41/2002

Raport Badawczy
Research Report

RB/67/2002

Computing the Sets of K-Best Solutions for Discrete Optimization Problems

M. Gajda

Instytut Badań Systemowych Polska Akademia Nauk

Systems Research Institute Polish Academy of Sciences

POLSKA AKADEMIA NAUK

Instytut Badań Systemowych

ul. Newelska 6

01-447 Warszawa

tel.: (+48) (22) 8373578

fax: (+48) (22) 8372772

Kierownik Pracowni zgłaszający pracę: Prof. dr hab. inż. Krzysztof Kiwiel

Computing the sets of K-best solutions for discrete optimization problems

Magdalena Gajda System Research Institute Polish Academy of Science

December 23, 2002

1 Abstract

We present Lawer[1] procedure for finding the K-best solutions of discrete optimization problem and alternative Hamacher and Queyranne [4] approach. Then we introduce a new algorithm which is based on branch-and-bound method.

2 Keywords

Discrete optimization, K-best solutions, branch-and-bound method.

3 Introduction

In some cases it is useful to determinate not only the best solution but also 2nd the best,...,Kth best solution to a given problem. For example, when we add some restrictions which are not included in original problem and verify obtained solutions [1, 3].

We will consider a discrete optimization problem (P):

$$min\{f(x): x \in S\}$$
 (P)

$$x = (x_1, x_2, \cdots, x_n) \in \mathbb{S} \subseteq \mathbb{B}^n$$
,

where $\mathbb{B}^n = \{0,1\}^n$. The set of K-best solutions for discrete optimization problem (P) is formulated as follows. For given positive integer K any set $S(K) \subseteq S$, such that for any $x \in S(K)$ and $y \in S \setminus S(K)$ the inequality $f(x) \leq f(y)$ holds, is called the set of K-best solutions of the problem (P).

3.1 First Basic Computational Procedure

This simple computational procedure which ranks solutions from the first to the Kth has been proposed by Lawer [1]. Assume that if the feasible solution does not exist for some fixed values of variables, the value of an optimal solution is taken to be $+\infty$.

Step 0 (Start) Compute an optimal solution, without fixing the values of any variables, and place this solution in LIST as the only entry. Set k = 1.

Step 1 (Output kth solution) Remove the least costly solution from LIST and output this solution, denoted $x^{(k)} = (x_1^{(k)}, x_2^{(k)}, ..., x_n^{(k)})$, as the kth solution.

Step 2 (Test k) If k = K, stop; the computation is completed.

Step 3 (Augmentation of LIST) Suppose, without loss of generality, that $x^{(k)}$ was obtained by fixing the values of $x_1, x_2, ..., x_s$. Leaving these variables fixed as they are, create n-s new problems by fixing the remaining variables as follows:

(1)
$$x_{s+1} = 1 - x_{s+1}^{(k)},$$

(2) $x_{s+1} = x_{s+1}^{(k)}, x_{s+2} = 1 - x_{s+2}^{(k)},$
(3) $x_{s+1} = x_{s+1}^{(k)}, x_{s+2} = x_{s+2}^{(k)}, x_{s+3} = 1 - x_{s+3}^{(k)},$
 \vdots \vdots $(n-s) x_{s+1} = x_{s+1}^{(k)}, x_{s+2} = x_{s+2}^{(k)}, \dots, x_{n-1} = x_{n-1}^{(k)}, x_n = 1 - x_n^{(k)}.$

Compute optimal solutions to each of these n-s problems and place each of the n-s solutions in LIST, together with a record of the variables which were fixed for each of them. Set k=k+1. Go to $Step\ 1$.

The branching operation (in *Step 3*) excludes $x^{(k)}$, from further consideration. Lawer [1] describes also an application of this procedure into the ranking of the K shortest paths between two designated nodes of a network.

3.2 Second Basic Computational Procedure

This procedure has been proposed by Hamacher and Queranne [4]. Let f be an objective function discrete optimization problem and let S be the finite set of all feasible solutions. For any subset $S' \subseteq S$ let OPT(S') be the set of all optimal solutions restricted to S', i.e. the objective value of any $x \in OPT(S')$ is better than or equal to the objective value of any $y \in S'$.

We start with partition $\{S\}$ of S and calculate the best solution $x_1 \in OPT(S)$ and the second best solution y_1 of S. In the *i*-step of the algorithm we have a partition PART of S into *i* sets S_1, \dots, S_i , and $x_v \in OPT(S_v)$ ($v = 1, \dots, i$) such that $\{x_1, \dots, x_i\}$ is an *i*-optimal solution set of S. Moreover, we know the second best solution $y_v \in S_v$ for all S_v with $|S_v| > 1$. Thus,

$$y_i \in OPT\{y_v : |S_v| > 1, v = 1, \dots, i\}$$

is an (i+1)-best solution in S. Next, we part S_j into two sets $S^{(1)}$ and $S^{(2)}$ with $x_j \in S^{(1)}$ and $y_j \in S^{(2)}$. Thus, x_j and y_j are best solutions in $S^{(1)}$ and $S^{(2)}$. For i=1,2, if $|S^{(i)}| > 1$ we calculate the second best solution, replace S_j by $S^{(1)}$ and $S^{(2)}$ and continue with a new partition.

4 Branch-and-bound method for determining K-best solutions

4.1 Branch-and-Bound tree

We consider modification of branch-and-bound method to compute K-best solutions. This method ranks solutions from the best to the K-best, for predetermined positive integer K.

The dynamically generated *Branch-and-Bound Tree* (BBT) consists of nodes which corresponds to fixed values of variables. At first, the BBT has only one node: *root*, which corresponds to the state when none of variables is fixed. The BBT is expanded by branching on fixed variables.

For example consider the problem:

$$min\{f(x): x \in \mathbb{S}\}. \tag{1}$$

If $S \subseteq \{0,1\}^3$, we first divide S into $S_0 = \{x \in S : x_1 = 0\}$ and $S_1 = \{x \in S : x_1 = 1\}$. Then we divide S_0 in to S_{00} and S_{01} as well as S_1 in to S_{10} and S_{11} , and so on.

4.2 Description of the algorithm

Our problem (P) can be presented as follows:

$$min\{f(x): x \in S = \bar{S} \cap \mathbb{B}^n\},$$
 (P')

where:

$$min\{f(x): x \in \bar{S}\}$$

denotes the continuous relaxation of (P).

The modified branch-and-bound algorithm is started by calling the procedure EXPLORE, which has three parameters: the node X^0 , the list of nodes X and the set L. Initially the list X as well as the set L are empty and node X^0 is a root. During calculations the set L stores the best of found solutions. When the algorithm is completed and |S| > K, then L contains K-best solutions discrete optimization problem (P) otherwise L contains k-best solutions of problem (P) where k = |S|. The set L is also used to give the treshold value U in following way: if L contains K solutions then U is equal to the $\max\{f(l): l \in L\}$; otherwise U is defined as equal to infinity. The list X include nodes which will be evaluated. The BBT is expanded by fixing values of variables.

Procedure EXPLORE solves the discrete optimization problem relaxation i.e. the problem:

$$min\{f(x): x \in \bar{\mathbb{S}} \cap X^0\},\$$

denoted by $(f, \bar{\mathbb{S}}, X^0)$, where $X^0 = \{x \in \mathbb{S} : \text{value } x_i \text{ is fixed fore some } i \in \{1, \dots, n\}\}$ is a node chose in X. If for the obtained solution s : f(s) < U then X^0 is added to list X. If concurrently $s \in \{0, 1\}^n$ then s is added to set L.

If X^0 is not a root then procedure EXPLORE is called recurrently with parameters: the node $X^0 \cup \{\bar{x}\}$, where $\bar{x} = 1 - x$, for last fixing value of variable x, the list X and the set L. Next the node X^0 is removed from the list X.

If a list X is not empty then algorithm chooses the new node X^0 from X as follows. The X^0 is this node from the X for which the solution f(s) is minimal. Then a branching variable x and value of variable x are determined, and the procedure EXPLORE is called recurrently with parameters: the node $X^0 \cup \{x\}$, the list X and the set X.

The formal description of the modified branch-and-bound algorithm is given below.

```
input Discrete optimization problem (f, S) and some integer K.
output A set S(K) of K-best solutions (f, S) problem.
procedure EXPLORE(X^0, X, L)
  begin
     s \in argmin\{f(x) : x \in \bar{\mathbb{S}}\} for given X^0
     if f(s) < U then
       'add X^0 to X':
       if k = K then
          if s \in \{0,1\}^n, then
            'remove from L the most costly solution';
            L = L \cup \{s\}; U = \max\{f(s) : s \in L\};
       else
          if s \in \{0,1\}^n, then
          L = L \cup \{s\}; k = k + 1;
     end
  if X^1 \in X and X^0 \neq \emptyset then
     'remove X^1 from list X':
     EXPLORE(X^1 \cup \{\bar{x}\}, X, L);
  if |X| \neq 0 then
     begin
     'find X^0 \in X for which obtained solution f(s) is minimal';
     'determinate a branching variable x';
     X^1 = X^0;
     EXPLORE(X^0 \cup \{x\}, X, L);
end;
begin
  U = +\infty;
  S(K) = \emptyset;
  \text{EXPLORE}(\emptyset, \emptyset, S(K));
end
```

5 Conclusions

In my future work I will modify the procedure of computing the solution of discrete optimization problem in *CPLEX*6. I intend to apply the above algorithm and obtain procedure which computes the *K*-best solutions of binary linear programming problem.

References

- E.L. Lawer A procedure for computing the k-best solutions to discrete optimization problems and its applications to the shortest path problem. Managment Science 18 (1972) 401-407.
- [2] P. J. Brucker, H. W. Hamacher K-optimal solution sets for some polynomially solvable scheduling problems. European Journal of Operational Research 41 (1989) 194-202.
- [3] E. S. van der Poort, M. Libura, G. Sierksma, J. A. A. van der Veen -Solving the k-best traveling salesman problem. Computers & Operations Research 26 (1999) 409-425.
- [4] H. W. Hamacher, M. Queyranne k-best solutions to combinatorial optimizations problems. Annals of Operations Research 4 (1985) 123-143.
- [5] U. Derigs Some basic exchange properties in combinatorial optimization and their application to constructing the K-bes solutions. Discrete Applied Mathematics 11 (1985) 129 – 141.

