g¢| z’”‘“/? —_ x = -—ng
tLVL >0, ¢ < 4’!. Further, if ¢ = ¢f‘|‘¢s and 9¢ = .‘J¢, +.‘]¢s with ¢f </ ¢S < s,

%, € 85(yY), g5, € Ok(y*), then ¢y = ¢ + ¢ with
FHC) = 50" + (gh,,- = v*) S FC) B5C) = d55) + (gbs - — ¥*) <2s().

(1) Suppose L; # 0, v; and ¢; = ¢’j + ¢ are used as in (i) for iterations j = k(l): k.
Then Lem. 3.1 holds with (3.4)~(3.8) modified by

A= NEC), () = 2[( =Yk GO/, FEC) = Fl)+750),

j=k(l) J=k(l)
k 5 fk
Df = Z l—)j’ flev = Z (VJ/Vf flev = mlfl flevv
P P 0
L _ k) —D?fo, Ly = ——]D}“st|2 +V f[fS( k(l)) - fl,;v} = %Pk+1~
iii) Suppose in (ii), ¢k = Tk, f with u >0, “4‘ =1, and if k > k(1) then
i) ] wYili J

k-1

k-1
fer= Y G0N S with pFt =Y B B >0
: i=hk(l) i=k()
Then .
= Y @A, i =3
j=k(l) J=k(l)

where
Uf =, 0 =k + 05 >0 for j=k(l):k—14f k> k().

Hence (3.3)~(3.6) and Lem. 3.1 hold with v;, g}, (.‘Js — m7+1> replaced by gs+”19¢5:
<gb, - a:"“> + 7L (-), respectively, except that now ff, = Zj=k(,)(u,/uj)flev.

Proof (i) Use the KKT conditions for y* = argmin{}|z — z*|* : ¢x(z) < f£,} and note
that y* # 2* (since dg, (2z*) > pdy, (z*) > 0) and ¢ < ¢L by convexity.

(ii) Use (i) and the proof of Lem 3.1, replacing f] by ¢J

(iii) Develop fk = (Vk¢f + Vf fk 1)/1’] = (o, Z;—L(l) fy + Z, =k(l) ] fJ)/Vf

The general constructions of Lem. 6.3 may be specialized as follows.
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Remarks 6.4. (1) If ¢y, = max]eJL f,, whele JE c {k(l): k}, then in Lem. 6.3(iii) we may
use 0§ > 0 s.t. gk =¥, kg, oi0F = 1, o [gk(y k)~ f]('y")] = 0. In fact, such 2% are
scaled Lagrange multlphers of the QP subproblem min{}|z — 2**: f; (:1:) < flev, je J"}

(i) If qS, (1 — ar)fe+ akqﬁ ! with oy € [0,1] and ¢f' Z] k(,) J ~1f;, where
%=1 > 0 and ;05 p%~1 =1, then in Lem. 6.3(iii) ¢f = J_k(,) v kf; with 9f := 1 — o, and
= Otkl/k ~! for j < k. The examples of [KLL99b Rem. 7.6] use ak = 0if k = k().
(m) In view of Lem. 6.3(iii), the weights /7% may replace v} in (5.6), so that

?r'*

k k
- 'ZLEI)(DJ"“'/&.’;) (uk/l/,)z¢ + (1= /D )z'c 1 with z"; z;:f:) V’“ (6.2)
=k -

where the multiplier 7 is given in Lem. 6.3(i); note that in (i) above we may update

zf; =(1— o) + akz(’;'"l (zg = 2. (6.3)
Indeed,

* —(ukuk/uj)z + Z nedk + 7520 = (/) Z ohe + (0 l/uf)z" !
=k(1) =k()

with 7% = 7, + 7§, and 2§ = (1 — ax)2* + o Tin k(,) A712 in (ii).

(iv) If we allow axqy # 0, then 1 replaces k(I) in (ii,iii). Then for the proof of Thm
4.1(i), one may assume that g; is bounded on S (e.g., S is bounded, %(z(-)) is bounded
on S or 9 is continuous in §5). Similar modifications may handle J* ¢ {k(l): k} in (i).

(v) If ¢y is polyhedral and £y = @, then min ¢y, > £, and g,’f, =0 € 9 (y*) for any
y* e Alrgminq’),c Hence if ¢y, ¢>f, ok, qu and % are as in as in Lem. 6.3(i), then fio = q;f
f, i = ¢ <1s, fs = fu +Zs = ¢ < fs, with st =0, fs() = ¢r(y*) > fiey- Letting
fk, == fk, in (3.6), we have He. =0, dj i, (2*®) = co. Clearly, Lem. 3.3 remains valid and
the tests (2.1), (3.12) and (3.23) hold w1th ot = g2 = g% and pry1 = pryie =
since Ek =0 in (6 1). Hence if ¢} = _k(,) 0¥ f; as in Lem. 6.3(iii) (and (i,i,iif) above),

then 1/ replaces 1/ in (5.6), i.e., 2 = zfz as if oy, = l/f in (6.2).
(v1) The snnplest ¢ employing some constraint information is ¢ = fi + <a yr— z’“)
with ¥ € Ng(z*) (cf. [KLL99b, Rem. 7.8]); e.g., the “optimal” &* = Pyy(uty(—gf) maxi-

mizes d, (2*) [Kiw96, §7). Then (") = S5_y(; (@7, — zj)+<g§,- - :vj+1>]/17}° if L, #0
(cf. Lem. 6.3(ii)), #%(-) = <dk, = Illk> otherwise by (v). :

(vii) Suppose ¢y, = fi +1s for all k. Then gk = gk + a*, a* € Ns(y*) in Lem. 6.3(i), so
we may replace ¢y, by ¢ and z* by y* in (vi). Similar arguments apply to ¢ = ¥4
or ¢k = max;e f; + <PNS(:EI\)( q,) -z > [KLL99b, Rem. 7.8}, since (cf. (i)) suitable f;

Example 6.5. For simple bounds S = {z : 2% < z < 2P}, our preliminary implemen-
tation employs . .
o= (1 - ap)fre + ardr—y with o € [0, 1],
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Ful) = ful@®) + (84 = 2*), dea() = E7N b + (570, = 2b),

where g* := gf + PNS(wk)(—g};) and _(jj;_l = g;‘;/‘l + PNS(,k)(—gﬁ;l) are reduced subgradients
(cf. Rem. 6.4(vi)), updating

¢ =1 —a)fe + adf™, @)= fi.

Our choices of ay [KLL9I9b, Ex. 7.4(v) and Rem. 7.6] include:
(i) the ordinary subgradient strategy (OSS): ay, := 0;

(i) the conjugate subgradient strategy (CSS): oy, :=
b_1(z*) > fE,, ay, := 0 otherwise (cf. [KLL99b Rem. 7.6));

g, ﬁ;; 1) < 0 and

(iii) the average direction strategy (ADS): a “_“ILTE‘— if %—1 #0and ¢y (z*) > fk,,
ay, := 0 otherwise (cf. [KLL99b, Rem. 7.6]),
(iv) the aggregate subgradient strategy (ASS): ay. is s.t. P a® Clmaxt oo} 18 )T ki

LoxtFodery(Fie) # 0, i is s.b. Ly = B otherwise (cf. [K1w96 Rem. 4.1]).
For OSS and ASS, if max{fi(z**?), #f(z**1)} > f5O — 25, at Step 6, then Step 4 is re-

rce
peated with z* and (;5" ! replaced by zF+! and ¢’} Such repeated projections are justified
by [KLL99b, Rem. 7. 11] (but not for CSS and ADS). They provide an inexact implemen-
tation of the “best” single projection Pz:(max{ FdiY, ]lev)nsz , which would require more

sophisticated QP.

7 Application to multicommodity network flows

In this section we discuss an application of our method to the traffic assignment and
message routing problems, which are important instances of nonlinear multicommodity
network flow problems; see, e.g., [Ber98, Chap. 8] for a textbook introduction, [OMV00]
for a recent survey, [Fuk84a, Fuk84b] for the pioneering dual developments, and [GGSV96,
GSV97, LLP97, LPS99)] for recent comparable approaches. In particular, in §7.4 we relax
the standard assumption of strictly convex arc costs, because our real-life instances include
linear costs. Incidentally, our theoretical developments also lay ground for the application
of the proximal bundle method [FeK00, §5] to such problems.

7.1 The nonlinear multicommodity flow problem

Let (N, A) be a directed graph with N nodes and n arcs. Let E € IR¥*" be its node-arc
incidence matrix. There are m commodities to be routed through the network. For each
commodity i there is a required flow r; > 0 from its source node o; to its sink node d;. Let
si be the supply N-vector of commodity ¢, with s;o, = 73, 8ig, = —T3, 8 = 0 if | # 0;,d;
Our multicommodity flow problem is stated as follows:

min ’(/)0 Zo Z’lﬁ()] ZOJ) . (71&)
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st Pi(2) =205 — Y 2; =0, j=1in, (7.1b)
i=1
2= (20,21, 12m) € Z =2y X Zy X +++ X L, (7.1c)

Zy =R", Z; .= {Z“ 1Bz =5,0<2z < 2,'}, i=1:m, (71d)

where z; is the flow of commodity i € {l:m}, 20 := Y7 2 is the total flow, and Z; are
fixed positive vectors of flow bounds. We assume that each arc cost function 1/)0, is closed
proper strictly convex and increasing on its effective domain that equals [0, k;) or [0, x;],
where either x; > 0 is finite or £; = 0o and lim;_e 1Z6j(t) = 00, where 15{”. denotes the
right derivative of JJO,-. (Here and in what follows, we assume basic familiarity with convex
univariate functions [Ber98, §9.1], [Roc70, pp. 227-230].) Finally, we suppose that

%€ H;;l[O,nj) for some % € Z with (%) = 0. (7.2)

7.2 Dual approach

In the framework of Rem. 5.6(i), letting to(z) := —to(20) and 5 := R", we have f(z) =
¥, fi(z) and z(z) = (20(2), - - -, 2m(x)) in (5.2)-(5.3) with fO(z) = £}, f} (x;) and

F(x) = maxi{ @it — o;(t) } = ;(wy), G =1Lim, (7.3a)

20() := arg ming{ o (t) — x5t} = Vi (z;) = Vi (z;), §=1mn, (7.3b)
fi(z) == max{ —(z,2) : Ez; =5;,0< %< %}, i=1Lm, (7.4a)

2(z) € Argmin{ (z,2) : Bz =8;,0< 2z, < % } = —afi(x), i=1lm, (7.4b)

where Joj, the conjugate of 1Zvoj, is continuously differentiable due to the strict convexity
of 9. Thus z(-) and g;(-) := ¥(z(-)) are locally bounded.

The set S, := Arg min f of Lagrange multipliers of problem (7.1) is nonempty. Indeed,
since each %J is increasing on its domain, problem (7.1) is equivalent to the following:

P = min Jo(z0) st. ¥(z) >0, z€ 2, (7.5)

whereas (7.2) is equivalent to Slater’s condition for (7.5) ((z) > 0 for some z € Z with
zo € domup), so (cf. [Roc70, Cors. 28.4.1 and 29.1.5]) the set S, = Argmingy f of

Lagrange multipliers of problem (7.5) is nonempty and bounded; clearly, S, c ..
Following [Fuk84a], we now consider using the restricted dual feasible set

S:={z:z>2"} with ¥ :=1(;(0) for j=1l:n. (7.6)

With S, := Argming f, we have § # S, C S.. Indeed, zl™ > 0, since each oj is
nondecreasmg on its domain, whereas for z; < 'c'°“' f°(x) is constant and each fi(z),

i = 1:m, is nonincreasing (cf. (7.3b), (7.4a)). Thus S, is bounded (so is S.).
Further, the conclusions of Fact 4.3 hold. Specifically, 0f(z) N —N3(z) = {0} for each
z € S,, and although S, Nint S = P is possible, we still have G := df(x) N —Ng(z) = {0}
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for every z € S,. Indeed, let = € S*, g€eg. Ifz; > a:'°‘” then g; = 0 from —g € Ns(2),
otherwise z; = 2!V gives 0 = zo;(z) = [V f°(z)]; by (7 3b), so af(z) = T, Of(x) with
dfi(z) C IR" by (7.4b) yield g; < 0, and hence g; = 0 from —g € Ng(z).

Suppose Z;; > r; for all i and j. Then for x € S, ignoring Z; in (7.4b), we may find
2;(z) by solving a shortest path problem with nonnegative arc lengths, since z;(z) < r;
for all j. Thus, if the bounds Z; are omitted in (7.1d) and (7.4b), as happens in many
applications, then 2;(-) are still bounded on S (although 9 fi may be unbounded).

Since 1)y is strictly convex, the primal solution set of (7.1) has the form
Zo={z}x z{ with Zl:={(z,....5m) € Zix X Zp: 25 =Y " m}, (1.7)
where zj is the unique optimal total flow. On the other hand, if each 1/30,' is differentiable

on (0,00), then (cf. (7.3b)) Vf)(z;) = Vioj(mj) is increasing for z; > 1Z0](0) (since
Vis; = (Vado;)™"); in effect, f° and f are strictly convex on S, and S, is singleton.

7.3 Algorithmic constructions and convergence

The convergence results of §6 may be specialized as follows. Although the kth aggregate
#* € Z (cf. Lem. 5.1(ii)) need not be feasible in the primal problem (7.1), we may use the
kth aggregate total flow

= Z b (7.8)
=1
to produce the primal feasible aggregate 2k = (3% 25, ... 2%) € Z with ¢(5*) = 0. Then
(cf. (5.1), (7.5)) we have —y)in = max < f (mrec) (weak dualxty) and hence
Po(25) — 5™ < Jo(2) + F(ake). (7.9)

Proposition 7.1. (i) {z*®}, {g}}, {z*}, {#} and {¥*} are bounded, and all the cluster
points of {#*} and {5*} lie in Z.
(i) f(@*O) | fi, &+ <v 7t a ,W>> 250, and 2 — 5 = y(3*) = Vi S0,
(iil) All the cluster points of {Z*}rex and {z Yeek lie in Z,. Further, Y§™* = f..
(v) 2 = 24, % 5 25, dyy(&- 20) 50, and F@H0) | wmm = ().
V) I 2 € I[j=i[0, ;) then Jo(3) = d5™ and Jo(%) + f(ak,)

Proof. (i) Since S, is bounded, so is {z*"} (cf. Rem. 2.2(vi)). But |2* — x’““)| < 2R at
Step 1 (Rem. 2.2(v)), whereas z(-) and g;(-) are locally bounded, so the conclusion follows
from the definitions (5.5)-(5.6) and (7.8), since z* € co{zf }i<k € Z and Z is closed.

(ii) By Lem. 3.5, f(z*®) | f., & + <st '“(‘)> X, 0. As discussed in §7.2, the
conclusions of Fact 4.3 hold with G = {0}, so Vf, = 0 by Cor. 4.2, where Vi =
$p(2*)'= 2£ — 2¥ by Rem. 5.6(i), (7.1b) and (7.8).

(iii) Argue as for Thm 5.2(iii), with 1 (2°°) = 0 and |3* — #*| = |3 — 2| S50 by (n)

(iv) By (iiii) and the continuity of dz,, f(z*®) | wmax = z/)""“ a,nd dz.(3) 25

Hence the conclusion follows from the form (7.7) of Z,, since z§ — 2§ £, 0 by (ii).

(v) This follows from (iv), since 4 is continuous on T}, [0, x;). O
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7.4 Extension to linear costs

Retaining the remaining Aassumptions, suppose for a fixed # < n and all j > 7, each cost
o, is linear: to;(t) = %J(O)t if t > 0, co otherwise, with 1/)0](0) > 0. Then (cf. (7.3),
(7.6)) f(z;) = 0 and z;(z) = 0 if z; < 2}, f)(z;) = oo and 2;(z) is undefined if
;> :c'°“’ but for z; = a,"’“’, f(z;) = 0 and z; (z) could be arbitrary in R,. Exploiting
this ﬁeedorn we may rest;rlct attention to the following subset of S (cf. (7.6)):

§:i={x:a; >al" for j < i, x5 =a" for j > i}, (7.10)

letting

m

205(x) : Zzw if z€8, j>it. (7.11)

Thus gfj(z) :=1; (z) 0if z € S, j > #. Hence, for an initial point z' € S, by induction
we always have z* € S, gk == ¥;(z*) = 0 and hence (cf. (5.6), (7.8)) $;(#*¥) = 0 and
z(’)CJ = zo] for j > #. In other words, for arcs with linear costs, the multipliers are fixed
at their optimal values, and the aggregate flows are primal feasible. Clearly, z(-) and
97() :=(2(-)) are locally bounded on S (so are z(-) and z;(-) for j < it as before, and
then by (7.11) also 2g;(-) for j > ).

The above observations suffice for proving parts (i,ii,iii) of Prop. 7.1. In part (iv), since

now Z, = {(z8, - .-, 244)} X Z, with Z, polyhedral, we have z5; LN 25, 2

Ay (B sgrs - B 25,1 2R)) 2, 0. In part (v), it can be shown that to(z*) L, qpmax
(hint: if 2* 25 7% then () > Timpexr Yo(3*) > limgeg Po(2¥) > f(z*) in the
proof of Thm 5.2(iil)); thus ¥§™ < do(2§) = Yo(%) + Tjcaltbos (3) — Yoy (%)) with

Joj(zgj),zpoj(i(’,“j) X, Yo;(23;), since 7, 2k X z; and 1o are continuous on [0, ;) for

K v
20]7 .7 <,

§ < #, so (k) 25 Jmin as desired.

7.5 Numerical results

Our method was programmed in Fortran 77 and run on a notebook PC (Pentium II 400
MHz, 256 MB RAM). We used 8 = L, 6 = 16, and R, := R(6:/8)° with & = R|g'|
for consistency with [KLL99b, §8], t; = 1, the third projection of §3.5 and the aggregate
subgradient strategy of Ex. 6.5, updating the total flows (cf. (6.2), (6.3), (7.8))

5 = (0 /0f) 25+ (1 — ve/U)E5 " with 2y = sz (1—ax) Zz + akz¢ Y

i=1 i=1
where 53 := 5} := Y1, 2} Lettmg 1 = 3!, every tenth iteration or when [ increased at
Steps 3 or 6, we set % = #* if Po(5) < Po(Fe), 25, = ¥5! otherwise. Our stopping

criterion Po(#,0) + f(zh) < €opt[l + [t 20|l (cf. (7.9)) ensured a relative objective
accuracy of IOOEOP.; in %. We used €opr = 10~%2 for i = 4,5,6.

We first give results for the CNET collection of [OMVOO] which describes message
routing problems in a real-life telecommunication network with 106 nodes and 904 arcs.
The instances have m = 4452,6678,8904 or 11130 commodities, and five load factors
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Table 7.1: Results for the CNET instances, with R = 10.

€opt = 1072 €opt = 10720 €opt = 1073 Optimal

m  Load Delay k  Time Delay &k Time Delay k  Time Delay
4452 1.0 | 12.6131 110 1| 12.5881 180 2| 12.5856 600 6| 12.5847
1.5 | 19.1949 150 2]19.1832 310 3] 19.1814 620 6| 19.1799

2.0 | 25.9926 190 2| 25.9833 300 31259788 460 4| 25.9755

2.5 | 33.0326 200 2| 33.0012 336 31 32.9835 1300 11 | 32.9809

3.0 | 40.2486 220 2| 40.2177 490 4| 40.2125 1450 12 | 40.2072

6678 1.0 | 19.6691 170 2] 19.6513 350 41 19,6494 490 51 19.6481
1.5 ] 30.2017 240 3 130.1828 460 5130.1795 983 91 30.1776

2.0 | 41.2699 160 2| 41.2265 354 3 141.2095 697 6 | 41.2066

2.5 | 52.8099 270 3| 52.7880 726 7 | 52.7830 1390 12 | 52.7790

3.0 | 64.9984 386 4] 64.9754 550 5 | 64.9520 1539 14 | 64.9460

8904 1.0 | 26.4872 230 3]26.4872 238 3264745 1080 11 | 26.4730
1.5 | 41,0065 230 3'( 40.9884 390 51 40.9785 550 6 | 40.9742

2.0 | 56.4728 460 4 | 56.4316 658 6 | 56.4295 779 7| 56.4233

2.5 | 73.0681 380 4] 72,9577 560 6 | 72.9456 864 8 | 72.9392

3.0 { 90.8231 416 41 90.7027 630 6 | 90.6700 1260 12 | 90.6620

11130 1.0 | 33.5348 190 2| 33.4984 410 5] 33.4952 680 71 33.4931
1.5 | 52.4137 200 2 | 52.2741 640 71522721 766 8 | 522677

. 2.0 72,6954 470 5| 72.6571 710 7| 72.6474 1090 11 | 72.6434

2.5 | 95.0557 325 41949119 690 81 94.8916 1470 15 | 94.8838

3.0 | 119.406 1240 13 | 119.353 1340 14 | 119.313 2280 23 | 119.306

that scale up the standard requirements r;. The costs are Kleinrock’s average delays
o (205) 1= 205/ (Kj—z05) on [0, k;). We used } := kj*(1—p,) 2, with p, = %estimating the
maximum traffic intensity max; z;;/k; [Gof87] (which sometimes exceeded 3). In Table 7.1,
Delay := '(Z[)(Zfeco), times are given in seconds, and the optimal delays (communicated to
us by A. Ouorou) are rounded to six digits. The accuracy attained was usually higher than
that guaranteed by the stopping criterion; e.g., for eqp, = 1073, [to(25 o) — Pmin] /hmin <
10~* for the unit load instances. Since each instance had 106 common sources, most work
per iteration went into solving 106 shortest path subproblems via subroutine L2QUE of
[GaP88].. Our machine is about three times faster than the one employed in [OMVO00).
Hence Table 7.1 suggests that our method is highly competitive with all the methods
tested in [OMV00, Tables 2 and 3], at least for modest accuracy requirements that are
typical for such applications.

We next give results for five real-life traffic assignment problems described in Table
7.2. These problems have nonlinear BTR delays z/?oj(z()j) = ;2 + ﬁszg on R, with
a; >0, B > 0,7; > 1, as well as linear costs $o;(z0;) := ajzo; with o > 0. The first three
medium-sized problems were used in [LaP92, LPR97] ([HLV87] solved a slightly different
version of Winnipeg). The Chicago problem [TEB98] is much bigger than the largest
(random) problems considered in [GSV97, OMV00]. The Skane problem (not reported
so far) is really huge. We used 2! = 2'°¥ and R = 100, except R = 10% for Linkdping.
Concerning Table 7.3, we add that again for €.y, = 1072 the final accuracy was quite high:
1.5e-4 for Barcelona, 2.8e-4 for Linkoping, 4.5e-4 for Winnipeg, 1.8e-4 for Chicago, 5.1e-4
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Table 7.2: Traffic assignment problems and their best known primal values

Problem  Nodes Arcs OD pairs Sources Linear costs  Best delay

Barcelona 930 2522 7922 97 565 1.26846e+6
Linképing 335 882 12372 118 0 4.05602e+8
Winnipeg 1040 2836 4344 135 1176 8.85327c+5
Chicago 2552 . 7850 137417 445 0 4.03799¢+6

Skane 7722 18344 712466 1057 2262 7.63642c4+7

Table 7.3: Results for the traffic assignment problems

€opt = 1072 €opt = 10725 €opt = 1073
Problem Delay k  Time Delay k  Time Delay k  Time
Barcelona | 1.27279e+6 140 11 | 1.26938e+6 320 25 | 1.26865e+6 910 72
Linkoping | 4.06050c+8 120 4| 4.05774e+8 150 4 | 4.05716c+8 720 21
Winnipeg | 8.89731le+5 56 5 | 8.86426e+5 116 10 | 8.85725¢+5 220 20
Chicago 4.06489c+6 80 74 | 4.04218¢e+6 130 120 | 4.04004e+6 269 249
Skane 7.64631e+7 20 172 | 7.63957c+7 44 377 | 7.63712e+7 80 685
for Skane.

Acknowledgment. We thank D. Boyce for the Chicago data, H. Edwards for the
Skane data, and A. Ouorou and J.-P. Vial for the CNET data.
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A Appendix

Proof of Lem. 3.7. The inequalities f, > ming fi > f%._ follow from (cf. (3.19))

min

f@) > filz) = fi(z) - i’g('c) > f5(z) for each zin S
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(since #(z) < 15(z) = 0 Vz € S). Let 3* € Argming f%, so that f5(&) = f, < f. <
f(@*®) for k = k(I +1). Set = Z* in (3.16) and use the Cauchy-Schwarz inequality
together with &, |V f%| <5 0 (cf. Lem. 3.5(i)) and boundedness of {z*},{#*} C S to get

0< f(@ V)= = F@*O) = F5(#) = &—(Vf§,3* — 2*0) < @+ VfE]|1H—2* 0] Lo,
But f(2*®) | f, (Rem. 2.2(vi)), so the preceding relation gives f*, 5 f,. 0

Proof of Thm 4.1. (i) By (3.4)-(3.5), Vf; € co{g}}fzk(,), 50 {V fi}rex’ is bounded by
Lem. 3.5(ii). Next, Vi € 6;;]“(:5"“’) (Lem. 3.3) with z*® 2 3% and & X5 0 (Lem.

3.5(i)) imply that each cluster point of {V f,}rex lies in 8f (z*), since the approximate
subdifferential mapping (z, €) — 0. f(z) is closed [HUL93, §XI1.4.1].
(ii) Using (3.5), the facts that & = f(z*®) — fi(z*®) — 0 and f(z*®) | f(z®) (cf.

(3.15) and Lem. 3.5), and our assumption V f SR v/ foo, We obtain
Fo) = £(@50) = & 4 (T oy = 50) 24 £a) (T fon, - — 5°) = foo()

By (i), Vfw € 0f(z). Next, Vf4—Vfi, = Vit € Bzx25(2*®) (cf. (3.5) and Lem. 3.3) with
vit 5o, &% — 0 (cf. Lem. 3.5(i)) yield Vi X Vi€ Ois(z™) by the closedness of
Bas(x). Since & := —ik(a*0) (cf. (3.15)), () = H(a* V) + (Vik, - — 2*O) L5 g2 ().
(iii) { V3§ = V5~V fibrex is bounded, since V f5 <5 0 by Lem. 3.5(i) and {V fi}rexc
is bounded by (i). If {V#§}kex has a cluster point Vi, then by (i,ii), {V fi}rek- has a

cluster point V f,, such that Vi@ = -V foo € Ns(z™).
(iv) This follows from (i)-(iii) and the continuity of dg (e.g., pick K" C K’ such that

dg(V fi) 25 Tmper dg(V fi) and Vi X% Vi € G to get dg(VFy) £50). O
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