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Abstract 
The response of a unity-feedback system with a delay element in the forward path exhibits 
a periodic component that can be approximated bj truncating its harmonic expansion. 
Rational approximants of the transfer function e- • of such element can simply be olr 
lained from this closed-loop approximation. A unifying approach lo recent methods based 
on this criterion (21, (31 is presented, which allows us to point out their respective features. 
The standard Pade technique and a heuristic method described in {51 are also conaidered. 

1 Introduction and problem statement 
In modelling dynamic systems for control purposes, it is often necessary to account for time 
delays due, e.g. 1 to transport phenomena or distributed-parameter components. 

The response of an ideal delay element (delayor) lo an input u(t), identically equal lo O for 
t < O, is y(t) = u(t - T), T > O, where T indicates the time delay. By denoting with U(s) 
the Laplace transform of u(t), the Laplace transform of y(t) is Y(s) = •-T•U(s) . Therefore the 
transfer function of the delayor is the transcendental function e-T•. 

The probl8m of approximating e-T• by means of a rational function has a long history (see, 
e.g., {11) but is still important from both the computational and the conceptual point of view: 
a few recent contributions on the subject are quoted in (21. In many practical applications the 
physical realizability and the stability of the approximant limit the choice of the approximanl to 
proper rational functions with real coefficients and a Hurwitz denominator. These requirements 
are satisfied by Blaschke products, i.e., functiona of the form: 

n· (s- a) 
B(s) = ~- • • Re {a,I > 0. (1.1) n,=1<• +a.) 

This has the desirable properly that IB(jw)I = l•-;Twl = 1, Vw, and arg(BQw)] is monotonically 
decreasing with w like arg(e- JTwJ = -Tw. On the other hand 1 the step response of a system 
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with transfer function B(s) starts from +1 or -1 1 whereas the step response of an ideal delayor 
obviously starts from O. 

The most widely adopted method to form a rational approximant of a delay element is based 
on the Pede technique which does not always guarantee stability ( even if bi proper Pede models 
are necessarily stable). Since such a technique leads to the retention of the first Maclaurin 
expansion coefficients of e-T•, the resulting approximation is the best in the neighbourhood of 
w = 0. In different frequency bands, other types of models may be preferred. 

In [3] a unity-feedback system whose forward path consists of a delayor is analysed. 

In the case of negative feedback, the unit step response is a piecewise constant function 
taking on the value O for 2kT < t < (2k + l)T and the value I for {2k + l)T < t < (2k + 2)T, 
k ~ O, which can be decomposed into a step of amplitude ½, and a square wave of amplitude ½ 
starting from -½ at t = 0. 

In the case of positive feedback, similar considerations allow us to decompose the unit step 
response into : a linear ramp of slope +, a step of amplitude -½, and a saw-tooth wave that 
linearly decreases from ½ to -½ in every period from kT to (k + l)T. 

In both cases, the periodic component can easiJy be expressed es a series of harmonic terms 
{fort> 0). It is therefore natural to approximate the step response of the unity-feedback system 
by retaining the non-periodic component together with a suitable number of the first harmonics 
of the periodic component. 

A rational approximation W0 (3) of the transcendental transfer function W(s) of the above-­
mentioned Feedback system is obtained by dividing the Laplace transform of the approximate 
step response by the Laplace transform ¾ of the step input. The rational approximant G 0 (s) of 
the delayor transfer function is then determined as: 

w.(s) 
G.(•)= I 'f W.(•) ' {1.2) 

where the minus sign applies to the case of negative feedback and the plus sign to that of 
positive feedback. It turns out (3] that G4 (s) is a stable biproper rational function having the 
form of a Blaschke product; precisely, negative feedback supplies even-order approximants and 
positive feedback produces odd-order approximants. 

Obviously, the same result could be achieved by referring to different inputs (even an im­
pulse), but the choice of the unit step is particularly convenient. According to the terminology 
suggested in (4), the rationale of such a procedure consists in retaining the "input component" 
(and the 11resonant component", if any) and in truncating the periodic "system component" of 
the response. 

In (2) a feedback structure is used as well, but another approximation criterion is adopted, 
which leads to different models depending on the ch06en input. In particular, the family of 
inputs considered in (2( is: {u{t) = tm ,m EN ,t > O} and the procedure exploits several 
properties of Bernoulli numbers and polynomials. 

In the following, the above approaches are presented in a unified form which allows us to 
point out their respective features and to derive the related approximants in an easier way. 
Finally, criteria are given to choose the approximation that is most suited to the application at 
hand, also taking into account the standard Pade approximation and a further approximation 
presented in (5). 

2 Derivation of the approximant 
For the sake of simplicity1 we shall almost exclusively refer to the case of negative feedback; 
only a brief mention will be made of the case of positive feedback. 
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2,1 Negative feedback 
The transfer function W(s) of the negative feedback system with forward-path transfer function 
G(s) = •-T, is: 

W() G(s) 1 
8 = 1 + G(s) = eT• + 1 

(2.1) 

whose singularities (poles) are the roots of eT• = -1, i.e.; 

s = ±iP• := ±j(2k - l)f, k E Z+. 

W(s) can also be interpreted as the Laplace transform of the sequence of positive and negative 
impulses forming the derivative of the step response described in the Introduction. Therefore, it 
is the sum of a constant equal to 4 ( corresponding to the step component in the just-mentioned 
step response) and a series of "harmonic" terms 8580ciated with the above poles: 

W(s) = ! + f: [___!:!._ + _!!;_] 
2 •=I • - iP• 8 + iP• ' 

where the bar denotes conjugate and, using the standard formula for the residues: 

r• = Jim (s - iP•)W(s) = --T1 . 
•----1p1, 

It follows that: 

(2.2) 

Jn order to compare the results in (2] and (3], let us consider a canonical input of the form: 

t•-1 
u,(t) = (i _ l)I , t > 0 (2.3) 

whose Laplace transform is: 

U;(s)=J. 
8 

(in (3J only the case of i = 1 is considered, whereas the inputs used in f2J differ from (2.3) by a 
scaling factor which is irrelevant for the following considerations) . 

On the basis of (2.2) the Laplace transform of the (forced) response to (2.3), i.e. : 

Yi(s) = .!, W(s), .. 
can be rewritten as 

i-1 o::i 

Y.() 1 "\'""' h "\'""' <>••+/3•;• 
i s = a' L., ChS + L., sl + (2k - 1)2 .. 2 ' 

h=O A:=l '.ff 

where for i even: 

Oki= 0 1 (2.4i) 

and for i odd: 
•- • 2 [ T ]<•-1> 

0 •• = (-I)-, T (2k - l),r ' (2.4ii) 

3 
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Therefore, W(s} can also be presented in the alternative form: 

Y.( ) ,_, = ' •+• 
W(s) = _.!.!._ = L c••• + L a••• + /J••• . 

U,(s) •=• •=• s' + (2k + I)'~ 
(2.5) 

Each term of the series in (2.5) is given by the sum of a polynomial of degree i - I ( quotient of 
the division of its numerator by its denominator) and a strictly proper rational function (whose 
numerator is the remainder of the division). Therefore (2.5) becomes: 

W(s)= I:c•••+ t{I:d••·•••+ 1'••+ 5><• 2 } (2.6) •=• •=• •=• s' + (2k - I)'~ 
which can be rewritten as: 

W(s) = I: (c• + f d.,,•)••+ f , 1'•• +5•••,., . 
•=• •=• •=• • + (2k - I) F' 

(2.7) 

By comparing (2.7) with (2.2), one finds that 

= I 
eo+ Ld••·• 2' (2.8) 

lr=l 

= 
c11+ Ld1c,,h 0, h>O (2.9) 

lr=l ,,., 0, Vk,i 

5., 2 
Vk,i. -r, 

The procedure suggested in (3) could alternatively be presented with reference to expression 
(2.7) where coefficients related to the specific input appear. Precisely, the approximant W.(s) 
is obtained in this case by adding to the exact value ½ of the first sum ( cf. (2.8) and (2.9)) the 
first K (harmonic) terms of the second summation: 

K 
1 2" • 

w.(•J = 2 - 'i L, ,, + (2k - I)'~ 
k=l T• 

which ls independent of the Input u,(t). 

The procedure suggested in (2) refers instead to expressions (2.5) or (2.6), and the approx­
imation corisists in truncating the summation over k, where each addendum is formed by a 
polynomial and a strictly proper harmonic term. Therefore the resulting W.(s) ls: 

,-1 K 

W ( ) - " h + " Oki + /Jk;B o S - L..., ChS L..., 2 , 

h=O •=• s' + (2k - 1 )' j'7 
(2.10) 

which does depend on i and it is not proper because the part added to the harmonic terms does 
not reduce to the constant ½, as is instead the case in W(s). Nevertheless, the approximant 
G.(•J = W.(s)/(1 - W0 (s)) of ,-T, turns out to be blproper. 

As concerns the computation of the above approximants, the suggested approach seems to 
be preferable to that adopted In (2) because: 
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(i) coefficients Ch, which correspond to the first i Maclaurin expansion coefficients of: 

W(s) = 00 , 

1 + ~ (Ts)" 
L..., hi 
h=O 

can be easily be evaluated using the classic Pad~ procedure, and 
(ii) formulae (2.4i) and (2.4ii) immediately supply coefficients O><,fJ><, 

2.2 Positive feedback 
Considerations analogous with those of Section 2:1 lead to the following transfer function in the 
case of positive feedback: 

1 1 2 ~ • 
W(s) = Ts - 2 + T L..., 8 , + (' .. )'' 

l=l T 

(2.11) 

so that Yi(s) = W(s)U,(s) can be separated Into a (harmonic) series 8880ciated with the Imag­
inary conjugate poles of W(s) and a strictly proper fraction with denominator ,•+•. Using the 
terminology in (4), the mentioned series corresponds to the "system component" of the forced 
response and the fraction corresponds to its uinteraction component" because the poles of the 
latter are common to W(.,) and U,(s) (no "input component" is present in this case since U,(s) 
does not exhibit poles different from those of W(,)). 

As shown in 13), the truncation of the series in (2.2) results in even-order biproper ap­
proximants G 0 (s), whereas the truncation of the series in (2.11) results In odd-order biproper 
approximants G0 (s). 

Instead, as shown in 12), truncating the series in (2.5) leads to odd-order approximants, 
whereas truncating the analogous series corresponding to positive feedback leads to even-order 
approximants. 

2.3 Stability and approximation error 
It has been proved (3) that the even-order rational approximations G 0 (s) of e-T, obtained 
from (2.1), as well as the odd-order ones obtained by truncating (2.11), are stable. Instead, as 
explicitly stated in (2) for inputs tm, m > 2 (i.e., using the previous notation, u,(t) with i > 3) 
the ualternating sign of the Bernoulli numbers makes the approximation in general unstable 
( ... J Hence, from a practical point of view, any improvement with respect to the approximants 
obtained in 13) is to be found with p = 1", I.e., i = 2,3. 

The approximation accuracy can be evaluated by referring, e.g., to the "closed-loop error": 

E(s) := W(s) - W.(s) . 

From (2.1) we get: 

whereas from (2.10) we have: 

i-1 

E(s) = E,(s) := L L d••·••• + E,(a). 
h= O ll=K+I 

Since E(s) is a complex quantity, IE2(•)I may well be smaller than IE1(•)I for certain values of 
• (or jw). 

5 
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3 Alternative approximants 
Aa already pointed out, the procedure suggested in [2) leads to approximants that depend on 
the chosen canonical input . To improve the approximation within suitable frequency bands not 
centred at the origin, it is reasonable to resort to non-canonical inputs whose spectrum has 
larger amplitude there. A simple choice corresponds, e.g., to 

U(s) = 8 •' , 

1+2{-+, 
Wn Wn 

in which Wn is at the centre of the band and { iB suitably small. 
The choice of the form of the input (as well as the order of the canonical input) iB somewhat 

arbitrary and is influenced, in practice, by empiric considerations. Therefore, it makes sense 
to compare the results of the above procedures with those obtained in [5] using a heuristic 
procedure based on the direct approximation of the phase Bode diagram of e - iTw by means of 
a Blaschke product Bn(iw) of order n. For n odd, the first factor of B.(s) has the form: 

} - TS 

G,(s)=l+rs' r > O 

and the others have the form: . •' 1-2{,- +--, 
G,(s) = Wni w~i 1 1>{i > 0 1 Wni > 0 1 

1 + 2{,~ + ..;-
wn, Wni 

whereas for n even all factors have form (3.1). 

(3.1) 

All the considered techniques produce unit-magnitude all-pass frequency responses so that 
the approximation they afford can be judged with reference to the phase deviation A(jw) from 
-Tw only. As w-+ 001 £\(jw) -+ oo in all ce.ses. Therefore, reasonable criteria for choosing the 
method most suited to the specific application are: (i) the bandwidth B, where jA(jw)j iB less 
than a specified value<, or (ii) the maximum As of jA(jw)j in a prescribed band B . 

By way of example, Fig. 1 shows A(jw) vs w for the 4-th order all-pass approximants of e- ;w, 
(T = 1) obtained according to (2.1) with K = 2 (curve a), to the procedure suggested in [2] for 
u3(t) = t' (curve b), to the standard Pade procedure (curve c), and to the heuristic method in 
[5) (curved). For instance, with reference to criterion (i) above, the Pade approximant is best 
for • very small, the method suggested in [2] iB optimal for , "' 10° , and the heuristic method 
and the method suggested in (3) are preferable for , 2'. 45°. 

Analogous results are obtainable for approximants of different order. 

4 Conclusions 
The approximation procedure presented in [2) and {3) have been embedded in a unified frame 
which points out well their respective features and allows us to determine the parameters of 
the approximants in an easier way. Criteria have been provided for choosing the approximation 
method that is most suited to the specific application. 
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