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Elastic strip with a crack under periodic loading

G. KUHN (MUNCHEN) and M. MATCZYNSKI(*) (WARSZAWA)

AN ELASTIC strip containing a semi-infinite crack is subject to periodic displacement along the
edges. Using the complex Fourier transforms and the approximate Wiener-Hopf technique,
the dynamic stress intensity factor, the crack opening and the stress field in front of the crack
tip are determined. The state of stress is evaluated by means of the numerical inversion of trans-
forms along the real axis and is expressed in terms of the excitation frequency w.

Pasmo spreZyste, zawierajace poélnieskoriczong szczeling, poddane jest okresowym w czasie
wymuszeniem kinematycznym na swych brzegach. Za pomoca zespolonej transformacji Fouriera
oraz przyblizonej procedury faktoryzacyjnej Wienera-Hopfa wyznaczono wspolczynnik dyna-
micznej koncentracji naprezenia, rozwarcie szczeliny oraz stan napre¢zenia przed wierzchotkiem
szczeliny. Stan naprezenia w pasmie wyznaczono odwracajac otrzymane transformacje w sposéb
numeryczny wzdluz osi rzeczywistej; jest on funkcjg czestoici @ wymuszonych przemieszczen
brzegbw pasma.

Vnpyras monoca, ColepiKaBIIan MONyGECKOHEUHYIO TPEIIHHY, MOXBEPIHYTA IIEpHOANYECKHM
BO BPEMEHH, KHHEMATHUECKHM BbIHY)KIEHHeM Ha CBOMX rpaHuuax. C HOMOLIbIO KOMIUIEKC-
Horo npeobpasoBanua Pypbe H NpHOMKEIHOE npouexypb! (axkTopusaumun Bunepa-Xonda
onpefenenbl KO3hGhHUIHEHT HHAMHYECKONH KOHLEHTPALMH HANPAMEHHI, PACKPLITHE TPELLHHLI
H HanpsDKEHHOE COCTOAHME Mepel BepLUMHOHA TpeumHbl. HanpsixeHHoe cocTosiHMe B mosoce
onpejesieHo obpalliaa noJyyeHHbIe H300payKeHHA YHCIEHHbBIM 00pa3om B0 AeACTBHTEBHOMN
ocH; OHO ABMAeTCA (DYHKIMEH YaCTOTHI @ BHIHYM(ICHHBIX NMEPEMEINeHHi TPaHHI] MOJIOCHI.

1. Introduction

KnNowrLEDGE of the exact distribution of stresses and strains in the vicinity of a crack
proves to be of primary importance for the general solution of the crack problem. In
linear elastic bodies and brittle fracture problems it is sometimes sufficient to know the
value of the stress intensity factor (SIF), i.e. the singular behaviour of stresses at the
crack tip, in order to be able to estimate the behaviour of the crack. In dynamic crack
problems, however, in which the influence of inertia forces is difficult to determine, it
may prove necessary to know the state of stress and strain within the entire region of the
strip. Therefore the present paper deals not only with the determination of the stress
intensity factor but also presents the results concerning the crack opening, stress distribu-
tion in front of the crack and also the stresses at other points of the strip.

2. Formulation of the problem
Let us consider an infinite elastic strip of width 2h containing a semi-infinite crack;
the edges of the strip are fixed in the longitudinal direction, u(x, +#4) = 0 and are periodi-

(*) Contribution of the second author was supported by a grant from the Alexander von Humboldt
Foundation.
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cally excited in the transversal direction by the displacements v(x, +4) = + (v, +v, coswt).
The plane state of strain is considered, and the body is assumed to be linearly elastic.
The statical component of displacement +9, is so assumed that the crack edges do not

touch each other in the process of vibration.
The solution is obtained by superposition of the following two partial problems shown

in Fig. 1:

Ja v y T
ufih)=0 vich)=vprvcasat Glh)=0, V(xh)=|v, +vcos wt dih)=0 | Vxh)=0

L0 f

ufe-h)=0, v(x-h)=-fgrv,casot)  Gfx-h)=0, V(x-h)=-(p+vcoswi) Ufx-h)=0 V(x-h)=0

c'rxy (x,0)=0

2h

Problem (a) Problem (b)
FiG. 1.

(a) A strip without the crack, with the boundary conditions #(x, +k) = 0, v(x, +£h) =
= +(vp+v,coswt), and

(b) A strip with the crack, with the boundary conditions l:(x, +h) =0, zii(x, +h) =0,
the crack being loaded by (;,,(x, 0) = —crn,,(x,O).

The static problem of v***"(x, +h) = +v, will not be considered in this paper since
the corresponding solutions may be found, e.g. in the paper [1] by W. G. KNAuSs, or
may be derived from the dynamic solution by the limiting procedure of w — 0, v, being

replaced with ;.
Let us start with the Lamé equations written in Cartesian coordinates

uVu+(A+p)8 . = oii,
uVio+(A+p)l,, = gv.
Here A, u are the Lamé material constants, ¢ — mass density, 6 — dilatation, V? =
= 3%|0x*+d%|dy?, and 3/dx( ) = ( ). 3/dt( ) = (). Using the Helmholtz representation
22) u(x,y,1) = @xtyy, X, ¥, 1) =@y—Ysx
it will be assumed that the state of harmonic vibrations allows for writing the correspond-
ing solutions in the form of products,
(2.3) @(x,y,t) = ¢*(x, y)coswt, (x,y,t) = p*(x, y)coswt.
On substituting the Eqgs. (2.2) and (2.3) into (2.1) we obtain two partial differential equa-
tions for the amplitudes ¢*(x, y) and p*(x, y),
(2.4) Vig* 4xdg* =0, Vip*+xip* =
with %, = w/e,, %, = w/c,, and ¢ = (A+2p)fe, 5 = ple.

Let us, moreover, introduce the two-sided complex Fourier transform
2.5) F(a, y) = F~(a,y)+F* (2, )

@.1)
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with

1
F-(a,y) = v’_25_ ff(x,y)e‘“dx reg. for Im{a} < 7,

w

Ft(a,y) = 1/2“ ’ fx, y)e**dx  reg. for Im{a} > 7_.

The corresponding inverse formula has the form

o0 +iro

1
) =5 [ e,

—w+irg

(2.6)

a=0+it and 1roe(r_,7y).

The Fourier transforms applied to the Eqgs. (2.4) yield the ordinary differential equations

d> d?
@7 [ 37 —(? —xn)]ﬂi*(m,y) [;y—;-—(u“—xi ]SF*(a,y) =0
with the general solutions

D*(a, y) = C, (o:)sh(yl/ a?—#3) + C,(a)ch(y l/ o? —x3),

(2.8
/ (2, 5) = Cy(@)sh0'y T+ C.(a)chly Y =7,

In this manner we obtain the transformed displacement field and also, by means of Hooke’s
law, the transformed field of stresses,

U*(a, y) = —i{a[Ci(@)sh(y) a®—»2)+C,(a)ch(y Y o* —x3)
+iY @ —2[Cs(a)ch(y Y &2 — x3) + Co(0)sh(y Y a2 —%3)]},
V*(a,y) = Ve =x3 [Cy(0)ch(y) @ =3 ) +Cy(@)sh(yy o =3 )]
+ia[C3(0)sh(y )/ «* —#3) + Co(@)ch(yY @ )],
Zr(a,y) = —p{Qo* +%3—2x3)[Cy(a)sh(y ) & — x2) + C; () ch(yV o? —#3)]
+2iay/ a’—xz[Cs(a)ch(y]/ a’-—x;)+C4(a)sh(y|/ a?—x%3)]},
I3, y) = p{2e?—3) [Ci(@)sh(y) @ =)+ Ca(@)ch(yY @®—#3)]
+2ia) @F—x2[Cs(@)ch(yy o —x2)+ Ca(@)sh(yy 2 —3)]},
Z¥(a,y) = —ipRaya®—x? [Cl(m)ch(yV_—:Tl)+Cz(a)sh(yV a2 —xd)]
+i2a2 —x3) [C3(@)sh(y Y o?—x3)+ Ca(@)ch(yy @ —#3)]}.

(2.9)

The unknown integration functions C,(«) are found from the corresponding boundary
conditions.



462 G. Kuan AND M. MATCZYNSKI

3. Boundary conditions

Problem (a). (The strip without the crack). Transformed boundary conditions have
0 0 s
the form U*(x, +h) = 0 and V*(a, +h) = iv,]/2n é(a). The Dirac delta-function oc-
curring in that expression allows for a closed-form inverse transform

0, _ 0, _ % sin(x, y) 0, _
u (I, J’) 0’ v (x! y) Sin(xl k) 2 O'x’(x, y) == 0,

o, _ 2uv v, %,cos(%,y)
(3.1) G,,g(xs J") 1—-2%» Sin(xl h)

2 (1—7) v, %,c08(x;y)
1-2 sin(x,h)

The static solution to be superposed over the dynamic one may be obtained from the
Eq. (3.1) by assuming w — 0 (or %, — 0) and replacing v, with v,.

Problem (b). (The strip with a loaded crack). Owing to the symmetry, only the upper
half-strip is considered. The transformed boundary conditions are

0
ay(x,y) = % h # nx.

1
Us(a, h) =0, V*(a,h)=0, Z%(0)=0,
G2 1 1
V¥(,0) = ¥=(a) und Z3,(x, 0) = Z5,(0) +Z55()

with

V-(a) = Tzl*f£ V% (x, ) epuedx ,

0
_ 1 1 i
Tl [,, o3y (x, 0)**dx = — '—/‘%[—;+ﬂﬁ(a)] reg. for Im{a} < 0.

Here p, = 3;,(x, 0). In order to be able to evaluate the inverse transform along the real
axis, the axis itself will be included to the strip of regularity — except the point « = 0
(similar to the assumption of [3]).

By satisfying the boundary conditions (3.2),_, we obtain the integration functions
C; = C;{V~(0)}, and inserting them into the Eq. (3.2)s yields the Wiener-Hopf integral
equation

(3.3) V=(2) = —-% H(2)[Z},(2)—Py(z)] reg. for —¢ <Im{z} < 0.
The functions to be determined are ¥~(z) and Z},(z), and the kernel H(2) is equal to
H(2) = fi(9lf:(2), H(@) = H(-2),
fi(@) = o3y 22—a? [z’shl/ z22—gichy z2—o}

—V (@—=0?) (2=} shy/ 22— a? chy/ 22— o}
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£:@) = U +Q22 =03V @) (—0)) chy/ Z—ol ch T3

—22[(222 —03)? +4(2*—0}) (22— 3)) sh Y z>— 0} sh}/ 22— 2

—42Q2 - ) =) .
Here the following notations are introduced:

h i
Pi(2) = —V%[—?--i-né(z)], z=ah, o, =xh and @, = xh.
An exact, analytical factorization of the Eq. (3.3) is not possible, and so we shall apply
the approximate procedure proposed by W. T. KOITER [4] according to which the kernel

is written in the form
(3.4) H(Z) = H2)H,(2).
The functions H(z) and H,(z) must satisfy the following conditions:
H(z) is the approximate kernel function with H(0) = H(0) and H(o0) = H(m), it
contains all the zeros and poles of H(z) in the region [Im{z}| < & for 0 < z < oo}
H,(z) is the residual function with the properties H,(0) = H,(®) = 1 and has no
zeros and poles in the region [Im{z}| < & for 0 < z < oo.
According to B. NoBLE [5], we have then
(3.5 H\(z) = H{(2)[H7 (2)

with the following notations

004y
o InH, (&)
InH} (2) = —2;00] S,
LT nHL@)
— () — L © InH,
InH(z) = - L g s
—oo+iye

and —e < y, < y; < & From the symmetry properties it follows that also the functions
Hf and H~ satisfy the conditions Hf(0) = Hi() = 1.

Discussion of the kernel function H(z) at real values of z in the interval 0 < z < o
concerning the zeros and poles yields in the most interesting region of ¢, < #/2 and
0 <7» < 0.4 (v— Poisson’s ratio) the resuylts:

Case i: o, < #/2, f,(2), f2(2) have no zeros;

Case ii: 0, < m/2, f,(z) has a single zero at z = z,,

f2(2) has a single zero at z = z,.

Using the above results let us assume for the approximate kernel function the follow-

ing, relatively inaccurate representation:

1—v  z2-2%

He) = H@) = Lo 74

(3.6) ) )
Jin Case i: z; = z,,

with the convention that ) <
lm Case ii: z; # z,.
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Here 4 = (1-vz}03}/(z30,tana,). In spite of its simplicity, the function satisfies

both conditions requireél, H(0) = H(0) and H(o) = H(), and also contains all the zeros
and poles in the extended region of regularity. From [6] it follows that this simple assump-
tion is sufficient in calculating the accurate value of the dynamic SIF. The representation
(3.6) may be generalized and written in the form

M(z) il M(z)  z*+202°z5+25
L2 L(iz) z* 424

3.7 H@) = Hez) 222

with & = H(z,)/H(zo)—1. Then H(zo) = H(z,) makes the original function and its ap-
proximation coincide at an additional arbitrary point z, thus increasing the accuracy of
the new representation. In this paper z, will be selected as the point at which |H(z,)—
— H(z,)| reaches its maximum value. This makes it possible to reduce the relative error
[H(z)— H(2))/H(z) within the region of w and » considered to be less than 5%. The values
of z, and & are determined for prescribed w and » by numerical methods.

The approximate function H(z) obtained in this manner may easily be factorized
to yield

(3.8) HE) = (1-9) ;:2 K* (DK~ (2).
Here
sy M) PR ey
Kx(2) = REQOLEG) and R*(z) = Y z4id.

Decomposition of M(z)

M=% TR yiyiTe
M-@) = (z—2t)ez—2) =5 V=239,

s with the roots
M*(2) = (z-2Y)(z-7) Y = 2 [—/T=9 +iyT+9],
V2

enables us to factorize L(z) by the limiting procedure

L*(z) = lim M*(z) and {z}, 25} = lim{z¥, z¥}.
=0 -0

Dashed symbolsdenote complex conjugate roots (e.g. z}f or z¥) which may be obtained
by replacing the imaginary i with —i.

Substituting the Eqgs. (3.8) and (3.5) into (3.3) according to the Eq. (3.4) we obtain
after certain transformations

22—z} Hi(2)

(39) h(l ») 22-22 K-(2)

V=(2) = K*(9H{ (2)Z3,(2)— E(2).

Functions E(z) = K*(2)H{ (2)P,(z) may be factorited by elementary methods to give
(3.10) E(z) = EY(2)—E~(2)
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with the notations
E*(z) = [K*(9H{ (2)-K* (0)]P,(2),
E~(z2) = —K*(0)P,(2).
The Egs. (3.9) and (3.10) and the Liouville theorem make it possible to determine the
sought-for functions,

h(1—v) z2—z} K-(2)E~(2)

V_(Z) == 2_,2 H- »
G.11) . ﬂ(‘) °—23 (2
+ s ez
50 = B oHte)

The inverse transform performed according to the Eq. (2.6) yields the crack opening

function é!*(x, 0) for x < 0 and the stress c},‘,‘, (x, 0) for x > 0.

4. Dynamic stress intensity factor

If our interest is confined to the asymptotic behaviour of the original functions in the
vicinity of the crack tip then we may utilize the well-known theorems by ABEL (cf. e.g.
[5]) which make it possible to determine the behaviour of transformed functions at z — +
once the asymptotic behaviour of their originals at x — 10 is known. The Eq. (3.11) de-
termines exactly the asymptotic behaviourof ¥~ (z) and Z7},(z) at z = oo (since Hif(®) = 1)

L\ oyn)
V(Zw"y\f'f W

Fic. 2.
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what enables us to write down the asymptotic behaviour of amplitudes :;*(E, 0)

and t},,(cf. 0) for & = x/h — 0 in the original region

é‘t(E, 0) = MN{DYII) ",'"___E for E oy _0,
7
(4.1) N{Dyn\
a”,(f 0) = for &- +0
with the dynamic SIF
4.2) Nom - M Z ]/I Case i: z, =z,
hy 27(1-2) %1 sin2oy Case ii: z, # z,.

Fig. 2 represents the reduced value of the dynamic SIF N® = /zhN®™|()'2uv,) as
a function of o, = wh/c, for several values of Poisson’s ratio ». Transition to the static
case is determined by the limiting procedure

(4.3) lim NOw) = youy — %
w0 hy 2a(1-2v)

The general solution may be found by superposing the static case due to the state of de-
formation o®*** (x, +h) = +v,.

5. Analytical determination of inverse transforms

Substituting in the Eq. (3.11) H(z) = 1 along the entire path of integration makes it
possible to perform the required integration and determine the inverse transforms accord-
ing to the Eq. (2.6),

co—lgy

1 1—» z2—z2 e
= — - K= 7 2 0,
v*(£,0) V__F_J = K-(2)E-(2)e~®edz, &<
- oo—in
1, 1 E*Q) _. 5 .
ay,(§, 0) = l/'_ . Ok dz, £>0,0<eg <e¢

The corresponding integrals are now evaluated by substituting the respective functions
and by certain elementary transformations to yield the following results:

1 _( ‘lv')hpl A zi—(z})?
(5.2) v¥(¢,0) = m 22 J'(O &) +i kl[ (z“)’ ~J(zt, )

2} —(25)? -z [ 1 ik, (2§ —25) ]
_—_( :)z J(5, E)] ﬂ{[z— —~(zz—z§)(__-hzz—z’5) J(z2, &)

1 ik, (2% —25) I\
+[-—_+ (23+ZL)(22+Z )]J(_zz' E)I/s tE<0
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with notations k; = y1+9—1 and

T
co— ﬁ: e—lns

JB, &) = J (z— ﬁ)]/z id

—co—ig

dz

and, moreover, the stress

(53) o3&, 0) = 23‘5‘ {00, &)— ik [QGY, §-0GY, B}, £>0

with notations k, = k,/)/1—% and
oo-—ie;
z+ide ¥z
0p.n- [ YEride™ ,

—co—l# Z-—ﬂ

The partial integral J(8, &) are determined by means of the Cauchy integral formula,
the path of integration being selected according to Fig. 3a:

(5.4) J(B, &) = —2zi Res(B)— f—- f i B 2 erf ) —&(4 +if) .
¢, ¢, l/_‘ V4 ﬁ
Jm[zjﬂ
~Zp % Iz Re{_?j

Fi1cG. 3.

The otherintegral (8, &) is found in a similar way for # = z} or z¥ and using the integra-
tion path shown in Fig. 3b,

5.5 ,8) = =27 R o e =2 E —Ad
65 06,8 :eS(ﬁ)J cf []/Ee

—iyiny A—ife-"%terf Y E(A—if) ]

In the case of # = 0 the pole lies outside the region of integration and so the corresponding
result is

66 00,8 = f f 2| )/ ety mitoy E |
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Evaluation of the contour integrals cf ... and &f ... in the Egs. (5.4) and (5.5) is described

in [7]. Substituting the Eqgs. (5.4)-(5.6) into (5.2) or (5.3) yields
—E xkl V Az} z —-(zz")2 ene
coso‘ {erf]/ z2 —(21 I/A'Hzx =

_ a-dp -
x erf )/ — &(A +iz§) — z_(z:.)z VATiL erf ) —&(4 +izk)

z;) A /A (z3-23) ik, (25 —z5%) [ —
# 222 [(Zz (z,—28)(z,—2%) }'/A'l'l s erfl/ §(A +iz;)

+( 1 fkl(z%—z%J | et

G 0%, 0) =

R i e "“”“"‘"’*’]}’ gz

and
(58) i, 0) = ;;‘:’/—‘I m—:;i;{ :E__e"“—nVA Erfc /A&
—fk;u[l/z—__iz_y e"“ erf |/ E(A—-izM)
—Vﬁ?e";fcerf;/W]}, §>0.
In Case i: z; = z, (coinciding zero points) the Eq. (5.7) is simplified to

-k
(5.9 U‘(E 0) = :Cl’fl/ —AE +ik, '/A [m Cl'fl/ —&(4 -[-;er)
e-u"c
T YAtk erf )/ — (4 +iz5) :“ §-28.

1
Figure 4 presents the form of the crack opening amplitude v*/v, at various values of

the excitation frequency w. The amplitude of dynamic stresses (hfpvl)t;:,(tf, 0) at w =
= 0.60 ¢, /k is shown in Fig. 6a.

p=y/h=0 pre
w=10G4, —{20
w=06 %
w=0
!
-30
-&=-x/h

Fia. 4.
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6. Numerical evaluation of inverse transforms

The inverse transforms at an arbitrary point of the strip must be computed numerically.
Owing to the extension of the strip of regularity, the corresponding integrations may be
performed along the real axis. In dealing with the residual functions H,(z), the identity
H}(z) = 1 must be assumed. The amplitudes of dynamic stresses and displacements at
a point (&, n), with & = x/h, n = y/h, A = Re {z}, are determined by numerical evaluation
of the integrals

l o0
‘}E(f, n) = ﬁ fEU(;l, n)e~MdR,

6.1) -
;?(5, n) = 1/;27 fu,(ﬁ., n)e”RdA.

The integration functions C; = C,{V~(a)} resulting from the boundary conditions (3.2), _4
are substituted in the Eq. (2.9) which makes it possible to represent the expressions along
the real axis

Z, 4, n) = 2y, V= (4,
Ui(4, 1) = z(2, D)V~ (%),

the functions Z;;(4, 7) and Z,(4, 7) being either purely imaginary or real. On substituting
the Eq. (6.2) into (6.1) and taking into account the decomposition of ¥'~(2)e’ in the
form

6.2)

(6.3) V- (Rl = ;:% {Do(Ne~R5(2) +P(R)—i¥(R)},
with the notations
4
Po(0) = cosad,

®(A) = h(A)cos A& +g(H)sin AE,
¥(2) = h(A)sin A& —g(R)cos A&,

and
_ V4 1—(A]4,)? e Y N |
D) = = s BT 1=y TV e+i=vVe=1)
+SDWe+i+Ve-M),
N L=A)" 17y e+ 3+ V=D

20c080,(A*+48) 1—(AlA;)?
-SNWe+i-Ve- )],
T(A) = (A2=23)/A+2y 1+9 434,
S(A) = Y2 (2= 2) (YT+5-1),
0=VA*+A* and 4 =Re{z} with i=0,1,2

7 Arch. Mech. Stos. or 3/75
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p=y/h=08 \o-y/h-m

p=y/h=025

-20 =10
w=10c,/h w=06c,/h

-10+

Fi1a. 5.

1 Py
10 20 gmx/h

_fl_&;y
7Y w=10¢/h
p=y/h=025
w=0 w=06c¢,/h /
-20 -10
1 1 1 1
e 10 20 gax/h
-10
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we can represent the integral containing the Dirac delta-function in a closed form; using
the properties of symmetry and antisymmetry of functions with respect to 4 we finally
obtain

=]

Ilm Zo A, M)+ Lf Ze(4, n)(b(i)d;{],

0

2c0s0,

ot m) = £ [

bt = L2 [ lim z,,(4, 1)+ | z,,(z,q)as(a)dz],
0

2€0S80; 10

©4) a6 m) = L7 - | 2k WP,
0

(&, ) = v, ‘; f 2.1, D)P(A)dA,
0

o*(E, M) =v [ZCI - lim 2, )+ j'z,(z,nwu)d;t].
]

Convergence of the improper integrals in the region 0 < 7 < 1 is very good, and certain

1 i ‘ A
difficulties arise only in evaluating the stress o¥.(&, 0) at n = 0. The difficulties may easily

w=06¢,/h

w=10¢c,/h

Fic. 7.
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be removed by separating the numerically non-convergent term which occurs also in

calculating the other stress (lr,‘,‘,,(é, 0) and using the formula (5.8).

The statical part of stresses which is needed for constructing the general solution and
which results from the forced displacements +9, may be obtained by the limiting pro-
cedure

1 .1 1 m_ 41
6.5) off*= lim ofjcoswt and ¥ = lim 4fcoswt.
x -0 w—0
U1—Uo vi—vo

Superposition of all the partial problems yields the final form of the state of stress and
displacement,

0 1 0, 1
©9) oi (&, ) = ofi"™ + 67 + (o +0)coswt,

' 0 1 o, 1
u(&, ) = u®™ +ufS*™) 4 (uf +uf)coswt.

In Figs. 5, 6 and 7 the dynamic components of stress amplitudes in the form of (k,l’#ﬂl)r}?}
only along the axis & = x/h are shown; Figs. 5a, 6a and 7a demonstrate the dependence
on n = yfh for o = 0.6¢, /h, while Figs. 5b, 6b and 7b — the dependence of stresses on
the excitation frequency w at # = 0.25. Poisson’s ratio v = 0.25.
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