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Abstract

We show that several versions of Floyd and Rivest’s algorithm SELECT [Comm.
ACM 18 (1975) 173] for finding the kth smallest of n elements require at most
n + min{k,n — k} + o(n) comparisons on average, even when equal elements occur.
This parallels our recent analysis of another variant due to Floyd and Rivest [Comm.
ACM 18 (1975) 165-172]. Our computational results suggest that both variants
perform well in practice, and may compete with other selection methods, such as
Hoare’s FIND or quickselect with median-of-three partitioning.

Key words. Selection, medians, partitioning, computational complexity.

1 Introduction

The selection problem is defined as follows: Given a set X := {z;}}_; of n elements, a
total order < on X, and an integer 1 < k < n, find the kth smallest element of X, i.e., an
element z of X for which there are at most k — 1 elements z; < 2 and at least k elements
z; < z. The median of X is the [n/2]th smallest element of X.

Selection is one of the fundamental problems in computer science; see, e.g., the refer-
ences in [DHUZ01, DoZ99, DoZ01] and [Knu98, §5.3.3]. Most references concentrate on
the number of comparisons between pairs of elements made in selection algorithms. In the
worst case, selection needs at least (2 + €)n comparisons [DoZ01], whereas the algorithm
of [BFP*72] makes at most 5.43n, that of [SPP76] needs 3n + o(n), and that in [DoZ99)
takes 2.95n + o(n). In the average case, for k < [n/2], at least n + k — O(1) comparisons
are necessary [CuM89], whereas the best upper bound is n + k + O(n!/2 In'/2n) [Knu9s,
Eq. (5.3.3.16)]. The classical algorithm FIND of [Hoa61], also known as quickselect, has
an upper bound of 3.39n + o(n) for £ = [n/2] in the average case [Knu98, Ex. 5.2.2-32],
which improves to 2.75n + o(n) for median-of-three partitioning [Grii99, KMP97)].

In practice FIND is most popular. One reason is that the algorithms of [BFP*72,
SPP76] are much slower on the average [Mus97, Val00], whereas [KMP97] adds that other
methods proposed so far, although better than FIND in theory, are not practical because
they are difficult to implement, their constant factors and hidden lower order terms are
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too large, etc. It is quite suprising that these references [KMP97, Mus97, Val00] ignore
the algorithm SELECT of [FIR75b], since most textbooks mention that SELECT is asymp-
totically faster than FIND. In contrast, this paper shows that SELECT can compete with
FIND in both theory and practice, even for moderate values of the input size n.

We now outline our contributions in more detail. The initial two versions of SELECT
[FIR75b] had gaps in their analysis (cf. [Bro76, PRKT83], [Knu98, Ex. 5.3.3-24]); the first
version was validated in [Kiw02], and the second one will be addressed elsewhere. This
paper deals with the third version of SELECT from [FIR75a], which operates as follows.
Using a small random sample, it finds an element v almost sure to be just above the kth
if k < n/2, or below the kth if k > n/2. Partitioning X about v leaves min{k,n — k} +
o(n) elements on average for the next recursive call, in which k is near 1 or n with high
probability, so this second call eliminates almost all the remaining elements.

Apparently this version of SELECT has not been analyzed in the literature, even in
the case of distinct elements. We first revise it slightly to simplify our analysis. Then,
without assuming that the elements are distinct, we show that SELECT needs at most
n+min{k,n—k}+ on?? In'/3 n) comparisons on average, with In'/3n replaced by In'/?n
for the original samples of [FIR75a]. Thus the average cost of SELECT reaches the lower
bounds of 1.5n + o(n) for median selection and 1.25n + o(n) for selecting an element of
random rank. For the latter task, FIND has the bound 2n + o(n) when its pivot is set to
the median of a random sample of s elements, with s — 0o, s/n — oo as n — oo [MaR01];
thus SELECT improves upon FIND mostly by using k, the rank of the element to be found,
for selecting the pivot v in each recursive call.

In principle, SELECT can be implemented like FIND by using any well-known bipar-
titioning scheme [Sed77] (an enhancement of the scheme of [FIR75a] is given in §6.3).
However, such schemes can perform quite poorly when equal elements occur, in which
case the ternary scheme of [BeM93, BeS97] may be preferred. This scheme works rather
well in practice, but we present a faster ternary scheme that obviates subscript range
checking. Our scheme is only slightly slower than binary schemes when the elements are
distinct; it thus combines reliability and efficiency. We add that the implementation of
[FIR75a], like several popular implementations of FIND, avoids random number generation
by assuming that the input file is in random order, but this results in poor performance on
some inputs of [Val00]; hence our implementation of SELECT employs random sampling.

Our computational experience shows that SELECT outperforms even quite sophisticated
implementations of FIND in both comparison counts and computing times. To save space,
only selected results are reported for the version of [Val00], but our experience with other
versions on many different inputs was similar. SELECT turned out to be more stable than
FIND, having much smaller variations of solution times and numbers of comparisons. Quite
suprisingly, contrary to the folklore saying that SELECT is only asymptotically faster than
FIND, SELECT makes significantly fewer comparisons even for small inputs.

To relate our results with those of [Kiw02], let’s call QSELECT the quintary method
of [Kiw02] stemming from [FIR75b, §2.1). QSELECT eliminates almost all elements on its
first call by using two pivots, almost sure to be just below and above the kth element,
in a quintary partitioning scheme. Thus most work occurs on the first call of QSELECT,
which corresponds to the first two calls of SELECT. Hence SELECT and QSELECT share



the same efficiency estimates, and in practice make similarly many comparisons. However,
QSELECT tends to be slightly faster on median finding: although its quintary scheme is
more complex, most of its work is spent on the first pass through X, whereas SELECT first
partitions X and then the remaining part (about half) of X on its second call to achieve a
similar problem reduction. On the other hand, SELECT makes fewer comparisons on small
inputs. Of course, future work should assess more fully the relative merits of SELECT and
QSELECT. For now, the tests reported in [Kiw02] and in §7 suggest that both SELECT
and QSELECT can compete successfully with refined implementations of FIND [Val00].

The paper is organized as follows. A general version of SELECT is introduced in §2,
and its basic features are analyzed in §3. The average performance of SELECT is studied in
84. A modification that improves practical performance is introduced in §5. Partitioning
schemes are discussed in §6. Finally, our computational results are reported in §7.

Our notation is fairly standard. |A| denotes the cardinality of a set A. In a given
probability space, P is the probability measure, E is the mean-value operator and P[-|€] is
the probability conditioned on an event £; the complement of £ is denoted by &£’.

2 The algorithm SELECT

In this section we describe a general version of SELECT in terms of two auxiliary functions
s(n) and g(n) (the sample size and rank gap), which will be chosen later. We omit their
arguments in general, as no confusion can arise.

Algorithm 2.1.
SELECT(X, k) (Selects the kth smallest element of X, with 1 < k < n:= |X]|)

Step 1 (Initiation). If n = 1, return z;. Choose the sample size s < n — 1 and gap g > 0.
Step 2 (Sample selection). Pick randomly a sample S := {y1,...,ys} from X.
Step 3 (Pivot selection). Let v be the output of SELECT(S, i,), where

.| min {[ks/n+g],s} ifk<n/2,
= { max{[ks/n—i],l} if k>n/2. (1)

Step 4 (Partitioning). By comparing each element z of X \ S to v, partition X into the
threesets L:={zr € X :z<v},E:={re X:z=v}and U:={z € X :v <z}
Step 5 (Stopping test). If |L| < k < |L U E|, return v.

Step 6 (Reduction). If k < |L|, set X =1L, n:= |X| and k = k; else set X := U,
ft:=|X|and k :== k— |LUE]|.

Step 7 (Recursion). Return SELECT(X, k).
A few remarks on the algorithm are in order.

Remarks 2.2. (a) The correctness and finiteness of SELECT stem by induction from the
following observations. The returns of Steps 1 and 5 deliver the desired element. At Step



6, X and k are chosen so that the kth smallest element of X is the kth smallest element
of X, and 7 < n (since v & X). Also |S| < n for the recursive call at Step 3.

(b) When Step 5 returns v, SELECT may also return information about the positions
of the elements of X relative to v. For instance, if X is stored as an array, its k& smallest
clements may be placed first via interchanges at Step 4 (cf. §6). Hence Step 4 need only
compare v with the elements of X \ S.

(¢) The following elementary property is needed in §4. Let ¢, denote the maximum
number of comparisons taken by SELECT on any input of size n. Since Step 3 makes at
most ¢, comparisons with s < n, Step 4 needs at most n — s, and Step 7 takes at most ¢;
with 7 < n, by induction ¢, < oo for all n.

3 Sampling deviations

In this section we analyze general features of sampling used by SELECT. Our analysis
hinges on the following bound on the tail of the hypergeometric distribution established
in [Hoe63] and rederived shortly in [Chv79].

Fact 3.1. Let s balls be chosen uniformly at random from a set of n balls, of which r
are red, and 1’ be the random variable representing the number of red balls drawn. Let
p:=r/n. Then

P[r'>ps+g] <e s Vg > 0. (3.1)

Denote by z7 < ... < z;, and y§ < ... <y} the sorted elements of the input set X and
the sample set S, respectively, so that v = y; . The following result will give bounds on
the position of v in the sorted input sequence.

Lemma 3.2. Suppose 7 := max{1, min([xs],s)}, 7 := max{[kn — gn/s],1}, and 3, :=
min{[kn + gn/s],n}, where —g < ks < s+g,1<s<nandg>0. Then:

(a) Plyr < @3] < e™° if 1> [&s].

(b) Pla;, <] < e if < [ks].

Proof. Note that —g < ks < s+ ¢ implies that 7; < n and 7, > 1 are well-defined.

(a) If y; < x}, at least 7 samples satisfy y; < 7, where r := MaXy: <z; j. In the
setting of Fact 3.1, we have r red elements z; < z}, ps = rs/n and 7 > 7. Now,
1<r<7—1implies 2 < 5 = [kn—gn/s] < kn—gn/s+1,s0o —rs/n > —ks+ g. Hence
i—ps—g>ks—ks+g—g=0,ie,r" >ps+g. Thus Ply; <z}] < e~29°/* by (3.1).

(b) If 2} < y;, s —7+ 1 samples are at least 23, with 7:= maXgs—gs J. Thus we have
r:=n—Jred elements z; > 2}, ps =s —Js/n and r' > s — 7+ 1. Since 7 < ks + 1 and
n>7>75>kn+gn/s,weget s—i+1—ps—g>js/n—ks—g>ks+g—ks—g=0.
Hence 1’ > ps + g and Pz}, < y;] < P[r' > ps +g] < e 27 by (3.1). O

We now bound the position of v relative to z}, =} and z} , where
ko Pk kro

ki :=max { [k —2¢gn/s],1} and k,:=min{[k+2gn/s],n}. (3.2)



Table 4.1: Sample size f(n) := n**In'/*n and relative sample size ¢(n) := f(n)/n.

n 103 104 105 106 5.10° 107 5.107 108
f(n) 190.449 972.953 4864.76 23995.0 72287.1 117248 353885 568986
¢(n) 190449 .097295 .048648 .023995 .014557 .011725 .007078 .005690

Corollary 3.3. (a) Plv < a}] < e 2" if i, = [ks/n+ g] and k < n/2.

(b) Pz}, < v] < e 2 if k <n/2.

(c) Plag < v] < e 2% if i, = [ks/n — g] and k > n/2.

(d) Plv < 2}] < e~ % if k > n/2.

(e) If k <n/2, then i, # [ks/n+ g] iff n < k+ gn/s; similarly, if k > n/2, then
iy # [ks/n—g] iff k< gn/s.

Proof. Use Lem. 3.2 with ks = ks/n + g for (a,b), and s = ks/n — g for (c,d). O

4 Average case performance

In this section we analyze the average performance of SELECT for various sample sizes.

4.1 Floyd-Rivest’s samples
For positive constants a and £, consider choosing s = s(n) and g = g(n) as
s := min {[af(n)],n — 1} and g := (Bslnn)"/? with f(n) := n**In'n. (4.1)

This form of g gives a probability bound €2/ = n=2 for Cor. 3.3. To get more feeling,
suppose @ = # = 1 and s = f(n). Let ¢(n) := f(n)/n. Then s/n = g/s = ¢(n) and it
will be seen that the recursive call reduces n at least by the factor 4¢(n) on average, i.e.,
¢(n) is a contraction factor; note that ¢(n) ~ 2.4% for n = 10°® (cf. Tab. 4.1).

Theorem 4.1. Let C,. denote the expected number of comparisons made by SELECT for
s and g chosen as in (4.1) with B > 1/6. There ezists a positive constant ~y such that

Cu <n+min{k,n—k}+vf(n) Vi<k<n. (4.2)

Proof. We need a few preliminary facts. The function @(t) := f(t)/t = (Int/t)*/® de-
creases to 0 on [e,00), whereas f(t) grows to infinity on [2,00). Let & := 4(8/a)'/?. Pick
7 > 3 large enough so that e — 1 < af(i) <7 — 1 and e < §f(n). Let @ := a+ 1/f(n).
Then, by (4.1) and the monotonicity of f and ¢, we have for n > 7

s<af(n) and f(s) < a¢(af(n))f(n), (4.3)
f(18f(m))) < f(6f(n)) < 64(3f(R))f (). (44)

[4,]



For instance, the first inequality of (4.3) yields f(s) < f(af(n)), whereas
f(af(n)) = ag(af(n))f(n) < ag(af(n))f(n).

Also for n > @i, we have s = [af(n)] = af(n) + € with € € [0,1) in (4.1). Writing
s = af(n) with @ := a + ¢/ f(n) € [a, @), we deduce from (4.1) that

gn/s = (B/a)'*f(n) < (B/a)"/*f(n). (4.5)
In particular, 4gn/s < 6 f(n), since & := 4(8/a)'/2. Next, (4.1) implies
ne~%7° < p'=% = f(n)nl/s_m In"3n. (4.6)

Using the monotonicity of f and ¢, increase 7 if necessary to get for all n > 7
2a¢(af (@) +66(5f(R)) + 202 + 2max { [§f (n)|*~#n=2 n"% } <0.95.  (47)

By Rem. 2.2(c), there is 7y such that (4.2) holds for all n < @; increasing <y if necessary,
and using the monotonicity of f and the assumption 4 > 1/6, we have for all n > 7t

2a + 26 + 502 In~13 n 4 3max { 81 f(n)=2 plA-2 113y } <0.05y. (4.8)

Let n’ > fi. Assuming (4.2) holds for all n < n/, for induction let n = n’ + 1.

We need to consider the following two cases in the first call of SELECT.

Left case: k < n/2. First, suppose the event & := {z} < v < z}_} occurs. By the rules
of Steps 4-6, we have X = L (from 2} < v), k = k and 7 := |X| < k, — 1 (from v < zr, )
since k. < k + 2gn/s+ 1 by (3.2), we get the two (equivalent) bounds

i< k+2gn/s and A —k < 2gn/s. (4.9)

Note that if i, = [ks/n + g] then, by Cor. 3.3(a,b), the Boole-Benferroni inequality
and the choice (4.1), the complement & of & has P[E]] < 2e727* = 2n~%. Second, if
iy # [ks/n+ g], then n < k+gn/s (Cor. 3.3(e)) combined with k < n/2 gives n < 2gn/s;
hence i —k <A <n < 2gn/s implies (4.9). Since also & implies (4.9), we have

PlA] <207 for A := {fz —k<2gn/s } (4.10)

Right case: k > n/2. First, suppose the event £, := {z}, < v < x}} occurs. By the
rules of Steps 4-6, we have X = U (from v < z}), A —k =n—k and 7 := | X| < n — ki
(from zf, < v); since ky > k — 2gn/s by (3.2), we get the two (equivalent) bounds

A<n—k+2gn/s and k< 2gn/s, (4.11)

using 7 — k =n — k. If i, = [ks/n — g] then, by Cor. 3.3(c,d), the complement &/ of &,
has P[E] < 2e~%* = 2n~28 Second, if i, # [ks/n — g], then k < gn/s (Cor. 3.3(e))
combined with k& > n/2 gives n < 2gn/s; hence k < < n < 2gn/s implies (4.11). Thus

PlA <27 for A, := {I: <2gn/s } (4.12)
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Since k <n—kifk<n/2,n—k<kif k>n/2, (4.9) and (4.11) yield
PB)<2n™® for B:={n<min{kn—k}+2gn/s}. (4.13)

Note that min{k,n — k} < |n/2] < n/2; this relation will be used implicitly below.

For the recursive call of Step 7, let §, § and 7, denote the quantities generated as in
(4. 1) and (2.1) with n and k replaced by 7 and E, let % be the pivot found at Step 3, and
let X, 7 and k correspond to X, 7 and k at Step 7, so that 7 := | X| < f.

The cost of selecting v and ¥ at Step 3 may be estimated as

Cyi, + Csi, <155+ 7f(s) + 1.58 + vf(8) < 3s+ 2vf(s), (4.14)
since f is increasing and (4.2) holds for § < s <n—1=n' (cf. (4.1)) from 7. < n.
Let ¢ := n — s and é := 7 — § denote the costs of Step 4 for the two calls. Since
0 < é < n and E¢ = E[¢|B|P[B] + E[¢|B'|P(B'] < E[¢|B] + nP[B'], by (4.13) we have
c+Eé¢<n—s+min{kn—k}+2gn/s+2n' "%, (4.15)
Using (4.2) again with 72 < n, the cost of finishing up at Step 7 is at most
EC,; < E[1.50 + vf(7)] = 1.5Ea + 7Ef(1). (4.16)

Thus we need suitable bounds for Eft and Ef(72), which may be derived as follows.
To generalize (4.13) to the recursive call, consider the events

B:={n<min{ka—-k}+200/3} and C:={n<|5f(n)]}. (4.17)
By (4.10) and (4.12), BN A; and BN A, imply C, since 2gn/s+ 2gn/s < §f(n) by (4.5)
with # < n and & := 4(8/a)/2. For the recursive call, proceeding as in the derivation of
(4.13) with n replaced by 7 = i, k by k, etc., shows that, due to random sampling,
PB|A, =1 <2 % and P[B|A, 7 =i] <2 % (4.18)
In the left case of k < n/2, using 72 < n and P[A]] < 2n~% (cf. (4.10)), we get
En = E[it| A|P[A] + E[#|A]|P[A4]] < E[i|A)] + n2n=2".
Partitioning A; into the events D; := A, N {7 =i}, i =0:n — 1 (7 < n always), we have

n—1

E[n|A] = Z E[n|D;]P[D;]A)] < Inax E[n|'D]

where E[i|D] < [6f(n)] if i < [6f(n)] + 1, because 72 < 72 always. As for the remaining
terms, BNA; C C implies P[C'|D;] < P[B’ID] < 2i7%8 by (4.18), where C := {i < |6 f(n)]}
and 7t < 7 = 4 when the event D; occurs, so E[i|D;] < [0f(n)] + i2i25. Hence

. alD: < j1-28
pax, B[a[Di] < |3f(n)] + Y



where the final term is omitted if |6 f(n)| > n — 3; otherwise it is at most
2 max{ ([6f(n)] +1)1=28 n!=2 } < 2max { O f ()% 313y } f(n),

since max;_ss(ny)+1:n 2612 is bounded as above (consider 8 > 1/2, then 3 < 1/2 and use
df(n) < |6f(n)] + 1, the monotonicity of f and (4.6) for the final inequality). Collecting
the preceding estimates, we obtain

Eii < [6f(n)] + 20" 4 2max { §P f(n) ™ 0P L f(n). (4.19)
Similarly, replacing 7 by f(7) in our derivations and using the monotonicity of f yields

Ef(i) < f(16f(n)]) + 2f(n)n~* + 2f(i)i%, (4.20a)

max
i=[df(n)|+2:n—1

where the final term is omitted if |6 f(n)] > n — 3; otherwise it is at most

2111ax{ ———(flgl}s{:;)i-;)il, % } < 2max { [6f(n)]2/3_2’3n_2/3,n_w } f(n). (4.20b)

To see this, use the monotonicity of f and the fact that for i < n (cf. (4.1))
F@)i~%/ f(n) = i3 Pn=23(Ini/ Inn)V/? < 232723,

For the right case, replace A; by A, in the preceding paragraph to get (4.19)—(4.20).
Add the costs (4.14), (4.15) and (4.16), using (4.19)—(4.20), to get

Cok <35+ 27f(s) +n — s+ min{ k,n — k } + 2gn/s + 2n'~%
+ 1.5|6f(n)] + 3n'=% + 3max { 812 f(n)=% p\/3-W I~y } f(n)
Ff(5F)]) + 29 S () + 2y ma { (S5, n= ) f(m).

Now, using the bounds (4.3)-(4.4), 2gn/s < 1§ f(n) (cf. (4.5)) and (4.6) gives

Cok <n+min{k,n—k}
+[26 425+ 50 ™ n + 3max { 8% f(n) ™%, 0P ™ n } | f(n)
+ [2&¢(&f(ﬁ)) + 8¢(6f(7)) + 2n~% + 2max { [6f(n))/3-2n~23 =% }] vf(n).

By (4.7)-(4.8), the two bracketed terms above are at most 0.05yf(n) and 0.95vf(n),
respectively; thus (4.2) holds as required. 0

4.2 Other sampling strategies

We now indicate briefly how to adapt the proof of Thm 4.1 to several variations on (4.1);
a choice similar to (4.21) below was used in [FIR75a).



Remarks 4.2. (a) Theorem 4.1 remains true for § > 1/6 and (4.1) replaced by
s := min {[a712/3] ,n— 1} , g:= (Bslnn)/? and f(n) :=n**In'/?n. (4.21)

Indeed, using €% — 1 < an®? < a1, €2 < 6f(7), @ := a+ 723 and s = an®3 with
& € [a, @) yields (4 3)—(4.5) as before, and 172 replaces In™/3 in (4.6), (4.8) and (4.19).
(b) Theorem 4.1 holds for the following modification of (4.1) with ¢ > 1

s:=min{[af(n)],n — 1} and g := (BsIn“n)"/? with f(n) := n*3In“n, (4.22)

First, using e — 1 < af(a) < 7 — 1 and e* < §f(7) gives (4.3)-(4.5) as before. Next,
fix g > 1/6. Let B, := fIn“~ 'n. Increase 7 if necessary so that §; > B for all i >
min{7, [§f(72)]}; then replace 4 by 8 and In"'/* by In"/? in (4.6) and below.

(¢) Several other replacements for (4.1) may be analyzed as in [Kiw02, §§4.1-4.2].

(d) None of these choices gives f(n) better than that in (4.1) for the bound (4.2).

We now comment briefly on the possible use of sampling with replacement.

Remarks 4.3. (a) Suppose Step 2 of SELECT employs sampling with replacement. Since
the tail bound (3.1) remais valid for the binomial distribution [Chv79, Hoe63], Lemma
3.2 is not affected. However, when Step 4 no longer skips comparisons with the elements
of S, —s in (4.15) is replaced by 0; the resulting change in the bound on C, only needs
replacing 2@ in (4.8) by 3@. Hence the preceding results remain valid.

(b) Of course, sampling with replacement needs additional storage for S. However,
the increase in both storage and the number of comparisons may be tolerated because the
sample sizes are relatively small.

4.3 Handling small subfiles

Since the sampling efficiency decreases when X shrinks, consider the following modifica-
tion. For a fixed cut-off parameter n > 1, let sSelect(X, k) be a “small-select” routine
that finds the kth smallest element of X in at most Cy < 0o comparisons when | X| < 7y
(even bubble sort will do). Then SELECT is modified to start with the following

Step 0 (Small file case). If n := | X| < new, return sSelect(X, k).

Our preceding results remain valid for this modification. In fact it suffices if Cpy
bounds the ezpected number of comparisons of sSelect(X, k) for n < ngy. For instance,
(4.2) holds for n < ney, and y > Cey, and by induction as in Rem. 2.2(c) we have Cyy, < 00
for all n, which suffices for the proof of Thm 4.1.

Another advantage is that even small n¢,, (1000 say) limits nicely the stack space for
recursion. Specifically, the tail recursion of Step 7 is easily eliminated (set X := X, k=k
and go to Step 0), and the calls of Step 3 deal with subsets whose sizes quickly reach ngy.
For example, for the choice of (4.1) with @ = 1 and n, = 600, at most four recursive
levels occur for n < 23! ~ 2.15 - 10°.



5 A modified version

We now consider a modification inspired by a remark of [Bro76]. For k close to [n/2], by
symmetry it is best to choose v as the sample median with i, = [s/2], thus attempting
to get v close to xj, instead of Tfy_,/q O T]tign/s); then more elements are eliminated.
Hence we may let

[ks/n+g] ifk<n/2—gn/s,
1y 1= { [s/2] ifn/2—gn/s<k<n/2+gn/s, (5.1)
[ks/n—g] ifk>n/2+gn/s.

Note that (5.1) coincides with (2.1) in the left case of k < n/2 — gn/s and the right case
of k > n/2 + gn/s, but the middle case of n/2 — gn/s < k < n/2 + gn/s fixes i, at the
median position [s/2]; in fact 4, is the median of the three values in (5.1):

i, := max {min ( [ks/n + g],[s/2]),[ks/n—g] }. (5.2)

Corollary 3.3 remains valid for the left and right cases. For the middle case, letting
ji:=max{[n/2—-gn/s],1} and j, :=min{[n/2+gn/s],n}, (5.3)

we obtain from Lemma 3.2 with £ = 1/2 the following complement of Corollary 3.3.

Corollary 5.1. Plv < z}] < e %* and Pz}, < v] < e if n/2 —gn/s < k <
n/2+gn/s.

Theorem 5.2. Theorem 4.1 holds for SELECT with Step 3 using (5.1).

Proof. We only indicate how to adapt the proof of Thm 4.1 following (4.8). As noted
after (5.1), the left case now has k < n/2 — gn/s and the right case has k > n/2 + gn/s,
so we only need to discuss the middle case.

Middle case: n/2 — gn/s < k <n/2+ gn/s. Suppose the event &, := {2}, <v <1} }
occurs (note that P[€] < 2e207* = 2n=2 by Cor. 5.1). If X = L then, by the rules of
Steps 4-6, we have k = k and 7 < j, — 1; since j, < n/2 + gn/s + 1 by (5.3), we get
i < n/2+ gn/s. Hence k > n/2 — gn/s yields i < k +2gn/s and 7t — k < 2gn/s as in
(4.9). Next, if X =U theni—k=n—kandk:=k—|LUE|,so LUE = {z € X :
r < v} 3z} gives k < k — j. Since k < n/2+ gn/s and j, > n/2 — gn/s by (5.3), we get
k < 2gn/s and A < A — k + 2gn/s as in (4.11); further, & < n — j; yields & < n/2 + gn/s.
Noticing that n/2 — gn/s < k < n/2+ gn/s implies n/2 < min{k,n — k} + gn/s, we have
7 < min{k,n — k} + 2gn/s in both cases.

Thus in the middle case we again have (4.13) and hence (4.15); further, by (4.10) and
(4.12), the event &,, C A; U A, is partitioned into &,, N A; and &, N A; N A,.

Next, reasoning as before, we see that (4.18) and hence (4.19)-(4.20) remain valid in
the left and right cases, whereas in the middle case we have

PB|Em, At =i) < 2i°% and  PB|E, A}, A7 = 1] < 2072 (5.4)
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In the middle case, Ei = E[t|€,,|P[E] +E[1|E,]P[EL,] is bounded by E[i1|E,,] +2n! =28
since P[€!] < 2n~% and # < n always. Next, partitioning &, into &, N A, and &, N
AN A,, we obtain E[it|€,,] < max{E[i|Ey, Al], E[A|Em, A}, A;]}, where E[n|E,,, Aj] and
E[##|Em, A}, A;] may be bounded like E[fi|.A;] and E[n|A,] in the left and right cases to get
(4.19). Then (4.20) is obtained similarly, and the conclusion follows as before. 0

6 Ternary and binary partitioning

In this section we discuss ways of implementing SELECT when the input set is given as an
array z[1:n). In particular, we recall the ternary partitioning scheme of [BeM93, BeS97]
and its modification of [Kiw02] that obviates subscript range checking.

The following notation is needed to describe the operations of SELECT in more detail.

Each stage works with a segment z[l: 7] of the input array z[1:n], where 1 <I <7 <n
are such that z; < z; for i = 1:1 — 1, 2, < z; for ¢ = r + 1:n, and the kth smallest
element of z[1:n] is the (k — [ + 1)th smallest element of z[l:7]. The task of SELECT is
extended: given z[l:r] and | < k < r, SELECT(z,l, 7, k,k_, k) permutes z[l: 7] and finds
I <k_<k<ky<rsuchthat z; <ax foralll <i<k_, z; =a for all k- < i < kg,
x; > xy, for all ky <4 <. The initial call is SELECT(z, 1,n,k, k_, k).

A vector swap denoted by z[a: b] < z[b+1: ¢] means that the first d := min(b+1—a, c—b)
elements of array z[a: ¢] are exchanged with its last d elements in arbitrary order if d > 0;
e.g., we may exchange Z,4; « Te—; for 0 < i < d, or Ty & Te_gy14:i for 0 <7 < d.

6.1 Ternary partitions

For a given pivot v := x} from the array z[l: 7], the following ternary scheme partitions
the array into three blocks, with z,, < v for | <m < a, z,, = v fora <m < b, z,,, > v for
b < m < r. The basic idea is to work with the five inner parts of the array

[z<v]z=v]z<v] ? Ja>v]z=v][z>v]

— - (6.1)
l l P i g q 7 i
until the middle part is empty or just contains an element equal to the pivot
c=v|r<v|z=v|z>v|z=v
[E=v[e<v[e=v[e>v]z=7] P

I p g i q T

(i.e., j =i—1or j =i—2), then swap the ends into the middle for the final arrangement

l.’l?<’U!.”L‘='U[],‘>’U]

6.3
l a b 7 (6:3)

A1l. [Initialize.] Set v := 23, and exchange &) < xy. Set i :=1[:=1, p:=1+1, ji=7:=r,
qg:=r—1 Ifv<a,set7:=r—1 If v >z, exchange z; < z, and set [ := 1+ 1.

A2. [Increase i until z; > v.] Increase ¢ by 1; then if 2; < v, repeat this step.
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A3. [Decrease j until 2; < v.] Decrease j by 1; then if ; > v, repeat this step.

A4. [Exchange.] (Here z; <v < a;.) If i < j, exchange z; xj; then if z; = v, exchange
x; « x, and increase p by 1; if 2; = v, exchange z; < x, and decrease ¢ by 1; return
to A2. If i = j (so that x; = x; = v), increase ¢ by 1 and decrease j by 1.

A5. [Cleanup.] Exchange z{l:p — 1] « z[p:j] and z[i:q] < z[g + 1:7]. Finally, set
a:=l+j—p+landb:=F—q+i—1.

Step Al ensures that 2; < v < z,, so steps A2 and A3 don’t need to test whether 7 < j.
However, this scheme involves two extraneous comparisons (only one when ¢ = j at A4).
Consider, therefore, the following scheme of [BeM93, BeS97] and [Knu97, Ex. 5.2.2-41],
also based on the arrangements (6.1)-(6.3) with [ :={, 7 := r and final j =i — 1.

B1. [Initialize.] Set v := =z and exchange x; « x;. Set i := p := [+ 1, [ := [ and
ji=qi=Fi=r.

B2. [Increase i until z; > v.] If i < j and z; < v, increase ¢ by 1 and repeat this step. If
i < j and z; = v, exchange z, < z;, increase p and ¢ by 1, and repeat this step.

B3. [Decrease j until z; < v.] If i < j and z; > v, decrease j by 1 and repeat this step.
If i < j and z; = v, exchange z; < z,, decrease j and ¢ by 1, and repeat this step.

B4. [Exchange.] If i < j, exchange z; < z;, increase ¢ by 1, decrease j by 1, and return
to B2.

B5. [Cleanup.] Swap z[l: p— 1] & z[p: j] and z[i: g] > x[g+1:7]. Finally, set a :=[+i—p
and b:=7—q+j.

Relative to scheme A, scheme B saves one or two v-comparisons at the expense of r — [ +2

comparisons of ¢ vs. 5. Since for usual choices of ngy, we have r — [ > 2 in SELECT and

relatively few small partitions in sSelect, scheme A is faster than B unless the cost of key

comparisons is extremely large.

6.2 Preparing for ternary partitions

At Step 1, r — I + 1 replaces n in finding s and g. At Step 2, it is convenient to place the

sample in the initial part of z(l: r] by exchanging 2; <> i} and(r—i) for | <@ <7y :=1+s—1,

where rand(r — ¢) denotes a random integer, uniformly distributed between 0 and r — 3.
Step 3 uses ¢ := k—1+1 and m := r—1+1 instead of k and n to find the pivot position

. min {[I =1+4is/m+g],rs} ifi<m/2, (6.4)
VT max{[l—1+is/m—g],l} ifi>m/2, '

s0 that the recursive call of SELECT(z,l, 4, ky, k , k) produces v := zy, .
After v has been found, our array looks as follows

|1‘<vl T=v ll‘>1}] ? ]
l ky kY T r (e
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Setting [ := k;, p:=k} + 1,7 :=r—r,+k} and q := 7, we swap z[p:r,] & z[r, + 1:7); if
k} = ry, we exchange Ty < T, and decrease p and ¢ by 1. This yields the arrangement
of (6.1), so we may use either scheme A of §6.1 with initial  := p — 1, j := ¢+ 1 and step
A1 omitted, or scheme B with i := p, j := ¢ and step B1 omitted.

After partitioning [ and r are updated by setting l :=b+1ifa <k, r:=a—-1ifk <b.
If | > r, SELECT may return k_ :=ky :=kifl=7r, k_:=r+land ky :=1—1ifl > r.
Otherwise, instead of calling SELECT recursively, Step 6 may jump back to Step 1, or to
Step 0 if sSelect is used (cf. §4.3).

A simple version of sSelect is obtained if Steps 2 and 3 choose v := 2, whenr—[+1 <
New (this choice of [FIR75a] works well in practice, but more sophisticated pivots could be
tried); then the ternary partitioning code can be used by sSelect as well.

6.3 Binary partitions

We now consider a binary version of SELECT, called BSELECT, which employs less refined
but potentially faster partitioning. This version works with z[l: 7] such that z; < z; for
i=1:1-1, 2, <z for i =r+ 1:n, and its task is standard: given z[l:7] and | < k <7,
BSELECT(z,l, 7, k) permutes z[l: ] so that z; < xy for all [ < i < k, and z; < =; for all
k < i < r; the initial call is BSELECT(z, 1,n, k).

For a given pivot v := z from the array z[l: 7], the following binary scheme partitions
the array into three blocks, with z,, <vforl <m < a, z, =v fora <m < b, v < z,, for
b < m < r; usually a = b and the middle block is singleton.

C1. [Initialize.] Set v := z) and exchange x; & zx. Set i :=p:=1and j:=7. If v > z,,
exchange z; <« z, and set p :=r. (Thus 2; < v = z; < z, always.)

C2. [Increase i until z; > v.] Increase ¢ by 1; then if z; < v, repeat this step.
C3. [Decrease j until ; < v.] Decrease j by 1; then if z; > v, repeat this step.

C4. [Exchange.] (Here z; < v < z;.) If i < j, exchange z; < z; and return to C2. If
i =j (so that z; = z; = v), increase ¢ by 1 and decrease j by 1.

C5. [Cleanup.] If p # r, exchange z; < x;, set a := j and b := i — 1; otherwise exchange
T > Tp,set a:=j+ 1and b:=1.

The setup of §6.2 changes as follows. Step 3 calls BSELECT(z, [, 75, k) to find v := 2y, ;
then (6.5) changes to

[z<v][v]a>v] 7]
l k, Tq r

(6.6)

Setting i :=p := k, and j := 1 — 1y + ky, we swap zi + L:7y] o z[ry + Lir —1]. If v > 2,
we exchange x; < z, and set p := r. Then we may use scheme C (with C1 omitted) for
updating { and r, also in sSelect as in §6.2.

The inner loops of schemes A and C (i.e., A2, A3, C2, C3) coincide, whereas C4 is like
A4 without its equality tests and associated updates. When equal elements are absent,.
scheme C (although not equivalent to A) yields correct partitions for Step 4. When equal
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elements occur, its partitions needn’t meet the requirements of Step 4, but are still usable,
because r—[ shrinks. In effect, BSELECT works like SELECT in the case of distinct elements,
but may require more comparisons otherwise.

7 Experimental results

7.1 Implemented algorithms

An implementation of SELECT was programmed in Fortran 77 and run on a notebook
PC (Pentium II 400 MHz, 256 MB RAM) under MS Windows 98. The input set X was
specified as a double precision array. For efficiency, the recursion was removed and small
arrays with n < n,, were handled as if Steps 2 and 3 chose v := zy; the resulting version
of sSelect (cf. §§4.3 and 6.2) typically required less than 3.5n comparisons. The choice of
(4.21) was employed, with the parameters a = 0.5, # = 0.25 and n, = 600 as proposed
in [FIR75a); future work should test other sample sizes and parameters.
A similar implementation of BSELECT was programmed as described in §6.3.

7.2 Testing examples

As in [Kiw02], we used minor modifications of the input sequences of [Val00]:
random A random permutation of the integers 1 through n.

onezero A random permutation of [n/2] ones and |n/2] zeroes.

sorted The integers 1 through n in increasing order.

rotated A sorted sequence rotated left once; i.e., (2,3,...,n,1).

organpipe The integers 1 through n/2 in increasing order, followed by /2 through 1 in
decreasing order.

m3killer Musser’s “median-of-3 killer” sequence with n =45 and k = n/2:

-2 k—=1Fk k+1 ... 2k-2 2k—1 2k)

1 2 3 4 ...k
3 k-1 2 4 ... 2c-2 2k-1 2k

1 k+1 3 k+3 ... 2k

twofaced Obtained by randomly permuting the elements of an m3killer sequence in po-
sitions 4|log, n| through n/2 — 1 and n/2 + 4|log, n] — 1 through n — 2.

For each input sequence, its (lower) median element was found.
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Table 7.1: Performance of SELECT on randomly generated inputs.

Sequence  Size Time [sec] Comparisons [n]  Yavg Lavg Pavg Navg Pavg  Savg
n avg max min avg max min [n] [Inn] [Inn] [%n]

random 50K 0.01 0.06 001 167 176 1.60 1.88 1.67 045 0.55 8.03 2.63
100K 0.02 0.06 001 162 167 158 168 162 0.61 0.69 7.81 2.12

500K 0.06 0.11 0.05 156 1.63 153 141 156 067 0.75 845 1.19

iIM 0.13 0.17 0.11 155 159 153 123 155 070 0.77 838 0.92

2M 023 0.28 0.22 154 157 152 1.19 154 077 084 848 0.72

4M 047 050 044 153 155 152 1.13 153 086 0.92 835 0.57

8M 091 099 082 152 154 151 1.05 152 088 094 8.27 0.44

16M 182 193 170 152 153 151 1.11 152 094 1.00 833 0.35

onezero 50K 0.01 0.05 0.01 133 151 100 0.00 133 024 018 123 199
100K 0.01 0.06 0.01 1.10 1.51 1.00 0.00 1.10 0.21 0.16 1.22 1.27

500K 0.08 0.11 0.05 125 150 1.00 0.00 125 0.26 0.14 1.24 0.86

1M 0.16 0.22 0.11 1.20 150 1.00 000 120 023 0.13 123 0.65

2M 033 039 022 130 150 1.00 000 130 026 0.14 1.19 0.56

4M 062 072 049 125 150 1.00 000 125 0.22 0.12 1.24 0.43

8M 124 148 099 125 150 1.00 0.00 125 0.22 0.12 128 034

16M 262 297 203 133 150 1.00 000 133 022 0.12 112 0.29

twofaced 50K 0.01 0.06 001 167 179 1.60 193 167 049 058 821 2.66
100K 0.02 006 001 162 167 156 158 1.62 059 068 7.15 2.10

500K 0.06 0.11 0.05 157 160 154 151 157 067 0.75 852 1.20

IM 0.12 0.17 0.11 155 159 153 136 155 0.72 080 855 0.93

2M 024 028 021 153 155 152 1.04 153 0.72 0.79 852 0.72

4M 045 050 044 153 155 151 1.06 153 082 0.88 829 0.56

8M 092 099 087 152 154 151 103 152 086 092 850 044

16M 1.81 193 171 152 153 151 1.08 152 095 100 843 0.35

7.3 Computational results

We varied the input size n from 50,000 to 16,000,000. For the random, onezero and
twofaced sequences, for each input size, 20 instances were randomly generated; for the
deterministic sequences, five runs were made to measure the solution time.

The performance of SELECT on randomly generated inputs is summarized in Table
7.1, where the average, maximum and minimum solution times are in seconds, and the
comparison counts are in multiples of n; e.g., column six gives Chyg/n, Where Cyyg is the
average number of comparisons made over all instances. Thus Yavg := (Cavg — 1.5n) 4/ f(n)
estimates the constant + in the bound (4.2); moreover, we have Cayg R Layg, Where Ly,
is the average sum of sizes of partitioned arrays. Further, P, is the average number of
SELECT partitions, whereas Ny, is the average number of calls to sSelect and payg is the
average number of sSelect partitions per call; both Py, and Ny, grow slowly with Inn
(linearly on the onezero inputs). Finally, sa. is the average sum of sample sizes; Savg/n??
drops from 0.97 for n = 50K to 0.88 for n = 16M on the random and twofaced inputs,
and oscillates about 0.7 on the onezero inputs, whereas the initial s/n??® ~ a = 0.5.
The results for the random and twofaced sequences are very similar: the average solution
times grow linearly with n (except for small inputs whose solution times couldn’t be



Table 7.2: Performance of SELECT on deterministic inputs.

Sequence  Size Time [scc] Comparisons  Yavg Lavg  Pavg  Navg  Pavg  Savg
n avg max min [n] [n] [Inn] [lnn] [%n]

sorted 50K 0.02 0.06 0.01 1.76 292 176 055 0.65 6.43 2.88
100K 0.02 0.06 0.01 1.73 311 173 069 0.78 6.44 2.33

500K 0.06 0.06 0.06 1.56 1.35 156 0.69 076 8.50 1.19

IM 009 0.11 0.05 1.56 1.51 156 065 0.72 7.00 094

2M  0.17 0.17 0.16 1.56 1.90 156 0.90 096 821 0.75

4M 032 033 0.27 1.54 1.73 154 079 086 9.85 0.58

8M 0.62 0.66 0.60 1.53 164 153 107 113 7.56 045

16M 121 121 1.20 1.563 1.71 153 102 109 6.61 0.36

rotated 50K 0.01 0.05 0.01 1.78 316 178 055 065 7.29 287
100K 0.02 0.06 0.01 1.73 313 173 061 069 7.88 230

500K 0.04 0.05 0.01 1.56 1.33 156 0.61 069 978 1.18

1M 0.09 0.11 0.06 1.56 152 156 0.72 080 7.36 0.94

2M  0.16 0.17 0.16 1.56 192 156 090 096 857 0.75

4M 032 033 027 1.54 1.71 154 0.86 092 893 0.58

8M 0.61 0.66 0.60 1.53 1.63 153 1.01 1.07 800 045

16M 121 121 1.21 1.53 1.72 153 1.02 109 822 0.36

organpipe 50K 0.01 0.05 0.01 1.66 1.74 166 046 0.55 8.33 2.59
100K 0.01 0.06 0.01 1.59 124 159 052 0.61 7.57 2.02

500K 0.05 0.06 0.01 1.54 089 154 061 0.69 878 1.15

iIM 011 0.11 0.11 1.53 0.68 153 051 0.58 9.13 0.89

2M 020 0.22 0.16 1.54 133 154 0.76 083 8.00 0.73

4M 040 044 0.38 1.53 1.12 153 092 099 740 0.57

8M 0.77 0.77 0.76 1.53 141 153 1.01 1.07 7.53 045

16M 153 1.54 148 1.52 1.38 152 109 115 742 0.35

m3killer 50K 0.01 0.06 0.01 1.65 1.67 165 046 0.55 8.83 2.55
100K 0.02 0.05 0.01 1.59 117 159 0.61 0.69 7.75 2.05

500K 0.05 0.06 0.05 1.54 092 154 0.61 069 633 1.16

M 0.11 0.11 0.11 1.53 0.83 1.53 058 0.65 9.89 0.90

2M 022 0.22 0.22 1.54 1.33 154 0.76 0.83 8.58 0.73

4M 043 044 038 1.53 1.19 1.53 092 099 887 0.57

8M 077 0.77 0.77 1.54 185 154 1.13 120 837 0.6

16M 148 149 148 1.52 1.08 152 1.09 115 816 0.35

measured accurately), and the differences between maximum and minimum times are
quite small (and also partly due to the operating system). Except for the smallest inputs,
the maximum and minimum numbers of comparisons are quite close, and Cjy, nicely
approaches the theoretical lower bound of 1.5n; this is reflected in the values of v,y,. The
results for the onezero inputs essentially average two cases: the first pass eliminates either
almost all or about half of the elements.

Table 7.2 exhibits similar features of SELECT on the deterministic inputs. The results
for the sorted and rotated sequences are very similar, whereas the solution times on the
organpipe and m3killer sequences are between those for the sorted and random sequences.

The results of Tabs. 7.1-7.2 were obtained with scheme A of §6.1; to save space, Table
7.3 gives only selected results for scheme B. Scheme B was slower than scheme A by about
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Table 7.3: Performance of SELECT with ternary scheme B.

Sequence  Size Time [sec] Comparisons [n]  Yavg Lavg Pavg Navg  Pavg  Savg
n  avg max min avg max min [n] [Inn] [Inn] [%n]

random 2M 0.28 033 027 154 157 152 1.18 154 077 083 8.18 0.72
4M 055 061 049 153 1.55 1.51 1.14 153 087 093 8.12 0.57

8M 1.09 1.16 1.04 152 154 151 105 152 089 095 8.14 044

16M 2.16 226 208 1.52 1.53 1.51 1.09 152 0.94 1.00 829 0.35

onezero 2M 049 055 038 1.30 150 1.00 000 130 0.26 0.14 1.19 0.56
4M 093 1.10 077 1.25 1.50 1.00 000 125 0.22 0.12 124 043

8M 187 220 153 125 150 1.00 000 125 022 0.12 128 034

16M 392 440 3.02 133 150 100 000 133 022 0.12 112 0.29

sorted 2M 022 022 022 15 156 156 190 156 090 0.96 843 0.75
4M 046 050 044 154 154 154 1.71 154 079 0.79 9.42 0.58

8M 088 0.88 0.87 1.53 153 153 162 153 1.13 120 6.79 045

I6M 1.73 1.76 1.70 1.53 1.53 1.53 1.71 1.53 1.02 1.09 6.61 0.36

20% on the random, twofaced, organpipe and m3killer inputs, 40% on the sorted and
rotated ones, and 50% on the onezero inputs.

The performance of BSELECT with the binary scheme C on the same inputs is given in
Table 7.4. SELECT with scheme A was slower than BSELECT by about 5% on the random,
twofaced, organpipe and m3killer inputs. Both were equivalent on the sorted and rotated
inputs. However, on the onezero inputs, BSELECT was slower by about 40% and made
excessively many comparisons and partitions.

The preceding results were obtained with the modified choice (5.1) of i,. For brevity,
Table 7.5 gives results for SELECT with scheme A and the standard choice (2.1) of ¢, on
the random inputs only, since these inputs are most frequently used in theory and practice
for evaluating sorting and selection methods. The modified choice typically requires fewer
comparisons for small inputs, but its advantages are less pronounced for larger inputs. A
similar behavior was observed for SELECT with scheme B and for BSELECT.

For comparison, Table 7.6 extracts from [Kiw02] some results of QSELECT for the
samples (4.1). As noted in §1, QSELECT is slightly faster than SELECT on larger inputs
because most of its work occurs on the first partition (cf. Layg in Tabs. 7.1 and 7.6). In
Table 7.7 we give corresponding results for RISELECT, a Fortran version of the algorithm of
[Val00]. For these inputs, RISELECT behaves like FIND with median-of-three partitioning
(because the average numbers of randomization steps, N4, are negligible); hence the
expected value of Cyyg is of order 2.75n [KMP97).

Our final Table 7.8 shows that SELECT beats its competitors with respect to the num-
bers of comparisons made (expressed as multiples of n) on small random inputs (100
instances for each input size n).

Our computational results, combined with those in [Kiw02], suggest that both SELECT
and QSELECT may compete with FIND in practice.

Acknowledgment. I would like to thank Olgierd Hryniewicz, Roger Koenker, Ronald
L. Rivest and John D. Valois for useful discussions.
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Table 7.4: Performance of BSELECT with binary scheme C.

Sequence  Size Time [sec] Comparisons [n]  Yavg  Lavg  Pavg  Navg  Pavg  Savg
n  avg max min avg max min [n] [Inn] [lnn] [%n]
random 2M 023 027 022 153 157 152 115 153 0.75 082 849 0.72
4iM 045 0.50 038 1.53 1.55 1.52 1.15 1.53 085 0.92 832 0.57
8M 087 094 082 152 154 1.51 1.05 152 088 094 823 044
16M 1.75 1.86 1.64 152 1.53 1.51 1.09 152 094 100 839 0.35
onezero 2M 044 049 043 269 269 269 3942 269 308 315 6.05 1.56
4M 090 094 087 269 2.69 269 4840 269 3.66 3.73 6.05 1.24
8M 1.77 182 175 269 269 269 59.52 269 420 4.26 6.13 0.98
16M 353 358 346 268 269 268 7329 268 476 482 6.18 0.78
sorted 2M 017 0.17 016 156 1.56 1.56 1.88 156 090 096 7.43 0.75
4M 033 033 033 154 154 154 1.72 154 0.79 0.86 931 0.58
8M 062 0.66 061 1.53 153 153 1.63 153 101 1.07 7.71 045
16M 121 121 120 153 153 153 170 153 1.02 1.09 7.50 0.36
Table 7.5: Performance of SELECT with the standard choice of i,,.
Sequence  Size Time [sec] Comparisons [n]  Yavg Lavg Pavg  Navg  Pavg  Savg
n avg max min avg max min [n] [Inn] [lnn] [%n]
random 50K 0.01 0.06 0.01 182 194 167 362 182 059 068 836 298
100K 0.02 0.06 001 177 186 171 3.71 177 0.76 0.85 7.57 240
500K 0.07 0.11 0.05 165 169 161 318 165 080 087 862 1.29
iM 014 017 011 160 163 155 280 160 089 096 832 0.99
2M 026 028 022 158 1.61 154 276 158 0.96 1.03 846 0.77
4M 052 055 049 1.57 159 1.54 277 157 116 1.23 813 0.60
8M 099 104 098 155 157 1.53 260 155 1.18 1.24 829 047
16M 194 198 192 154 155 153 254 154 119 125 872 0.36
Table 7.6: Performance of quintary QSELECT on random inputs.
Sequence  Size Time [sec| Comparisons [n]  Yavg Lavg Pave Navg Pavg  Savg
n avg max min avg max min [n] [Inn] [Inn] [%on]
random 50K 0.01 0.06 0.01 179 184 174 491 121 046 1.01 740 4.10
100K 0.02 006 0.01 173 177 170 477 115 043 096 8.03 3.20
500K 0.06 0.11 005 1.62 1.63 161 4.06 1.08 056 1.20 8.00 1.86
1M 0.12 0.17 011 159 160 1.58 3.95 106 0.67 140 795 147
2M 022 0.22 021 157 158 156 3.76 1.04 076 1.59 7.90 1.16
4M 043 044 038 1.56 156 1.55 3.63 103 095 195 729 0.92
8M 083 088 082 154 155 154 354 103 098 200 741 0.72
16M 162 165 159 153 154 153 339 102 100 205 7.77 0.57
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Table 7.7: Performance of RISELECT on random inputs.

Sequence  Size Time [sec] Comparisons [n]  Lavg  Nind
n avg max min avg max min [n]

random 50K 0.01 006 0.01 3.10 432 188 310 0.40

100K 0.03 0.06 0.01 261 4.20 1.77 261 0.25

500K 0.10 0.11 0.05 290 4.23 1.69 290 0.20

IM 018 022 011 281 364 184 281 035

2M 034 044 022 260 3.57 1.83 260 0.30

4M 0.77 138 044 2.88 481 1.83 2.88 0.55

8M 138 1.70 105 2.60 3.48 180 260 045

16M 3.00 4.01 1.75 299 449 1.73 299 045

Table 7.8: Numbers of comparisons made on small random inputs.

Size

1000 2500 5000 7500 10000 12500 15000 17500 20000 25000

avg 247 207 194 186 1.84 1.81 1.76 1.75 1.74 1.73

SELECT max 4.79 273 253 212 202 2.02 2.01 2.16 1.95 1.91

min 151 1.72 1.64 163 1.64 1.62 1.07 1.59 1.04 1.61

avg 2.82 254 226 214 208 204 1.99 1.96 1.95 1.91

QSELECT max 390 337 261 245 231 2.20 2.12 2.13 2.12 2.07

min  2.05 209 199 192 185 1.87 1.86 1.82 1.84 1.82

avg 2.72 284 266 2.71 272 2.82 2.78 2.75 2.75 2.84

RISELECT max 4.41 4.51 4.74 438 4.57 4.65 4.66 4.56 4.61 4.64

min 168 183 175 159 170 1.77 1.78 1.67 1.90 1.71
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