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Abstract 

In this paper the adjustment problem corresponding to linear pro­
gramming problems with explicit or implicit binary constraints is con­
sidered. It consists in finding less costly perturbations of weights in 
the original problem, which guarantee that the optimal solution of 
the perturbed problem belongs to the specified subset of feasible ·so­
lutions. We propose a method of solving problems of this type. The 
approach is based on using optimality conditions for corresponding 
linear programming relaxation. 
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1 Introduction 

Let X ~ ]Rn and c E ]Rn. We will consider a mathematical programming 
problem with linear objective function 

v(c,X) = max{cTx: x EX}. (P) 

Let F ~ X and !::,. ~ ]Rn. The adjustment problem related to (P) is stated 
as follows: 

a(F) = min{loll: v(c + o, X) = v(c + o, F), o Et:.}, (A) 

where lo! denotes a norm of o. In this paper we will consider mainly l1 norm, 
i.e., lo! = !ol1i = :E:':1 lo;j. 

The adjustment problem has been introduced in (9] . It can be interpreted 
in the following way: For a given problem (P) and its restriction defined 
by the solutions set F we want to find the less costly (in the sense of a 
given norm) and admissible (belonging to some specified sett:.) perturbations 
of coefficients in the objective function of (P) which guarantee that some 
optimal solution of the perturbed problem is also feasible (and thus - optimal) 
for this restriction of (P). 

If for example the problem (P) is the maximum weight tree problem in 
a given graph we may look for such perturbations of lengths of edges, that 
an optimal solution of perturbed problem forms a Hamiltonian path in this 
graph. Similarly, if (P) is a linear programming problem, then we may be 
interested in such perturbations of the objective function coefficients, which 
would guarantee that there is an optimal solution of the perturbed problem, 
satisfying additional restrictions, e.g. integrality restrictions. 

The adjustment problem may be infeasible, but - as we will see later - in 
some important cases its solution exists. 

When the restricted solution set F contains only a single element, i.e., 
F = {x0 }, then the adjustment problem becomes the so called inverse prob­
lem with respect to x 0 : 

i(x0 ) = a({x0 }) = min{loj: v(c+o,X) = (c+of x0 , o Et:.}, (I) 

The inverse problem (I) and some of its variants have attracted recently 
significant attention (see e.g. [1, 2, 3, 16, 17, 18]). Observe that immediately 
from the definitions of the adjustment problem and the inverse problem we 
obtain the following fact: 

Proposition 1 For F ~ X, 

a(F) = min{i(x) : x E F}. 
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2 The adjustment problem for linear program­
ming problem 

Let 
X = {x E Rn: Ax~ b, x 2 O}, 

where A E JR.mxn and b E JR.m . This case the problem (P) is a linear pro­
gramming problem 

v(c,X) = max{cTx: Ax~ b, x 2 O}. (2) 

The following lemma states optimality conditions for problem {2) (see 
e.g. [12]) : 

Lemma 1 A feasible solution x 0 is an optimal solution of the problem {2) if 
and only if there exists y E IR';' such that 

(i) ATy 2 c, 

{ii) cTxo = bTy. 

Given b,. ~ ]Rn and a feasible solution x 0 for (2), it follows from Lemma 
1 that the inverse problem with respect to x 0 can be stated as the following 
mathematical programming problem 

i(x0 ) = min 181 
ATy-8 2 c {ILP) 
bT y - c)T XO = CT XO 

Y 2 0, 8 E b. 

Observe that if b. is a polyhedral convex set in IR.n, then for 11 and 100 norms in 
IR.n the problem {ILP) can be easily stated as a linear programming problem. 

Let F = { x E X : Dx ~ d, x E S}, where D E JRPxn, d E JRP and S is 
some specified subset of Rn. Thus the restriction of the original problem {P) 
is defined by adding new linear constraints 

Dx ~ d 

and requiring that solutions belong to the set S. In the following we will 
usually assume that S = zn, where Z is the set of integers, or we will simply 
take S = lR.n . 
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The adjustment problem with respect to F can now be formulated as the 
following mathematical programming problem: 

a(F) min lcll 
ATy-cl? c 

bTy-cTx-clTx=O 

Ax :Sb 
Dx :S d 

x, y ? 0, cl E b., X E S 

(ALP) 

Observe, that even if b. is a polyhedral convex set and S = JR.", then (ALP) 
is no longer a linear programming 'problem due to nonlinear term clT x . 

3 Adjustment problem with binary restric­
tions 

Consider now a special case of the adjustment problem of the form (ALP); 
namely, assume that F ~ B". There are two important situations when 
problems of this type appear: 

The first one is quite natural: we simply may require that in the restricted 
problem S = B", or that S = zn and the linear constraints Ax :S b, Dx :S d 
contain (or imply) inequalities Ix :S 1, where IE JR.nxn is an identity matrix 
and 1 denotes a vector of ones. 

Another case, which is also important from the practical point of view, 
appears when S = JR." and the constraints matrix of the restricted problem, 
i.e., the matrix (AT, DT) is totally unimodular (see e.g. [11]). 

If the set of feasible solutions of restricted problem fulfills the requirement 
F ~ B", then nonlinear therm ~ x in (ALP) may be formally linearized in 
a standard way using additional variables and constraints. To do this it will 
be convenient to express nonrestricted in sign vector cl E JR." as a difference 
of two nonnegative vectors. Let 

where 

cl+= (cli, . . . , cl;!'), cli = max{0, cl;}, i = 1, ... , n, 

cl-= (cl1, . . . ,cl;;-), cl;= min{0,cl;}, i = l, . .. ,n. 
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Thus we have 
n 

OT X = I:(o;x; - o;x;). 
i=l 

For i = 1, ... , n, we will introduce new variables zt, z; E lR+ satisfying 
the following conditions: 

zt = otx;, i = 1, ... , n, 

z; = o;x;, i = 1, ... ,n, 

Constraint 
bT y - CT x - OT x = 0 

{3) 

{4) 

in the formulation of problem {ALP) can be now replaced with a linear 
constraint 

bT y - CT X - 1 T z+ + 1 T Z- = 0, 

where z+ = (zt, ... , z;;) and z- = (z1, ... , z;;-). 
For any new variable zt, z;, i = 1, . . . , n, we have to add also constraints 

which would guarantee that equations (3) and (4) hold. 
Let us take for example the equation zt = otx; for some index i. It is 

equivalent to two implications 

X; = 0 => zt = 0, 

X; = 1 => Z{ = ot, 
which can be modeled in a standard way by adding the following new con­
straints: 

zt-Mx; ~ o, 
-ot+zt ~ o, 

ot - zt + Mx; ~ M, 

where M is sufficiently large constant satisfying the inequality ot ~ M for 
any i = 1, ... , n. 

If the set of admissible perturbations C::,. is bounded, then the value of M 
can be calculated directly from the description oft::... If C::,. = ]Rn, then we can 
simply take M = lcl1,. Indeed, this case y = 0 and o = -c provide a feasible 
solution of {ALP) for any x E F and thus there exists an optimal solution of 
(ALP), in which lo;I ~ le!,,. 
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Finally, the adjustment problem may be stated in the following form: 

a(F) = min IWI + WI 
AT y - o+ + o- 2 c 

bT y - cT x - IT z+ + IT z- = 0 

z+ - Mx :S 0, 

-o+ + z+ :S 0, 

o+ - z+ + Mx :SM, 

z- - Mx :S 0, 

-o- + z- :S 0, 

0- - z- + M x :S M, 
XE F ~ Bn 
o+ - o- EI:::,. 

x, y, z+,z-,o+,o- 2 0, 

(AP) 

Thus for initial linear programming problem (P) and the set I:::,. given as 
a polyhedral convex set, the adjustment problem for F ~ llJn and l1 or l00 

norms in Rn can be stated as a mixed integer linear programming problem. 
We will illustrate this fact with several examples. 

Example 1 Consider a weighted digraph D shown in Figure 1. 

Figure 1: Digraph D from Example 1 with indicated lengths of arcs. 

The following path of length 17 (given as a subset of arcs) is the shortest 
path from vertex s to vertex t in the digraph D: 

p = {(s, 2), (2, 4), (4, 5) , (5, 3), (3, 6), (6, t)} . 

This path is indicated with bold arcs in Figure 2. 
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Figure 2: An optimal path in digraph D from Example 1. 

Assume that we are interested in paths which pass through vertex 1 and 
we want to find the smallest possible modification of arcs lengths which would 
guarantee that there is such a path among optimal solutions of the modified 
problem. Therefore we have to solve the adjustment problem related to the 
original shortest path problem. In the restricted problem we have to consider 
additional requirement that a path contains the vertex 1. 

It is well known that the shortest path problem in D = (V, E) can be 
stated as a linear programming problem (see e.g. [111). Namely, let V = 
{v1 , .. . ,vs} = {s,1,2,3,4,5,6,t} and E = {a1, •.. ,a17 } = {(s,1),(s,2), 
(1,2), (1,3), (2,1), (2,4), (2,5), (3,1), (3,4), (3,5) (3,6), (4,5), (5,3), (5,t), 
(6,3), (6, t), (t, 6)}. Denote by A the incidence matrix of digraph D. The 
initial vector of arcs lengths is given below: 

C = (4, 3, 1, 7, 2, 2,4, 4, 2, 3, 1, 2, 12, 4, 6, 9f. 
Let x = (x1, ... , X17 f E lR+ denote the vector of decision variables. It 

is well known, that for b = (1, 0, 0, 0, 0, 0, 0 - If the set of vertices of the 
polyhedron X, where 

X = { x E lRf : Ax = b}, 

forms a set of characteristic vectors of paths from s to t in digraph D. Any 
vertex of X is a binary vector, because the matrix A is totally unimodular. 
An optimal solution of the original problem, which corresponds to the path 
p = {(s,2), (2,4), (4,5),(5,3), (3,6), (6,t)} is given by the following vector: 

x 0 = (0, 1, 0, o, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, If. 

If we are interested in paths passing through the vertex 1 (observe that 
the path p does not fulfill this condition) we are faced with a restriction 
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of the shortest path problem in which the set of feasible solutions contains 
additional constraints. For example we can require that at least one arc 
leaving the vertex 1 belongs to the feasible path. This leads to the following 
feasible set in a restriction of the original problem: 

F = { X E X : X3 + X4 ~ 1}. 

Appendix 1 contains complete formulation of the corresponding adjustment 
problem (AP) with l1 norm. Solving this problem we obtain the following 
optimal solution: 

o+ = (0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)T, 

0- = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)T, 

x = (I, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, If. 

The optimal value a(F) of the adjustment problem is equal to 2. The solution 
can be interpreted in the following way: To guarantee that the shortest 
path in the modified graph D pass through the vertex 1 we have to increase 
the weight of arc a2 = (s, 2) by 2. Moreover, this is the smallest possible 
perturbation of lengths of arcs to achieve this goal (in the sense of 11 norm). 
The optimal path in the digraph D with modified lengths of arcs is shown 
on Figure 3. 

Figure 3: Digraph D from Example 1 with modified lengths of arc and indi­
cated optimal path from s to t. 

In a similar way we may solve the adjustment problem in the case when for 
example we require that the shortest path must not pass through specified 
subset of vertices, e.g., vertices 2 and 6. This case the restriction of the 
original problem corresponds to the set of feasible solutions F, where 

F' = {x EX: X5 + X5 + x1 + X11 = 0}. 
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Solving the corresponding adjustment problem we obtain a(F') = 9 and 

01+ = {O, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0), 

o'- = (2, o, o, 1, o, o, o, o, 5, o, o, o, o, o, o, o, o), 

x' = (1,0,0,1,0,0,0,0,1,0,0,1,0,1,0,0,0). 

Observe that this case the lengths of arcs in the modified digraph are not 
longer nonnegative. We could avoid this specifying the set ti. of admissible 
modifications of weights. To guarantee that weights in modified digraph 
are nonnegative it is enough to add to the adjustment problem inequalities 
0- :=; C. 

Example 2 Consider a continuous knapsack problem {P) in the form: 

max 7x1 + 4x2 + 5x3 + 2x4 

3x1 + 3x2 + 4x3 + 2x4 :=:; 7 
0 :=:; X1,X2,X3,X4 :=; 1 

An optimal solution of this problem has value v(P) = 12.5 an is given by 
the following vector: 

x 0 = (xf,x2,x~,x:f = (1, 1,0.25,0f. 

Assume that we are interested in integer solutions of the problem {P) and 
that we want to modify coefficients of the original problem in such a way, 
that the set of optimal solutions of modified problem contains an integer 
vector. Thus we want to solve the adjustment problem corresponding to a 
restriction defined by F = X n JR4 , where 

X = {x E 1R4 : 3x1 + 3x2 + 4x3 + 2x4 :=:; 7, 0 :=:; X1,X2,X3,X4 :=; l}. 

The adjustment problem corresponding to this restriction is formulated in 
Appendix 2. An optimal solution of the adjustment problem is equal to 0.25. 
This means that the sum of absolute values of all perturbations of objective 
coefficients, which are necessary to guarantee integrality of solution is equal 
to 0.25. Optimal perturbations of the coefficients are given by the following 
vectors: 

o+ = (o, o, o, of, 

o- = (o, -0.25, o, of. 

The optimal solution of the modified problem (P) is now an integral one: 

x = (1, o, 1, of. 
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4 Appendix 1 

This section contains complete formulation of the adjustment problem (AP) 
from Example 1 in so-called LP format used in an optimization package 
CPLEX 6.5. Due to conventions used in the package the following notation 
is applied: Element x 0 , which corresponds to edge a= (i,j), is denoted by 
xij. Dual varibles Yv for v E V are denoted by yv. For elements o: and o;;, a = ( i, j) E A, we use symbols uij and lij, respectively. Elements z: and 
z;;, a = (i,j) E E, are denoted by zuij and zlij. We take M = 100 as 
sufficiently large constant. 

Minimize 
obj: us!+ 1s1 + us2 + ls2 + u12 + 112 + u21 + 121 + u13 

+ 113 + u31 + 131 + u24 + 124 + u25 + 125 + u34 + 134 
+ u35 + 135 + u36 + 136 + u63 + 163 + u45 + 145 + u53 
+ 153 + u6t+ 16t + ut6 + lt6 + u5t + 15t 
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Subject To 
c1 : ys = 0 
c2: - us1 + ls1 + ys - y1 <= 4 
c3: - us2 + ls2 + ys - y2 <= 3 
c4: - u12 + 112 + y1 - y2 <= 1 
c5: - u21 + 121 - y1 + y2 <= 2 
c6: - u13 + 113 + y1 - y3 <= 7 
c7: - u31 + 131 - y1 + y3 <= 4 
c8: - u24 + 124 + y2 - y4 <= 2 
c9: - u25 + 125 + y2 - y5 <= 4 
c10: - u34 + 134 + y3 - y4 <= 2 
c11: - u35 + 135 + y3 - y5 <= 2 
c12: - u36 + 136 + y3 - y6 <= 3 
c13: - u63 + 163 - y3 + y6 <= 4 
c14: - u45 + 145 + y4 - y5 <= 1 
c15: - u53 + 153 - y3 + y5 <= 2 
c16: - u6t + 16t + y6 - yt <= 6 
c17: - ut6 + lt6 - y6 + yt <= 9 
c18: - u5t + 15t + y5 - yt <= 12 
c19: xs1 + xs2 = 1 
c20: - xs1 + x13 + x12 - x21 - x31 0 
c21: - xs2 - x12 + x21 + x24 + x25 0 
c22: - x13 + x31 + x34 + x36 - x53 - x63 z 0 
c23 : - x24 - x34 + x45 0 
c24 : - x25 + x53 - x45 + x5t = 0 
c25: - x36 + x63 + x6t - xt6 = 0 
c26: - x5t - x6t + xt6 = -1 
cc: ys - yt - 4 xs1 - 3 xs2 - 7 x13 - x12 - 2 x21 - 4 x31 

- 2 x24 - 4 x25 - 2 x34 - 3 x36 - 2 x53 - 4 x63 
- x45 - 12 x5t - 6 x6t - 9 xt6 - 2 x35 - zus1 
+ zls1 - zus2 + zls2 - zu12 + zl12 - zu21 + zl21 
- zu13 + zl13 - zu31 + zl31 - zu24 + zl24 - zu25 
+ zl25 - zu34 + zl34 - zu35 + zl35 - zu36 + zl36 
- zu63 + zl63 - zu45 + zl45 - zu53 + zl53 - zu6t 
+ zl6t - zut6 + zlt6 - zu5t + zl5t = 0 

c28 : - 100 xs1 + zus1 <= 0 
c29: - us1 + zus1 <= 0 
c30: us1 + 100 xs1 - zus1 <= 100 
c31: - 100 xs1 + zls1 <= 0 
c32: - 1s1 + zls1 <= 0 
c33: 1s1 + 100 xs1 - zls1 <= 100 
c34: - 100 xs2 + zus2 <= 0 
c35: - us2 + zus2 <= 0 
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c36: us2 + 100 xs2 - zus2 <= 100 
c37: - 100 xs2 + zls2 <= 0 
c38 : - 1s2 + zls2 <= 0 
c39: 1s2 + 100 xs2 - zls2 <= 100 
c40: - 100 x12 + zu12 <= 0 
c41: - u12 + zu12 <= 0 
c42: u12 + 100 x12 - zu12 <= 100 
c43: - 100 x12 + zl12 <= 0 
c44: - 112 + zl12 <= 0 
c45: 112 + 100 x12 - zl12 <= 100 
c46: - 100 x21 + zu21 <= 0 
c47: - u21 + zu21 <= 0 
c48: u21 + 100 x21 - zu21 <= 100 
c49: - 100 x21 + zl21 <= 0 
c50: - 121 + zl21 <= 0 
c51: 121 + 100 x21 - zl21 <= 100 
c52: - 100 x13 + zu13 <= 0 
c53: - u13 + zu13 <= 0 
c54: u13 + 100 x13 - zu13 <= 100 
c55: - 100 x13 + zl13 <= 0 
c56: - 113 + zl13 <= 0 
c57: 113 + 100 x13 - zl13 <= 100 
c58: - 100 x31 + zu31 <= 0 
c59: - u31 + zu31 <= 0 
c60: u31 + 100 x31 - zu31 <= 100 
c61: - 100 x31 + zl31 <= 0 
c62: - 131 + zl31 <= 0 
c63: 131 + 100 x31 - zl31 <= 100 
c64: - 100 x24 + zu24 <~ 0 
c65: - u24 + zu24 <= 0 
c66: u24 + 100 x24 - zu24 <= 100 
c67: - 100 x24 + zl24 <= 0 
c68: - 124 + zl24 <= 0 
c69: 124 + 100 x24 - zl24 <= 100 
c70: - 100 x25 + zu25 <= 0 
c71: - u25 + zu25 <= 0 
c72: u25 + 100 x25 - zu25 <= 100 
c73: - 100 x25 + zl25 <= 0 
c74: - 125 + zl25 <= 0 
c75: 125 + 100 x25 - zl25 <= 100 
c76: - 100 x34 + zu34 <= 0 
c77: - u34 + zu34 <= 0 
c78: u34 + 100 x34 - zu34 <= 100 
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c79: - 100 x34 + zl34 <= 0 
cBO: - 134 + zl34 <= 0 
c81: 134 + 100 x34 - zl34 <= 100 
c82: - 100 x35 + zu35 <= 0 
c83: - u35 + zu35 <= 0 
c84: u35 + 100 x35 - zu35 <= 100 
c85: - 100 x35 + zl35 <= 0 
c86: - 135 + zl35 <= 0 
c87: 135 + 100 x35 - zl35 <• 100 
c88: - 100 x36 + zu36 <= 0 
c89: - u36 + zu36 <= 0 
c90: u36 + 100 x36 - zu36 <= 100 
c91: - 100 x36 + zl36 <= 0 
c92: - 136 + zl36 <= 0 
c93: 136 + 100 x36 - zl36 <= 100 
c94: - 100 x63 + zu63 <= 0 
c95: - u63 + zu63 <= 0 
c96: u63 + 100 x63 - zu63 <= 100 
c97: - 100 x63 + zl63 <= 0 
c98: - 163 + zl63 <= 0 
c99: 163 + 100 x63 - zl63 <= 100 
c100: - 100 x45 + zu45 <= 0 
c101: - u45 + zu45 <= 0 
c102: u45 + 100 x45 - zu45 <= 100 
c103: - 100 x45 + zl45 <= 0 
c104: - 145 + zl45 <= 0 
c105: 145 + 100 x45 - zl45 <= 100 
c106: - 100 x53 + zu53 <= 0 
c107: - u53 + zu53 <= 0 
c108: u53 + 100 x53 - zu53 <= 100 
c109: - 100 x53 + zl53 <= 0 
c110: - 153 + zl53 <= 0 
c111: 153 + 100 x53 - zl53 <= 100 
c112: - 100 x6t + zu6t <= 0 
c113: - u6t + zu6t <= 0 
c114: u6t + 100 x6t - zu6t <= 100 
c115: - 100 x6t + zl6t <= 0 
c116: - 16t + zl6t <= 0 
c117: 16t + 100 x6t - zl6t <= 100 
c118: - 100 xt6 + zut6 <= 0 
c119: - ut6 + zut6 <= 0 
c120: ut6 + 100 xt6 - zut6 <= 100 
c121: - 100 xt6 + zlt6 <= 0 
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c122: - lt6 + zlt6 <= 0 
c123 : lt6 + 100 xt6 - zlt6 <= 
c124: - 100 x5t + zu5t <= 0 
c125: - u5t + zu5t <= 0 
c126: u5t + 100 x5t - zu5t <= 
c127 : - 100 x5t + zl5t <= 0 
c128: - 15t + zl5t <= 0 
c129: 15t + 100 x5t - zl5t <= 

Bounds 
ys Free 
yl Free 
y2 Free 
y3 Free 
y4 Free 
y5 Free 
y6 Free 
yt Free 
0 <= xsl <= 1 
0 <= xs2 <= 1 
0 <= x13 <= 1 
0 <= x12 <= 1 
0 <= x21 <= 1 
0 <= x31 <= 1 
0 <= x24 <= 1 
0 <= x25 <= 1 
0 <= x34 <= 1 
0 <= x36 <= 1 
0 <= x53 <= 1 
0 <= x63 <= 1 
0 <= x45 <= 1 
0 <= x5t <= 1 
0 <= x6t <= 1 
0. <= xt6 <= 1 
0 <= x35 <= 1 

All other variables are>= 0 . 
Binaries 

100 

100 

100 

xs1 xs2 x13 x12 x21 x31 x24 x25 x34 x36 x53 x63 x45 x5t x6t xt6 x35 
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5 Appendix 2 

This section contanins a formulation of the adjustment problem from Exam­
ple 2. The problem is stated in CPLEX LP form. We use similar conventions 
in notation as in previous example. 

Minimize 
obj: u1 + u2 + u3 + u4 + 11 + 12 + 13 + 14 
Subject To 

c1: 3 x1 + 3 x2 + 4 x3 + 2 x4 <= 7 
c2: - u1 + 11 + 3 yo+ y1 >= 7 
c3: - u2 + 12 + 3 yo+ y2 >= 4 
c4: - u3 + 13 + 4 yo+ y3 >= 5 
c5: - u4 - 14 + 2 yo+ y4 >= 2 
vp: 7 x1 + 4 x2 + 5 x3 + 2 x4 + zu1 + zu2 + zu3 + zu4 - zl1 - zl2 

- zl3 - zl4 
- p = 0 
vd: - 7 yo - y1 - y2 - y3 - y4 + d = o 
cc: p - d = 0 
r: x2 + x3 >= 1 
c10: - 10 x1 + zu1 <= 0 
c11: - u1 + zu1 <= 0 
c12: u1 + 10 x1 - zu1 <= 10 
c13: - 10 x2 + zu2 <= 0 
c14: - u2 + zu2 <= 0 
c15: u2 + 10 x2 - zu2 <= 10 
c16: - 10 x3 + zu3 <= 0 
c17: - u3 + zu3 <= 0 
c18: u3 + 10 x3 - zu3 <= 10 
c19: - 10 x4 + zu4 <= 0 
c20: - u4 + zu4 <= 0 
c21: u4 + 10 x4 - zu4 <= 10 
c22: - 10 x1 + zl1 <= 0 
c23: - 11 + zl1 <= 0 
c24: 11 + 10 x1 - zl1 <= 10 
c25: - 10 x2 + zl2 <= 0 
c26: - 12 + zl2 <= 0 
c27: 12 + 10 x2 - zl2 <= 10 
c28: - 10 x3 + zl3 <= 0 
c29: - 13 + zl3 <= 0 
c30: 13 + 10 x3 - zl3 <= 10 
c31: - 10 x4 + zl4 <= 0 

16 



c32: - 14 + zl4 <= 0 
c33: 14 + 10 x4 - zl4 <= 

Bounds 
0 <= x1 <= 1 
0 <= x2 <= 
0 <= x3 <= 1 
0 <= x4 <= 1 

All other variables are>= 0. 
Binaries 

x1 x2 x3 x4 

10 
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