Raport Badawczy Research Report

RB/41/2001

The explicit form of the membership function for the multiplication of two L-L fuzzy numbers

M. Piasecki

Instytut Badań Systemowych Polska Akademia Nauk

Systems Research Institute Polish Academy of Sciences

POLSKA AKADEMIA NAUK

Instytut Badań Systemowych

ul. Newelska 6

01-447 Warszawa

tel.: (+48) (22) 8373578

fax: (+48) (22) 8372772

Prace zgłosił: prof. dr hab. Olgierd Hryniewicz.....

The explicit form of the membership function for the multiplication of two L-L fuzzy numbers.

Marek Piasecki

Abstract.

In this paper we deal with L-L fuzzy numbers with membership functions of the following form $\mu_A(z)=L(\frac{|z-a|}{c})$, where L() is a reference function

defined on $[0, +\infty)$ that is continuous and strictly monotone decreasing with L(0) = 1 and c > 0. It is well known that the membership function for the sum of two L-L fuzzy numbers A_1 and A_2 is equal to

$$\mu_{A_1+A_2}(z) = L(\frac{|z - (a_1 + a_2)|}{c_1 + c_2})$$

[1].

One can also find some approximations for the membership function for the multiplication of two L-L fuzzy numbers. For example [3], if $a_1 > 0$ and $a_2 > 0$ then

$$\mu_{A_1A_2}(z) \simeq L(\frac{|z - (a_1a_2)|}{a_1c_2 + a_2c_1}).$$

It was emphasized in [3, page 73] that the explicit form of the numbership function for the multiplication can not directly be obtained.

In this paper we calculate the membership function for the multiplication of two L-L fuzzy numbers. Of course, the multiplication is no longer L-Lfuzzy number but its membership function is quite simple and as is shown in this paper is equal to

$$\mu_{A_1A_2}(z) = \left\{ \begin{array}{l} L(\frac{1}{2}(\frac{a_1}{c_1} - \frac{a_2}{c_2}) + \sqrt{\frac{1}{4}(\frac{a_2}{c_2} + \frac{a_1}{c_1})^2 - \frac{z}{c_1c_2}}), \ \ \text{for} \ z < 0; \\ L(\frac{1}{2}(\frac{a_1}{c_1} + \frac{a_2}{c_2}) - \sqrt{\frac{1}{4}(\frac{a_2}{c_2} - \frac{a_1}{c_1})^2 + \frac{z}{c_1c_2}}), \ \ \text{for} \ z \in [0, a_1a_2]; \\ L(-\frac{1}{2}(\frac{a_1}{c_1} + \frac{a_2}{c_2}) + \sqrt{\frac{1}{4}(\frac{a_2}{c_2} - \frac{a_1}{c_1})^2 + \frac{z}{c_1c_2}}), \ \ \text{for} \ z > a_1a_2 \end{array} \right.$$

,where $a_1,a_2>0$ and $\frac{a_1}{c_1}\leq \frac{a_2}{c_2}$. If we have the explicit form of the membership function $\mu_{A_1A_2}(z)$ we can see how good is the approximation we use. For example we will see how good is the above approximation $\mu_{A_1A_2}(z) \simeq L(\frac{|z-(a_1a_2)|}{a_1c_2+a_2c_1})$. As an application of the above formula we calculate the exact formula for possibility index $Pos(A_3, A_1A_2)$ for L - L fuzzy numbers A_1, A_2, A_3 . The possibility index is very useful in fuzzy linear regression [3, page 61].

1.Introduction.

A fuzzy number is defined as a set of ordered pairs $\{(z,\mu_A(z))\}$, where $z\in A$ and $\mu_A:\to [0,1]$ is the membership function of A. The α -level set of a fuzzy number A is $(A)_\alpha=\{z:\mu_A(z)\geq\alpha\}$. For the fuzzy numbers one define, using Zadeh extension principle, the binary arithmetic operations as follows

addition $A_1 + A_2$: $\mu_{A_1+A_2}(z) = \max_{z=x+y} \{\mu_{A_1}(x) \wedge \mu_{A_2}(y)\};$ multiplication A_1A_2 : $\mu_{A_1A_2}(z) = \max_{z=xy} \{\mu_{A_1}(x) \wedge \mu_{A_2}(y)\};$ opposite number -A: $\mu_{A_1}(z) = \mu_{A_1}(-z).$

A fuzzy number A is called L-L fuzzy number if its membership function is of the following form

$$\mu_A(z) = L(\frac{|z-a|}{c})$$

, where L() is a reference function defined on $[0,+\infty)$ that is continuous and strictly monotone decreasing with L(0)=1 and c>0. It is well known that the membership function for the sum of two L-L fuzzy numbers A_1 and A_2 is equal to $\mu_{A_1+A_2}(z)=L(\frac{|z-(a_1+a_2)|}{c_1+c_2})$ [1]. From the result of Nguyen (1978) [1] the α -level set

$$(A_1A_2)_{\alpha} = \{z : \mu_{A_1A_2}(z) \ge \alpha\}$$

for the multiplication of A_1A_2 is $(A_1A_2)_{\alpha} = [a_{\alpha}, b_{\alpha}]$, where

$$\begin{array}{rcl} a_{\alpha} & = & \min\{(a_1-L^{-1}(\alpha)c_1)(a_2-L^{-1}(\alpha)c_2), (a_1-L^{-1}(\alpha)c_1)(a_2+L^{-1}(\alpha)c_2)\}, \\ b_{\alpha} & = & \max\{(a_1+L^{-1}(\alpha)c_1)(a_2+L^{-1}(\alpha)c_2), (a_1+L^{-1}(\alpha)c_1)(a_2-L^{-1}(\alpha)c_2)\}. \end{array}$$

We have $\mu_{-A}(z) = L(\frac{|z-a|}{c}) = L(\frac{|z+a|}{c}) = L(\frac{|z-(-a)|}{c})$, for a fuzzy number A with a membership function $\mu_A(z) = L(\frac{|z-a|}{c})$.

We will also consider the possibility index for the relation between two fuzzy numbers proposed by Dubois (1978)[2]

$$Pos(A_1 = A_2) = \sup_{z \in R} \min\{\mu_{A_1}(z), \mu_{A_2}(z)\}.$$

In the following we will assume that we have two L-L fuzzy numbers A_1, A_2 with membership functions $\mu_{A_1}(z) = L(\frac{|z-a_1|}{c_1}), \mu_{A_2}(z) = L(\frac{|z-a_2|}{c_2}).$

2. Main results.

We start with the following lemma.

Lemma 1.

Let A_1, A_2 be two L-L fuzzy numbers. If $\mu_{A_1,A_2}(z)=w$, z=xy and $\mu_{A_1}(x) = w \text{ then } \mu_{A_2}(y) = w.$

Proof.

Assume that $\mu_{A_1}(x) < \mu_{A_2}(y)$. From continuity and monotonicity of L function there exists a number $h \approx 1$ such that $\mu_{A_1}(x) < \mu_{A_1}(xh) < \mu_{A_2}(y\frac{1}{h})$. Hence $z = xhy_h^1$ and $\mu_{A_1A_2}(z) \ge \mu_{A_1}(xh) \wedge \mu_{A_2}(y_h^1) > \mu_{A_1}(x) = w$. This result contradicts with the assumption that $\mu_{A_1A_2}(z) = w$. This ends the proof of the lemma.

It follows from the above lemma that when we calculate $\mu_{A_1A_2}(z)$ it is enough to consider z = xy and $\mu_{A_1}(x) = \mu_{A_2}(y)$.

Lemma 2.

Let $\mu_{A_1}(z) = L(\frac{|z-a_1|}{c_1}), \mu_{A_2}(z) = L(\frac{|z-a_2|}{c_2}), w \in [0, L(0)], \mu_{A_1}(x_0) = w = \mu_{A_2}(y_0)$ and $a_1, a_2 > 0, \frac{a_1}{c_1} \le \frac{a_2}{c_2}$.

$$(x_0 \in (0, a_1) \text{ and } y_0 \in (0, a_2)) \text{ or } (x_0 > a_1 \text{and } y_0 \in (a_2, 2a_2))$$
 or $(x_0 < 0 \text{ and } y_0 > a_2)$

then $\min\{\mu_{A_1}(x_0h), \mu_{A_2}(y_0\frac{1}{h})\} \le w$ for any $h \ne 0$.

Proof.

Assume that $x_0 \in (0, a_1)$ and $y_0 \in (0, a_2)$. If h > 0, then one of the numbers $\mu_{A_1}(x_0h), \mu_{A_2}(y_0\frac{1}{h})$ will decrease since the functions $\mu_{A_1}(z), \mu_{A_2}(z)$ are increasing on $(0, a_1)$ and $(0, a_2)$ respectively. If h < 0, then

$$\mu_{A_1}(x_0h)<\mu_{A_1}(0)<\mu_{A_1}(x_0) \text{ and } \mu_{A_2}(y_0\frac{1}{h})<\mu_{A_2}(0)<\mu_{A_2}(x_0).$$

Hence

$$\min\{\mu_{A_1}(x_0h),\mu_{A_2}(y_0\frac{1}{h})\} \leq \mu_{A_1}(x_0) = w.$$

Assume now that $x_0 > a_1$ and $y_0 > a_2$. If h > 0, then one of the numbers $\mu_{A_1}(x_0h), \mu_{A_2}(y_0\frac{1}{h})$ will decrease since the functions $\mu_{A_1}(z), \mu_{A_2}(z)$ are decreasing on $(a_1, +\infty)$ and $(a_2, +\infty)$ respectively. If h < 0, then

$$\mu_{A_1}(x_0h) < \mu_{A_1}(-x_0(-h)) \text{ and } \mu_{A_2}(y_0\frac{1}{h}) < \mu_{A_2}(-y_0\frac{1}{(-h)}).$$

Hence from the symmetry of the functions $\mu_{A_1}(z)$, $\mu_{A_2}(z)$ we have that

$$\mu_{A_1}(-x_0) < \mu_{A_1}(x_0)$$
 and $\mu_{A_2}(-y_0) < \mu_{A_2}(y_0)$.

Now, we have that (-h) > 0 and again one of the numbers

$$\mu_{A_1}(-x_0(-h)), \mu_{A_2}(-y_0\frac{1}{(-h)})$$

will decrease since the functions $\mu_{A_1}(z), \mu_{A_2}(z)$ are both increasing on $(-\infty,0)$

Hence

$$\min\{\mu_{A_1}(x_0h),\mu_{A_2}(y_0\frac{1}{h})\} = \min\{\mu_{A_1}(-x_0(-h)),\mu_{A_2}(-y_0\frac{1}{(-h)})\} \leq w.$$

Lastly, assume that $x_0 < 0$ and $a_2 < y_0 \le 2a_2$. If h < 0 then from the symmetry of the function $\mu_{A_2}(z)$ about a_2 we have that

$$\mu_{A_2}(y_0 \frac{1}{h}) < \mu_{A_2}(0) \le \mu_{A_2}(y_0).$$

If h>0 then for h<1 we have $\mu_{A_2}(y_0\frac{1}{h})<\mu_{A_2}(y_0)$ and for h>1 we have $\mu_{A_1}(x_0h) < \mu_{A_1}(x_0)$. Hence

$$\min\{\mu_{A_1}(x_0h), \mu_{A_2}(y_0\frac{1}{h})\}\mu_{A_1}(x_0) = w.$$

This ends the proof of the lemma.

Theorem.

Let $\mu_{A_1}(z) = L(\frac{|z-a_1|}{c_1}), \mu_{A_2}(z) = L(\frac{|z-a_2|}{c_2})$ where L is a continuous and strictly decreasing function on $[0,+\infty)$ and $a_1,a_2>0, \frac{a_1}{c_1}\leq \frac{a_2}{c_2}$. Then the membership function of the multiplication A_1A_2 is equal to

$$\mu_{A_1A_2}(z) = \left\{ \begin{array}{l} L(\frac{1}{2}(\frac{a_1}{c_1} - \frac{a_2}{c_2}) + \sqrt{\frac{1}{4}(\frac{a_2}{c_2} + \frac{a_1}{c_1})^2 - \frac{z}{c_1c_2}}), \ \ \text{for} \ z < 0; \\ L(\frac{1}{2}(\frac{a_1}{c_1} + \frac{a_2}{c_2}) - \sqrt{\frac{1}{4}(\frac{a_2}{c_2} - \frac{a_1}{c_1})^2 + \frac{z}{c_1c_2}}), \ \ \text{for} \ z \in [0, a_1a_2]; \\ L(-\frac{1}{2}(\frac{a_1}{c_1} + \frac{a_2}{c_2}) + \sqrt{\frac{1}{4}(\frac{a_2}{c_2} - \frac{a_1}{c_1})^2 + \frac{z}{c_1c_2}}), \ \ \text{for} \ z > a_1a_2 \end{array} \right.$$

Proof.

First we shall calculate the numbers $\mu_{A_1A_2}(0)$ and $\mu_{A_1A_2}(a_1a_2)$.

If z = xy = 0, then x = 0 or y = 0. We have

$$\mu_{A_2}(0) = L(\frac{a_2}{c_2}) \le L(\frac{a_1}{c_1}) = \mu_{A_1}(0) \le L(0) = \mu_{A_1}(a_1) = \mu_{A_2}(a_2).$$

Hence

$$\mu_{A_1A_2}(0) = \max\{\mu_{A_2}(0), \mu_{A_1}(0)\} = \mu_{A_1}(0) = L(\frac{a_1}{c_1}).$$

Lastly $\mu_{A_1A_2}(a_1a_2) = L(0)$.

Assume now that

$$x_0 = a_1 - L^{-1}(w)c_1 < 0$$
 and $y_0 = a_2 + L^{-1}(w)c_2 \in (a_2, 2a_2)$

and take

$$0 > z = x_0 y_0 = (a_1 - L^{-1}(w)c_1)(a_2 + L^{-1}(w)c_2).$$

It follows that $\frac{a_2}{c_2} > L^{-1}(w) > \frac{a_1}{c_1}$ or equivalently that

$$\mu_{A_2}(0) = L(\frac{a_2}{c_2}) > w < L(\frac{a_1}{c_1}) = \mu_{A_1}(0).$$

For each $w\in (L(\frac{a_2}{c_2}),L(\frac{a_1}{c_1}))$ there exists $z=x_0y_0<0$ since the parabola $(a_1-L^{-1}(w)c_1)(a_2+L^{-1}(w)c_2)$ has two roots $L^{-1}(w)=-\frac{a_2}{c_2}$ or $L^{-1}(w)=\frac{a_1}{c_1}$. Now we can calculate $L^{-1}(w)$ from the quadratic equation

$$-c_1c_2[L^{-1}(w)]^2 + (a_1c_2 - a_2c_1)L^{-1}(w) + a_1a_2 - z = 0.$$

We have

$$\Delta = (a_1c_2 - a_2c_1)^2 + 4c_1c_2(a_1a_2 - z) = (a_1c_2 + a_2c_1)^2 - 4c_1c_2z.$$

Hence

$$L^{-1}(w) = \frac{1}{2}(\frac{a_1}{c_1} - \frac{a_2}{c_2}) \pm \sqrt{\frac{1}{4}(\frac{a_2}{c_2} + \frac{a_1}{c_1})^2 - \frac{z}{c_1c_2}}.$$

We have $L^{-1}(w) = \frac{1}{2}(\frac{a_1}{c_1} - \frac{a_2}{c_2}) + \sqrt{\frac{1}{4}(\frac{a_2}{c_2} + \frac{a_1}{c_1})^2 - \frac{x}{c_1c_2}}$ since $L^{-1}(w) > \frac{a_1}{c_1}$. So we have from the Lemma 2 that

$$\mu_{A_1A_2}(z) = w = L(\frac{1}{2}(\frac{a_1}{c_1} - \frac{a_2}{c_2}) + \sqrt{\frac{1}{4}(\frac{a_2}{c_2} + \frac{a_1}{c_1})^2 - \frac{z}{c_1c_2}}).$$

If $L^{-1}(w) > \frac{a_2}{c_2}$, then $a_2 - L^{-1}(w)c_2 < 0$ and $a_1 - L^{-1}(w)c_1 < 0$. Using the result of Nguyen[1] we have that

$$a_w = \min\{(a_1 - L^{-1}(w)c_1)(a_2 - L^{-1}(w)c_2), (a_1 - L^{-1}(w)c_1)(a_2 + L^{-1}(w)c_2)\} = (a_1 - L^{-1}(w)c_1)(a_2 + L^{-1}(w)c_2).$$

Hence for $z = (a_1 - L^{-1}(w)c_1)(a_2 + L^{-1}(w)c_2)$ we have

$$\mu_{A_1A_2}(z) = w = L(\frac{1}{2}(\frac{a_1}{c_1} - \frac{a_2}{c_2}) + \sqrt{\frac{1}{4}(\frac{a_2}{c_2} + \frac{a_1}{c_1})^2 - \frac{z}{c_1c_2}}).$$

Lastly we have for z < 0 that

$$\mu_{A_1A_2}(z) = L(\frac{1}{2}(\frac{a_1}{c_1} - \frac{a_2}{c_2}) + \sqrt{\frac{1}{4}(\frac{a_2}{c_2} + \frac{a_1}{c_1})^2 - \frac{z}{c_1c_2}}).$$

Now take

$$x_0 = a_1 - L^{-1}(w)c_1 > 0, y_0 = a_2 - L^{-1}(w)c_2 > 0$$

and $0 < z = x_0y_0$, where $0 < L^{-1}(w) < \frac{a_1}{c_1}$.

Hence $0 < z < a_1a_2$ since the parabola $(a_1 - L^{-1}(w)c_1)(a_2 - L^{-1}(w)c_2)$ has two roots $L^{-1}(w) = \frac{a_1}{c_1}$ and $L^{-1}(w) = \frac{a_2}{c_2}$. For the quadratic equation

$$c_1c_2[L^{-1}(w)]^2 - (a_1c_2 + a_2c_1)L^{-1}(w) + a_1a_2 - z = 0$$

we have

$$\Delta = (a_1c_2 + a_2c_1)^2 - 4c_1c_2(a_1a_2 - z) = (a_1c_2 - a_2c_1)^2 + 4c_1c_2z.$$

Hence $L^{-1}(w) = \frac{1}{2}(\frac{a_1}{c_1} + \frac{a_2}{c_2}) - \sqrt{\frac{1}{4}(\frac{a_2}{c_2} - \frac{a_1}{c_1})^2 + \frac{z}{c_1c_2}}$ since $L^{-1}(w) < \frac{a_1}{c_1}$. So we have from the Lemma 2 that

$$\mu_{A_1A_2}(z) = w = L(\frac{1}{2}(\frac{a_1}{c_1} + \frac{a_2}{c_2}) - \sqrt{\frac{1}{4}(\frac{a_2}{c_2} - \frac{a_1}{c_1})^2 + \frac{z}{c_1c_2}}).$$

Assume now that

$$x_0 = a_1 + L^{-1}(w)c_1, y_0 = a_2 + L^{-1}(w)c_2$$

and $a_1a_2 < z = x_0y_0 = (a_1 + L^{-1}(w)c_1)(a_2 + L^{-1}(w)c_2).$

We have $L^{-1}(w) \ge 0$ since the parabola $(a_1 + L^{-1}(w)c_1)(a_2 + L^{-1}(w)c_2)$ has roots $L^{-1}(w) = -\frac{a_2}{c_2}$ or $L^{-1}(w) = -\frac{a_1}{c_1}$. We calculate w form the equation

$$c_1c_2[L^{-1}(w)]^2 + (a_1c_2 + a_2c_1)L^{-1}(w) + a_1a_2 - z = 0.$$

We have

$$\Delta = (a_1c_2 + a_2c_1)^2 - 4c_1c_2(a_1a_2 - z) = (a_1c_2 - a_2c_1)^2 + 4c_1c_2z.$$

Hence $L^{-1}(w) = -\frac{1}{2}(\frac{a_1}{c_1} + \frac{a_2}{c_2}) + \sqrt{\frac{1}{4}(\frac{a_2}{c_2} - \frac{a_1}{c_1})^2 + \frac{z}{c_1c_2}}$ since $L^{-1}(w) \ge 0$. So we have from the Lemma 2 that

$$\mu_{A_1A_2}(z) = w = L(-\frac{1}{2}(\frac{a_1}{c_1} + \frac{a_2}{c_2}) + \sqrt{\frac{1}{4}(\frac{a_2}{c_2} - \frac{a_1}{c_1})^2 + \frac{z}{c_1c_2}}).$$

What ends the proof of the theorem.

Remark.

To check the validity of the formula from the above theorem one can plot the following two functions $f_1(\alpha) = \mu_{A_1A_2}(a_{\alpha})$ and $f_2(\alpha) = \mu_{A_1A_2}(b_{\alpha})$ for $\alpha \in (0, 1]$. We take

$$a_{\alpha} = \min\{(a_1 - L^{-1}(\alpha)c_1)(a_2 - L^{-1}(\alpha)c_2), (a_1 - L^{-1}(\alpha)c_1)(a_2 + L^{-1}(\alpha)c_2)\}, \\ b_{\alpha} = \max\{(a_1 + L^{-1}(\alpha)c_1)(a_2 + L^{-1}(\alpha)c_2), (a_1 + L^{-1}(\alpha)c_1)(a_2 - L^{-1}(\alpha)c_2)\}.$$

As a result one should obtain the strait line passing throught points (0,0) and (1,1).

Lemma 3.

$$\mu_{A_1A_2}(z) = \mu_{-A_1A_2}(-z) = \mu_{A_1(-A_2)}(-z).$$

Proof.

$$\begin{array}{l} \mu_{A_1A_2}(z) = \max_{z=xy}\{\mu_{A_1}(x) \wedge \mu_{A_2}(y)\} = \max_{-z=(-x)y}\{\mu_{-A_1}(-x) \wedge \mu_{A_2}(y)\} = \\ = \mu_{-A_1A_2}(-z) = \max_{-z=x(-y)}\{\mu_{A_1}(x) \wedge \mu_{-A_2}(-y)\} = \mu_{A_1(-A_2)}(-z). \end{array}$$

Remark

From the above lemma we see that it suffices to find out the formula for the membership function $\mu_{A_1A_2}(z)$ for fuzzy numbers A_1,A_2 with $\mu_{A_1}(z)=L(\frac{|z-a_1|}{c_1}),\mu_{A_2}(z)=L(\frac{|z-a_2|}{c_2}),$ where $a_1,a_2>0$ and $\frac{a_1}{c_1}\leq \frac{a_2}{c_2}$. If for example $a_1<0$ and $a_2>0$, then $\mu_{A_1A_2}(z)=\mu_{-A_1A_2}(-z)$, where $-a_1>0$ and $a_2>0$. (if $\frac{a_1}{c_1}>\frac{a_2}{c_2}$ we replace a_1 with a_2 and a_2 with a_2 .)

Thus we have for $0 < \frac{-a_1}{c_1} \le \frac{a_2}{c_2}$ that

$$\mu_{A_1A_2}(z) = \left\{ \begin{array}{l} L(\frac{1}{2}(\frac{a_1}{c_1} - \frac{a_2}{c_2}) + \sqrt{\frac{1}{4}(\frac{a_2}{c_2} + \frac{a_1}{c_1})^2 - \frac{z}{c_1c_2}}), \ \ \text{for} \ z < a_1a_2; \\ L(\frac{1}{2}(\frac{a_2}{c_2} - \frac{a_1}{c_1}) - \sqrt{\frac{1}{4}(\frac{a_2}{c_2} + \frac{a_1}{c_1})^2 - \frac{z}{c_1c_2}}), \ \ \text{for} \ z \in [a_1a_2, 0]; \\ L(-\frac{1}{2}(\frac{a_1}{c_1} + \frac{a_2}{c_2}) + \sqrt{\frac{1}{4}(\frac{a_2}{c_2} - \frac{a_1}{c_1})^2 + \frac{z}{c_1c_2}}), \ \ \text{for} \ z > 0 \end{array} \right.$$

Example

Let us take $a_1=1, c_1=2, a_2=3, c_2=4, \frac{a_1}{c_1}=\frac{1}{2}<\frac{a_2}{c_2}=\frac{3}{4},$

$$\mu_{A_1}(z) = L(\frac{|z-a_1|}{c_1}), \mu_{A_2}(z) = L(\frac{|z-a_2|}{c_2}),$$

$$\begin{split} L(x) &= e^{-x} \;, \\ \mu_{A_1}(z) &= L(\frac{|z-a_1|}{c_1}), \mu_{A_2}(z) = L(\frac{|z-a_2|}{c_2}), \\ \mu_{A_1A_2}(z) &= \begin{cases} L(\frac{1}{2}(\frac{a_1}{c_1} - \frac{a_2}{c_2}) + \sqrt{\frac{1}{4}(\frac{a_2}{c_2} + \frac{a_1}{c_1})^2 - \frac{z}{c_1c_2}}) &\text{, for } & z < 0 \\ L(\frac{1}{2}(\frac{a_1}{c_1} + \frac{a_2}{c_2}) - \sqrt{\frac{1}{4}(\frac{a_2}{c_2} - \frac{a_1}{c_1})^2 + \frac{z}{c_1c_2}}) &\text{, for } & 0 \le z \le a_1a_2 \\ L(-\frac{1}{2}(\frac{a_1}{c_1} + \frac{a_2}{c_2}) + \sqrt{\frac{1}{4}(\frac{a_2}{c_2} - \frac{a_1}{c_1})^2 + \frac{z}{c_1c_2}}) &\text{, for } & a_1a_2 < z \end{cases} \end{split}$$
 First we plot the functions $\mu_{A_1}(z) = L(\frac{|z-a_1|}{c_1}), \mu_{A_2}(z) = L(\frac{|z-a_2|}{c_2}).$

 $\mu_{A_1}(z) = e^{-(\frac{|z-1|}{2})}(\text{solid}), \mu_{A_2}(z) = e^{-(\frac{|z-3|}{4})}(\text{dots})$

The next plot shows the membership function $\mu_{A_1A_2}(z)$ and its approximation $L(\frac{|z-(a_1a_2)|}{a_1c_2+a_2c_1})$

 $\mu_{A_1A_2}(z)$ (solid) $L(\frac{|z-(a_1a_2)|}{a_1c_2+a_2c_1})$ (dots)

3. Possibility index

We will consider the possibility index for the relation between two fuzzy numbers: $Pos(A_1 = A_2) = \sup_{z \in R} \min\{\mu_{A_1}(z), \mu_{A_2}(z)\}$. In the following theorem we calculate $Pos(A_3 = A_1A_2)$.

Theorem

Assume that $\mu_{A_1}(z) = L(\frac{|z-a_1|}{c_1}), \mu_{A_2}(z) = L(\frac{|z-a_2|}{c_2}), \mu_{A_3}(z) = L(\frac{|z-a_3|}{c_3}),$ where $a_1, a_2 > 0$ and $\frac{a_1}{c_1} \leq \frac{a_2}{c_2}$. Then $Pos(A_3 = A_1A_2) =$

$$Pos(A_3 = A_1A_2) =$$

$$= \left\{ \begin{array}{lll} L(g_1(a_1,c_1,a_2,c_2,a_3,c_3)) & \text{if} & a_1a_2 < a_3 \\ L(g_2(a_1,c_1,a_2,c_2,a_3,c_3)) & \text{if} & (0 \leq a_3 \leq a_1a_2) \text{ or} \\ L(g_3(a_1,c_1,a_2,c_2,a_3,c_3)) & \text{if} & (a_3 < 0,\frac{|a_3|}{c_3} \leq \frac{a_1}{c_1}) \\ L(g_3(a_1,c_1,a_2,c_2,a_3,c_3)) & \text{if} & a_3 < 0,\frac{|a_3|}{c_3} > \frac{a_1}{c_1} \end{array} \right.$$

,
where
$$\begin{split} g_1(a_1,c_1,a_2,c_2,a_3,c_3) &= \tfrac{1}{2} \left(-\tfrac{a_1}{c_1} - \tfrac{a_2}{c_2} - \tfrac{c_3}{c_1c_2} + \sqrt{ (\tfrac{a_1}{c_1} + \tfrac{a_2}{c_2} + \tfrac{c_3}{c_1c_2})^2 + 4 \tfrac{a_3-a_1a_2}{c_1c_2}} \right), \\ g_2(a_1,c_1,a_2,c_2,a_3,c_3) &= \tfrac{1}{2} (\tfrac{a_1}{c_1} + \tfrac{a_2}{c_2} + \tfrac{c_3}{c_1c_2} - \sqrt{ (\tfrac{a_1}{c_1} + \tfrac{a_2}{c_2} + \tfrac{c_3}{c_1c_2})^2 + 4 \tfrac{a_3-a_1a_2}{c_1c_2}} \right), \\ g_3(a_1,c_1,a_2,c_2,a_3,c_3) &= \tfrac{1}{2} (\tfrac{a_1}{c_1} - \tfrac{a_2}{c_2} - \tfrac{c_3}{c_1c_2} + \sqrt{ (\tfrac{a_1}{c_1} - \tfrac{a_2}{c_2} - \tfrac{c_3}{c_1c_2})^2 + 4 \tfrac{a_1a_2-a_3}{c_1c_2}} \right). \\ \mathbf{Proof.} \end{split}$$

Let q be a function as follows

$$g(z) = \begin{cases} \frac{1}{2} \left(\frac{a_1}{c_1} - \frac{a_2}{c_2}\right) + \sqrt{\frac{1}{4} \left(\frac{a_2}{c_2} + \frac{a_1}{c_1}\right)^2 - \frac{z}{c_1 c_2}} & \text{, for } z < 0 \\ \frac{1}{2} \left(\frac{a_1}{c_1} + \frac{a_2}{c_2}\right) - \sqrt{\frac{1}{4} \left(\frac{a_2}{c_2} - \frac{a_1}{c_1}\right)^2 + \frac{z}{c_1 c_2}} & \text{, for } 0 \le z \le a_1 a_2 \\ -\frac{1}{2} \left(\frac{a_1}{c_1} + \frac{a_2}{c_2}\right) + \sqrt{\frac{1}{4} \left(\frac{a_2}{c_2} - \frac{a_1}{c_1}\right)^2 + \frac{z}{c_1 c_2}} & \text{, for } a_1 a_2 < z \end{cases}$$

We have that

$$\begin{split} Pos(A_3 &= A_1A_2) = \sup_{z \in R} \min\{\mu_{A_3}(z), \mu_{A_1A_2}(z)\} = \\ \sup_{z \in R} \min\{L(\frac{|z-a_3|}{c_3}), L(g(z))\} &= \sup_{z \in R} L(\{\max\{\frac{|z-a_3|}{c_3}, g(z)\}) = \\ &= L(\inf_{z \in R} \max\{\frac{|z-a_3|}{c_3}, g(z)\}). \end{split}$$

To calculate $\inf_{z \in R} \max\{\frac{|z-a_2|}{c_3}, g(z)\}$ we assume first that $a_1a_2 < a_3$. We obtain the optimal point z from the equation

$$-\frac{1}{2}(\frac{a_1}{c_1} + \frac{a_2}{c_2}) + \sqrt{\frac{1}{4}(\frac{a_2}{c_2} - \frac{a_1}{c_1})^2 + \frac{z}{c_1c_2}} = \frac{a_3 - z}{c_3}.$$

Thus we have that

This we have that
$$\frac{1}{4}(\frac{a_2}{c_2} - \frac{a_1}{c_1})^2 + \frac{z}{c_1c_2} = (\frac{a_3-z}{c_3} + \frac{1}{2}(\frac{a_1}{c_1} + \frac{a_2}{c_2}))^2;$$

$$\frac{1}{4}(\frac{a_2}{c_2} - \frac{a_1}{c_1})^2 + \frac{z}{c_1c_2} = (\frac{a_3-z}{c_3})^2 + \frac{a_3-z}{c_3}(\frac{a_1}{c_1} + \frac{a_2}{c_2}) + \frac{1}{4}(\frac{a_1}{c_1} + \frac{a_2}{c_2})^2;$$

$$0 = \frac{(a_3-z)^2}{c_3^2} + \frac{a_3-z}{c_3}(\frac{a_1}{c_1} + \frac{a_2}{c_2}) + \frac{1}{4}(\frac{a_1}{c_1} + \frac{a_2}{c_2})^2 - \frac{1}{4}(\frac{a_2}{c_2} - \frac{a_1}{c_1})^2 - \frac{z}{c_1c_2} + \frac{a_3}{c_1c_2} - \frac{a_3}{c_1c_2};$$

$$0 = (\frac{a_3-z}{c_3})^2 + (\frac{a_3-z}{c_3})(\frac{a_1}{c_1} + \frac{a_2}{c_2} + \frac{c_3}{c_1c_2}) - \frac{a_3-a_1a_2}{c_1c_2};$$

$$\Delta = (\frac{a_1}{c_1} + \frac{a_2}{c_2} + \frac{c_3}{c_3})^2 + 4\frac{a_3-a_1a_2}{c_1c_2};$$

$$\text{Hence } \frac{a_3-z}{c_3} = \frac{1}{2}(-\frac{a_1}{c_1} - \frac{a_2}{c_2} - \frac{c_3}{c_3} - \frac{1}{4}(\frac{a_1}{c_1} + \frac{a_2}{c_2} + \frac{c_3}{c_1c_2})^2 + 4\frac{a_3-a_1a_2}{c_1c_2}).$$

Assume now that $0 \le a_3 \le a_1 a_2$ or $(a_3 < 0 \text{ and } \frac{|a_3|}{c_3} \le \frac{a_1}{c_1})$. We obtain the

$$\frac{z-a_3}{c_3} = \frac{1}{2} \left(\frac{a_1}{c_1} + \frac{a_2}{c_2} + \frac{c_3}{c_1 c_2} - \sqrt{\left(\frac{a_1}{c_1} + \frac{a_2}{c_2} + \frac{c_3}{c_1 c_2} \right)^2 + 4 \frac{a_3 - a_1 a_2}{c_1 c_2}} \right).$$

Assume now that
$$0 \le a_3 \le a_1a_2$$
 or $(a_3 < 0 \text{ and } \frac{|a_3|}{c_3} \le \frac{a_1}{c_1})$. We obtain the optimal point z from the equation $\frac{1}{2}(\frac{a_1}{c_1} + \frac{a_2}{c_2}) - \sqrt{\frac{1}{4}(\frac{a_2}{c_2} - \frac{a_1}{c_1})^2 + \frac{z}{c_1c_2}} = \frac{z-a_3}{c_3}$. Thus we have the same equation. This time we have that $\frac{z-a_3}{c_3} = \frac{1}{2}(\frac{a_1}{c_1} + \frac{a_2}{c_2} + \frac{c_3}{c_1c_2} - \sqrt{(\frac{a_1}{c_1} + \frac{a_2}{c_2} + \frac{c_3}{c_1c_2})^2 + 4\frac{a_3-a_1a_2}{c_1c_2}})$. Assume now that $a_3 < 0$ and $\frac{|a_3|}{c_3} > \frac{a_1}{c_1}$. We obtain the optimal point z from the equation $\frac{1}{2}(\frac{a_1}{c_1} - \frac{a_2}{c_2}) + \sqrt{\frac{1}{4}(\frac{a_2}{c_2} + \frac{c_1}{c_1})^2 - \frac{z}{c_1c_2}} = \frac{z-a_3}{c_3}$. Thus we have that $\frac{1}{4}(\frac{a_2}{c_2} + \frac{a_1}{c_1})^2 - \frac{z}{c_1c_2} = (\frac{z-a_3}{c_3} - \frac{1}{2}(\frac{a_1}{c_1} - \frac{a_2}{c_2}))^2$;
$$\frac{1}{4}(\frac{a_2}{c_2} + \frac{a_1}{c_1})^2 - \frac{z}{c_1c_2} = (\frac{z-a_3}{c_3})^2 - \frac{z-a_3}{c_3}(\frac{a_1}{c_1} - \frac{a_2}{c_2}) + \frac{1}{4}(\frac{a_1}{c_1} - \frac{a_2}{c_2})^2$$
;
$$0 = \frac{(z-a_3)^2}{c_3^2} - \frac{z-a_3}{c_3}(\frac{a_1}{c_1} - \frac{a_2}{c_2}) + \frac{1}{4}(\frac{a_1}{c_1} - \frac{a_2}{c_2})^2 - \frac{1}{4}(\frac{a_2}{c_2} + \frac{a_1}{c_1})^2 + \frac{z}{c_1c_2} - \frac{a_3}{c_1c_2} + \frac{a_3}{c_1c_2}$$
;
$$0 = \frac{(z-a_3)^2}{c_3^2} - \frac{(z-a_3)}{c_3}(\frac{c_1}{c_1} - \frac{a_2}{c_2} - \frac{c_3}{c_1c_2}) + \frac{a_3-a_1a_2}{c_1c_2}$$
;
$$\Delta = (\frac{a_1}{c_1} - \frac{a_2}{c_2} - \frac{c_3}{c_1c_2})^2 + 4\frac{a_1a_2-a_3}{c_1c_2}$$
;

$$\begin{split} & \text{Hence } \frac{z-a_3}{c_3} = \frac{1}{2}(\frac{a_1}{c_1} - \frac{a_2}{c_2} - \frac{c_3}{c_1c_2} + \sqrt{(\frac{a_1}{c_1} - \frac{a_2}{c_2} - \frac{c_3}{c_1c_2})^2 + 4\frac{a_1a_2-a_3}{c_1c_2}}). \\ & \text{Finally we can conclude that} \\ & \text{Pos}(A_3 = A_1A_2) = L(\inf_{z \in R} \max\{g(z), \frac{|z-a_3|}{c_3}\}) = \\ & = \begin{cases} L(g_1(a_1, c_1, a_2, c_2, a_3, c_3)) & \text{, for } & a_1a_2 < a_3 \\ L(g_2(a_1, c_1, a_2, c_2, a_3, c_3)) & \text{, for } & (0 \le a_3 \le a_1a_2) \text{ or } \\ L(g_3(a_1, c_1, a_2, c_2, a_3, c_3)) & \text{, for } & a_3 < 0, \frac{|a_3|}{c_3} \le \frac{a_1}{c_1}) \\ L(g_3(a_1, c_1, a_2, c_2, a_3, c_3)) & \text{, for } & a_3 < 0, \frac{|a_3|}{c_3} \ge \frac{a_1}{c_1} \end{cases} \end{split}$$

,
where
$$\begin{split} g_1(a_1,c_1,a_2,c_2,a_3,c_3) &= \tfrac{1}{2} (-\tfrac{a_1}{c_1} - \tfrac{a_2}{c_2} - \tfrac{c_3}{c_1c_2} + \sqrt{(\tfrac{a_1}{c_1} + \tfrac{a_2}{c_2} + \tfrac{c_3}{c_1c_2})^2 + 4\tfrac{a_3-a_1a_2}{c_2c_2}}), \\ g_2(a_1,c_1,a_2,c_2,a_3,c_3) &= \tfrac{1}{2} (\tfrac{a_1}{c_1} + \tfrac{a_2}{c_2} + \tfrac{c_3}{c_1c_2} - \sqrt{(\tfrac{a_1}{c_1} + \tfrac{a_2}{c_2} + \tfrac{c_3}{c_1c_2})^2 + 4\tfrac{a_3-a_1a_2}{c_1c_2}}), \\ g_3(a_1,c_1,a_2,c_2,a_3,c_3) &= \tfrac{1}{2} (\tfrac{a_1}{c_1} - \tfrac{a_2}{c_2} - \tfrac{c_3}{c_1c_2} + \sqrt{(\tfrac{a_1}{c_1} - \tfrac{a_2}{c_2} - \tfrac{c_3}{c_1c_2})^2 + 4\tfrac{a_1a_2-a_3}{c_1c_2}}). \\ \text{What ends the proof.} \end{split}$$

References

- Nguyen.H.T. (1978) "A note on the extension principle for fuzzy sets".
 Journal of Mathematical Analysis and Applications 64, p. 369-380.
- [2] D.Dubois and H.Prade (1978) "Fuzzy real algebra:some results". Fuzzy sets and systems, p.327-349.
- [3] Janusz Kacprzyk, Mario Fedrizii Editors. "Fuzzy regression analysis". Studies in Fuzziness, 1992 Omnitech Press, Warsaw and Phisica-Verlag, Heidelberg, Volume 1, p. 61-80.

Marek Piasecki
Institute of Applied Mathematics
Warsaw University
Banacha 2
02-097 Warszawa, Poland
E-mail:mpia@mimuw.edu.pl
and

ul.Newelska 6,01-447 Warsaw, Poland

