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On material isomorphism in description of dynamic plasticity
P. PERZYNA (WARSZAWA)

PARTICULAR analysis of two material structures namely a structure of rate type and structure
with internal state variables has been given. The main objective of this paper is to investigate
the conditions under which both these material structures are isomoprhic, i.e. describe
the same material. The second objective is to apply the results obtained to the description of
dynamic plasticity. An essential feature of both structures considered is the form of the equation
describing the evolution of internal states. This equation determines the evolution function.

For every material structure the internal state is determined in a different way. The internal
state and its evolution are substantial of the comparison of the material structures considered.

Based on material isomorphism of the structures investigated the equivalence of the rate type
theory of viscoplastic flow with the theory of viscoplasticity with internal state variables has
been proved. All considerations have local character and concern finite elastic-plastic deforma-
tions.

Podano szczegblowa analizg dwobch struktur materialnych, mianowicie struktury materialnej
typu predkosciowego oraz struktury materialnej z parametrami wewnetrznymi. Celem tej analizy
jest zbadanie warunkow, przy ktérych te dwie struktury sa izomorficzne, tzn. opisuja ten sam
material. Celem nastgpnym jest zastosowanie uzyskanych rezultatéw do opisu dynamicznej
plastycznosci. Istotna cecha obydwu analizowanych struktur jest postaé rébwnania okreslajacego
ewolucje stanéw wewnetrznych, ktére determinuje postac¢ funkcji ewolucji. Dla kazdej struktury
stan wewnetrzny jest okreslony inaczej. Kluczem do poréwnania struktur jest stan wewnetrzny
i jego zmiana w czasie, a wigc ewolucja, dlatego funkcja ewolucji odgrywa w tym poréwnaniu
role podstawowa. Wykorzystujac izomorfizm badanych struktur wykazano rdéwnowaznoéé
teorii lepkoplastycznego plyniecia typu predkosciowego z teoria lepkoplastycznoséci zbudowana
w ramach struktury z parametrami wewnetrznymi. Wszystkie rozwazania maja charakter lokalny
i dotycza skoniczonych deformacji sprezysto-plastycznych.

Iaetca moapobHEIH aHANNS OBYX MaTepHAIBHBIX CTPYKTYD, HMEHHO MaTEPHANLHOMN CTPYKTYpBI
CKOPOCTHOTO THMIIA H MaTepHAJIBHOH CTPYKTYPBI C BHYTPEHHMMH napamerpamu. Llensio atoro
aHanu3a ABJIAETCA MCCHENOBAHHE YCJIOBHIl, IPH KOTOPBIX 3TH [BE CTPYKTYPhI H30MOPhHUHBI,
T. 3H. ONHCBIBAIOT TOT JKe CaMbiif MaTepuan. OuepeqHOi LENBI0 ABNACTCA NPHMEHEHHE MOTY-
YeHHBIX PE3YJIBTATOB Ui OMHCAHHA AHHAMHUYECKOH NIACTHUHOCTH. CylLeCTBEHHBIM CBONCTBOM
ofoMX aHANIM3HPOBAHHLIX CTPYKTYP SABJIACTCA BHJ YPABHEHHA ONPENEJISIOLIEro 3BOJIOLMIO
BHYTPEHHHX COCTOSIHHI, KOTODBIE ONpeAenAoT Bul GyHKuuK sBomouny. JI/IA KayKmo#H CTpyK-
TYpbl BHYTpEHHEE COCTOAHHE onpejieNieHo MHaue, KUmouoM s cpaBHEHMA CTPYKTYp ABIA-
€TCSl BHYTPEHHEE COCTOSIHHE M €ro M3MEHEHHE BO BPEMEHHM, T. €. 3Bo/mouHA. [Tostomy dyHK-
IHA 3BOJIOLIMHM MIPAeT B 9TOM CPaBHEHMH OCHOBHYIO poib. Mcmompays msomopdmuam mcone-
JOBaHHBIX CTPYKTYP MOKa3aHA SKBHBAJIEHTHOCTh TEOPHH BASKOIUIACTHYECKOTO TEUEHHA CKO-
POCTHOTO THIA C TeOpHeH BA3KOMIACTHYHOCTH, NOCTPOEHHOH B PAMKAX CTPYKTYpBI C BHYTpEH~
HuMM napameTpamu. Bce paccy)keHHA HMEIOT JIOKAIRHBIH XapaKTep M KacaloTCA KOHEYHBIX
ynpyro-nnacTuveckux nedopmanimii.

1. Introduction

THE oBIECTIVE of this paper is to give a particular analysis of two descriptions of dynamic
plasticity, namely a theory with internal state variables and a theory of the rate type.

In the first part, an outline of the unique material structure for a dissipative material
is given. The method of preparation space and the intrinsic state space are essential no-
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tions introduced for a mathematical description of a dissipative material. By different
realizations of the method of preparation space we have obtained the material structure
with internal state variables and the material structure of the rate type. An investigation
of conditions under which these both material structures are isomorphic is given. An
isomorphism of two unique material structures is understood as a similarity of these
structures in the sense that these both structures describe the same material in a particle X
of a body 2.

In the second part, an application of the results obtained to description of dynamic
plasticity phenomena is presented. Two equivalent dynamic theories of plastic flow are
constructed. Two particular examples of the description of an elastic-viscoplastic material
are considered. The first is valid for medium strain rates and describes elastic-perfectly
viscoplastic behaviour of a material and the second is valid for the entire range of deform-
ation rate and concerns elastic-work-hardening viscoplastic behaviour.

It is important to note that all quantities and parameters introduced in the theories
considered can easily be interpreted in terms of experience based on the analysis of dissi-
pative mechanisms and on the experimental results for time-dependent plastic flow (cf.

Refs. [4, 5, 7).

2. General material structure (!)

Let us consider a body # with particles X and assume that this body can deform in-
elastically. A motion of a body 4 is a single parameter family of configurations, i.e.
(2.1) x = x(xy f),

where x is the spatial position occupied by the material point X at time . It is often conve-
nient to identify the material point X with its position X in a fixed reference configuration
%, and to write

2.2 x = (X, 1).
The gradient F(¢) of % (X, t) with respect to X, i.e.
(2.3) F(X,1) = Vx(X, 1),

is the deformation gradient at X. The deformation gradient F(z) describes all local prop-

erties of deformation at X.
In what follows, we shall use the right Cauchy-Green tensor C(t) = F(¢)"F(t) as the

fundamental local measure of deformation.
Let a continuous stress tensor T.(t) denote the Cauchy stress tensor of a particle X
at time 7. We shall use the second Piola-Kirchhoff stress tensor defined by the expression

2.9 T(t) = (det F(t))F(t)"*T(t)(F(1)~*)".
Let us introduce the notations as follows: g = C(¢) is the local configuration of X
at time ¢, and s = T(r) denotes the local response of a particle X at time .

() Cf. Ref. [6] in which a mathematical frame-free theory of dissipative materials is developed.
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A set of all possible configurations of a particle X will be denoted by ¢ and will be
called the configuration space (the deformation space).

A set of all possible responses of a particle X will be denoted by & and will be called
the response space (the stress space).

We shall consider processes (?) in the configuration space ¢ and processes in the
response space &.

A process
(2.5 P=C: [0,d;)» ¢

will determine the change of the configuration of a particle X in the interval of time [0, dp].
A number d, will be called the duration of the process P, and P! = P(0) and P/ = P(d,),
the initial and final values of the process P, respectively.

A process

(2.6) Z=T:[0,d]-%

will determine the change of the stress of a particle X in the interval of time [0, 4,].
DEerFINITION 1. Every pair (P, Z) € [l x & such that Dom P = Dom Z, where

1= {PP: [0,dy] » ¥4},

Z = {Z|Z: [0,d,] » &},
denote a set of the deformation processes and a set of the stress processes, respectively, is
called a mechanical process for a particle X.

Let us introduce a space X" connected with the configuration space ¥ in such a way
that elements of the space &', which will be denoted by k € ", are the methods of prepara-
tion of the corresponding configurations from %. The space o will be called the method
of preparation space (3).

DEeFINITION 2. A non-empty set X will be called the method of preparation space for
a particle X if
(2.8) \/ ANV R, -, P):H,— 2, is bijection,

ZCF¥xA M:(ExI T ged PEH‘,XF cx

@7

n

where
(2.9) ExI)* = {(¢,P) eI x H|r>£fo‘e{P‘}xx,r},
(2.10) I, = {Pell|P! = g}.
DEFINITION 3. 4 set
(2.11) S=U{glxAH,, H,cX

FEY

is called the intrinsic state space (*) of a particle X.

(%) For a thorough discussion of properties of processes see NoLL [2].

(%) For a notion of the method of preparation see Refs. [3-5]. The precise definition of the method
of preparation space was first introduced in Ref. [6]. We follow here the presentation from Ref. [6].

(*) The intrinsic state space Z is due to Ref. [6]. It plays a similar role in the theory as the state space
postulated by NoLL [2].
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The element o € X is a pair of the configuration and the method of preparation, i.e.
(2.12) o= (P(1),A())=(9,k), ge9, ke,

where by A we denote a process in the method of preparation space ', i.e. A: [0, dp] = .
We define two mappings as follows (°):

G=rprg:Z -9,
K= Prx:Z = X,
which determine the projections from the intrinsic state space Z on the configuration space
% and on the method of preparation space ', respectively.

DErFINITION 4. A system (%4, 11, Z, R) will be called the unique material structure defined
in a particle X.

The mapping
(2.149) R:ExI*->2Z
introduced in the Definition 2, which will be called the constitutive mapping, expresses the
general principle of determinism.

DEFINITION 5. It is said that the mapping

(2.13)

(2.15) e:(ZxIH* -2
is the evolution function (°), if for every pair (oo, P) € (Z x I1)*
(2.16) R(e(0o, P), Pls)) = [R(00, PV,

where [R(a,, P)) denotes the final value of the stress process Z = R(oo, P) and Ply, is the
process of duration zero.

/8(ete,P)
= 5(o)

Fic. 1.

(%) For the mapping G see NoLL [2] and for the mapping K see Ref. [6].
(°) The evolution function € is similar to that introduced by NoLL [2].
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If we introduce a new mapping (7)

2.17) S$:Z- ¥

by the expression

(2.18) $(0) = R(o, G(0)0))»

then the principle of determinism can be expressed by the relation
(2.19) Z(t) = S(e(o0, P))

for every (oo, P) € (ExII)*, and for dp = ¢, see Fig. 1.
The mapping S will be called the response function.
The system (%4, I1, Z, S, €) is also the unique material structure in a particle X.

3.Internal state variable material structure (®)

Let use assume that a class of deformation processes contains only continuous processes.

PRrOPOSITION 1. The method of preparation space is a finite dimensional vector space
W, ie.

(3.1) A=W,

the intrinsic state space X is the set

(3.2) Z={@g,blge¥kew,}

and

(3.3) ExI* = {(¢,P) e Zx |G (o) = P'}.
PROPOSITION 2. (i) There exists a mapping

(3.4 X oW

such that for every P € Il and k, € W'y the initial value problem
d "
(3.5) _(EA(I) =a(P(1),A(7)), A0) =k

has a unique solution A: [0,dp} » A = W.
(ii) The constitutive mapping R; [Z x [1)* —» & satisfying for every pair (o, P) € (Z x [1)*
the condition

(3.6) R(G(oo), * » P): Wyt = Z, must be bijection
is such that the evolution function € is of the form
3.7 e(co, P) = (P, §(P, K(00))),

where § denotes the solution functional of the initial value problem (3.5).

(%) Cf. NoLr [2). It is worth to note that both mappings € and $ are similar to those introduced by
NoLL [2] but in this theory the mappings € and S are generated by the constitutive mapping R, cf. Ref. [6].
(®) We follow here the presentation given in Ref. [1].
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DEFINITION 6. The unique material structure (4, 11, 2, R) satisfying the Propositions
1 and 2 is called the material structure with internal state variables.

The principle of determinism for the material structure with internal state variables
is expressed by the constitutive equation

(3.8) Z(t) = S(P(1), A()).

4. Rate type material structure (°)

We assume that deformation processes P € I1 are piecewise continuously differentiable,

= 15(1‘) which are

T=1

i.e. for every ti .2 ¢ € [0, d;) exist left and right derivatives —;;P(t)

equal for all ut a finite number of ¢ € [0, dy].
Forsu. a class of processes Il we define the set

) d
(4.1) 'fg = H_E P(I’)

Pell, 7€[0,d],P(x) = g€ Q,},

i.e. the class of all possible derivatives of deformation processes at a time at which they
have the value g.
ProrosITION 3. (i) The method of preparation space is the stress space &, i.e.

4.2 N=,

the intrinsic state space X is the set

4.3) Z={(g,8)l9e¥9,8e Ly =}

and

4.9) ExI)* = {(¢, P) e Zx1I, G(o) = P}.
(ii) There exists a mapping

@.5) B:9 > &, D={(9,5,9)lge¥,5e¥,, 8 %,},

such that for every P € Il and s, € &y, the initial value problem
d . .
(4.6) 7 20 = B(P(x), P(v), 2(v)), Z(0) = s

has a unique solution Z: [0, d;] - &.
(iii) The constitutive mapping R: (Z x [1)* — Z satisfying for every pair (0o, P) € (Z x IT)*
the condition

@4.7) R(G(00), *» P): Pyt = Z» must be bijection
is such that the evolution function e is of the form
4.8) &(go, P) = (P, 3(P, 50)),

where 3(P, 8,) denotes the solution functional of the initial value problem (4.6).

(°) The rate type material structure was first developed by Nott [2].



ON MATERIAL ISOMORPHISM IN DESCRIPTION OF DYNAMIC PLASTICITY 479

(iv) The constitutive mapping satisfies also the condition
(4.9) Z(t) = [R(oo, P)Y = 3(P, 80) = $(0) = K(0) = s.

DEFINITION 7. The unique material structure (4, I1, 2, R) satisfying the Proposition 3
is called the material structure of the rate type.

It is worth to note that the principle of determinism for the rate type material structure
is expressed by the relation (4.9).

5. Isomorphic material structures

Suppose that we have defined, in one and the same particle X, two material structures
9,11,%,,8,,8) and (4,11, %,,5,,¢,).

DerNITION 8. Two material structures (4, 11, Z,, él, &) and (¢,11,2,, §2, €,) are
materially isomorphic if there exists a bijection v: X, — X, with the properties

D) 8:(:01) = Si(o),

2) C}2(‘(0*'1)) = Gl(al)s

3) éz(‘(al)! P) = '-(él(o'u P))

This definition is a special case of the definition proposed by W. NotLL [2].

If two material structures defined in the same particle X are materially isomorphic,
we also say that they describe at X the same material. So, a material is an equivalence class
of material structures, the equivalence being material isomorphy (given by the Definition 8).

An isomorphism is thus a similarity. More important property of an isomorphism is
that, if the unique material structure (%4, I1, Z,, §[ , €) is isomorphic with the unique
material structure (¥, I1, Z,, S, &,) and if some features expressed by terms Z,, S,, N
are valid for the structure (%, I1, Z,, S,, e,), then the same features expressed by terms
=,,8,, 8, are preserved for the structure (%4, 1, Z,, S,,8,).

An isomorphism of two unique material structures is thus a similarity of these struc-
tures, under which the actions S ; and &, defined on the set X, correspond to the actions §2
and &, defined on the set X,.

This is the main reason for which the study of isomorphism for different material
structures is of great practical importance.

6. Discussion of a material isomorphism between internal state variable and rate type
material structures

Let us write the main equations for the internal state variable material structure in
the form

6.1) o, =(PW),AW)) =@, keI, ge¥ ke¥,,
(6.2) Z(@t) = $,(P(1), A®)),

63 L A@ = aP(,AD),  AO) = K(10) = ko.
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We assume additionally that the Eq. (6.2) is such that A(¢) can be expressed as a func-
tion of P(¢) and Z(¢) for any time ¢ € [0, d;), i.e.

(6.4) A1) = N(P(1), Z(1)).
The pair (P(¢), Z(t)) determines the intrinsic state o, at time ¢, i.e.
(6.5) o, = (P(1),Z(t)) = (9,9 €Z,, ge¥,s8e,.

The bijection t: X, —» X, is determined by the mapping N:Z, » &, = #.

Let us assume that deformation processes P € I are continuous and piecewise differen-
tiable with respect to time in the interval [0, dy] and that the constitutive function S,
is differentiable with respect to both variables P(z) and A(7), i.e. that the gradients 3,,(,)AS 1
and 9,S, exist.

By differentiating the constitutive equation (6.2) with respect to time, we obtain the
following evolution equation for the rate type structure

(66) 22(0) = ho(P(), Z(0) +H1 (P(2), Z()) B(a))
where
Bo = 9081 (P(2), N(P(2), Z(0)))a[P(x), N(P(z),Z(v))),
Br = 250 Si(P(), N(P(2), Z(0))),

and the initial value Z(0) is determined by the relation
(6.8) Z(0) = $,(P(0), A(0)) = 8.

(6.7)

FiG. 2.
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If the functions [§o and ﬁ, are such that the unique solution of the initial value problem
(6.6)-(6.8) exists, then we can write
(6.9) Z(1) = 3(P, 89) = §,(02) = Ky(0,) = 5.

The connections between different mappings introduced are explained in Fig. 2.

Under the conditions introduced, there is simple isomorphism between the internal
state variable material structure and the rate type material structure.

Under above conditions both these material structures describe the same material
at a particle X of a body 4.

7. Example 1. Elastic-viscoplastic material (medium strain rates)

Let us postulate that
(7.1) A1) = P(t),

i.e. the inelastic deformation tensor P(t) is assumed as the internal state variable. So, the
intrinsic state is determined by a pair

(7.2) o, = (C(t), P(t))eZ,.
The constitutive equation has the form
(7.3) 7(t) = S,(C(), P(1)).

The evolution equation is assumed as follows
d
(7.4 5 P(7) = y{D(F(v))) Oy f

with the initial value
(7.5) P(0) = P,,

where y is a viscosity constant, #(¢) is the static yield condition and is assumed in the
form

(1.6) F = LA
*o

where %, is a yield constant, the dimensionless function @(#(f)) may be chosen to repre-

sent results of tests on the dynamic behaviour of materials and the symbol {®(Z(¢)))

is defined as follows

1.7 o : 0 for F@)<0,
7 CEOD =\o(#()) for #1)>o0.
A material described by the relations (7.1)~(7.6) is called an elastic-perfectly visco-

plastic material. The relations (7.1)-(7.6) defined the internal state variable structure of an
elastic-perfectly viscoplastic material (1°).

(*°) A thorough discussion of the internal state variable description of dynamic plasticity is given in
Ref. [4].
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If the constitutive equation (7.3) can be written in the form

(78) P(r) = N(C(), T()),
then the internal state ¢, is determined by the expression
(7.9) 0, = (C(1), T(1)) e Z,.

Let us assume that all conditions explained in the previous section are satisfied for an
elastic-perfectly viscoplastic material.

Differentiating the constitutive equation (7.3) with respect to time gives the evolution
equation for the stress T(¢) in the form

(7.10) g'; I(7) = Bo(C(v), T(1))+B,(C(x), T(¥)) [C(7)]
with the initial condition

(7.11) 7(0) = S,(C(0), P(0)),

where

Bo = y<P(F (D)) pnS1 [0S 1,

ﬁl = aC(t)él-
The equations (7.8)-(7.12) define the rate type structure for an elastic-perfectly plastic
material.

(7.12)

8. Example 2. Elastic-viscoplastic material (description in the entire range of strain rate)

Let us now postulate
8.1) A1) = (x(1), (1), P(1)),

where x(t) is the work-hardening scalar parameter, y(t) is the viscosity scalar parameter
and P(¢) is the inelastic deformation tensor. The intrinsic state is determined by

(82) o, = (C(1), »(1), y(1), P(t)) € Z,.
We assume the constitutive equation in the form
®3) T(1) = §,(C(), #(1), (1), P(1)),

and postulate the static yield condition

8.4) F@) = A0 PO)

The evolution equations for the internal state variables #(¢), y(z), P(t) are postulated
in the form

P(t) = y()(D(F (D)) 01 ],
(8.5) #z) = (@) (P(F @D tr [To(01) P70 /1,
#(7) = p(D){D(F (@) tr [Ko(01)d1(n /1,
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with the initial conditions
(8.6) P0) =P, y(0) =yo, #(0)= .

It is easy to show that for this case there is no simple transition to rate type structure
of an elastic-viscoplastic material. But we shall prove that the internal state variable struc-
ture of an elastic-viscoplastic material determined by the Egs. (8.1)—(8.6) is isomorphic
with some mixed material structure.

To show this let us assume that the constitutive equation (8.3) can be written in the
form

®.7) P(t) = N(C(), x(1), y(1), T(1)).
Let us postulate that the intrinsic state g, is now determined by the expression
(8.8) o, = (C(2), (1), y(1), T(t)) € Z,

We have assumed that the method of preparation space " is the Cartesian product
of the two-dimensional vector space ¥, and the stress space &, i.e.

(8.9) XN =V,x&.

In a similar way as in the previous section we can obtain the evolution equation for
the stress tensor T(¢) in the form

(8.10) 2 1(2) = foloa)+B1(02) [€(2),

where

Bo = Y(KP(F())) {dunS1 tr [Kodr(r /]
@1 +2y0)S1 tt o010 /14260811010 11},
él T 3cmé1 s
with the initial value
(8.12) 1(0) = §,(C(0), %(0), y(0), P(0)).
The evolution equations for () and () have the same form as postulated by (8.5), i.e.

#(7) = y(D)(P(F () tr [Fo(0,)01() 1],

(8.13) . N

#(t) = p(){D(F () tr [Ko(02)d1¢x) 11,
with
(8.14) y(©0) = yo, #(0) = %o.

The equations (8.7)-(8.14) defined the mixed material structure which is isomorphic
with the internal state variable structure of an elastic-viscoplastic material (8.1)-(8.6).
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