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One-dimensional shock waves in solids with internal state variables 

w. KOSINSK.I (WARSZAWA) 

THE PROPAGATION of one-dimensional shock waves in solidlike materials with internal state 
variables is analyzed. The system of quasi-linear hyperbolic equations which gcverns the problem 
of the wave propagation in such materials is considered. It is proved by means of Rankine­
Hugoniot relations that the internal state variables are continuous functions across the shock 
waves, but their time derivatives suffer jump discontinuity. The jump in the strain is assumed 
to be the amplitude of the wave. After the derivation of a differential equation which governs 
the changes of the amplitude of the wave in general case, the particular assumptions concern­
ing the region ahead of the wave are formulated. It is assumed that this region is either in 
a homogeneous non-equilibrium state or in an equilibrium one. In both cases the governing 
equations are derived and the existence of a critical strain gradient is noticed. The conditions 
under which the amplitude grows or decays are specified. The discussion of the formation of 
shock waves is carried out. After JEFFREY [16] the notions of the critical time and the critical 
distance are introduced. The general investigations are examplified by an expansive shock wave 
propagating into a material of grade two. Using results contained in the previous papers of 
the author on acceleration waves, the explicit expressions for the critical time le and the critical 
distance Xe are given. 

Analizowano rozprzestrzenianie si~ jednoWYmiarOWYCh fat uderzeniOWYCh w cialach stalych 
z parametrami wewn~trznymi (wewn~trznymi zmiennymi stanu). Rozpatrzono uklad quasi­
liniOWYCh r6wnan hiperbolicznych, fZCld~cy problemem propagacji fat w takich cialach. Za 
pomocct zwi11zk6w Rankina-Hugoniota udowodniono, re parametry wewn~trzne Sll cillglymi 
funkcjami na fali uderzeniowej, natomiast ich czasowa pochodna doznaje skokowej niecillglo­
sci. Za amplitud~ fali przyj~to skok odksztalcenia. Po WYProwadzeniu r6wnania r6zniczkowego, 
r~d~cego zmianami amplitudy fali w og61nym przypadku, sformulowano szczeg61ne zalotenia 
odnosnie obszaru przed falll. Przyj~to, re obszar ten jest albo w jednorodnym stanie nier6wno­
wagi, albo w stanie r6wnowagi. Dla obu przypadk6w WYProwadzono r6wnania r6zniczkowe 
amplitud oraz stwierdzono istnienie krytycznego gradientu odksztalcenia. Przeprowadzono 
dyskusj~ nad formowaniem si~ fal uderzeniOWYCh. Za Jeffrey'em [16] wprowadzono poj~ie 
krytycznego czasu i krytycznej odleglosci. Og61ne badania zilustrowano przykladem rozci!lga­
jllcej fali uderzeniowej w materiale r~du drugiego. Wykorzystujllc WYniki zawarte w poprzed­
nich pracach autora, dotvcz::}cvch fal przyspieszenia, podano jawne WYratenie na krytyczny 
czas le oraz krytycznll odleglosc Xe. 

AHa.TIH3Hpye-rc.JI pacnpocrpaHeHHe o;n~oMepHI>IX y.llapHI>IX BOJlll B TBep.zu,IX Tenax c BHYTPeH­
HHMH napaMeTpaMH (BifYTPeHHHMH nepeMeHHI>IMH COCTO.JIHH.JI). PaCCMOTpeHa CHCTeMa KBa3H· 
JIHHCHHbiX nmep60JIKtleCKHX ypaBHeHHH OllHCbiBalO~a.JI 3a)latzy pacnpocrpaHeHH.JI BOJlll B Ta­
KHX Tenax. IlpH noMO~H oTHoiiieHHif PeHKHHa-rroroHHo ,llOKa3aHO, qro BHYTPeHHHe napa­
MeTpbi .JIBJIHIOTC.JI HenpepbiBHbiMH <i>YHJ<llH.JIMH Ha y,llapHOH BOJllle, HX me BpeMeHHa.JI npOH3-
BO,llHa.JI HCllbiTbiBaeT CKa~oo6pa3HI>IH pa3pbiB. 3a aMnJIHTYJlY BOJIHl>I npHH.JIT CKaqoK ,lle­
<l>opMaLUfH, Ilocne BbiBO,lla ,llHQ><PepeHI..UiaJThHOI'O ypaBHeHH.JI OllHCbiBaiO~ei'O H3MeHeHH.JI 
aMllJIHzy.ZU,I BOJIHl>I B o6~eM cnyqae, c<PopMyJIHpOBaHbl qaCTHbie npe,llnOJIOH<CHH.JI Kaca­
lO~HeC.JI 06JiaCTH nepe,ll BOJlliOH. IlpHH.JITO, qTO 3Ta 06JiaCTL HaxO,llHTC.JI HJIH B O;niOpO;niOM 
COCTO.JIHHH HepaBHOBeCH.JI, HJIH B COCTO.JIHHH paBHOBeCH.JI. ,UJm 060HX cnyqaeB BbiBe,lleHI>I 
.llH<i><i>epeH!lHaJThHbie ypaBHeHH.JI aMnJIHTY.ll H KOHCTaTHpOBaHO ~eCTBOBaHHe KpHTuqecKOI'O 
rpa,llHeHTa ,lle<PopMai..UiH. IlpoBe,lleHo o6cym,lleHHe <PopMHpOBaHH.JI y,llapHbiX BOJlll. Ilo .[(me<PHP 
(16) BbiBe)lCHO llOH.JITHe KpHTuqeCKOI'O BpeMeHH H KpHTuqeCKOI'O paCCTO.JIHH.JI. 061.1.\He HCCJie­
,llOBaHH.JI HJIJilOCTpHpoBaHbl npHMepoM paCT.JII'HBaro~eH y,llapHOH BOJIHl>l B MaTepHane BTOpOI'O 
nop.J~,llKa. HcnonL3y.J~ pe3yJILTaTbi co,llepmaBIIIHec.JI B npe.ZU,IJlY~ pa6oTax asTopa, Kaca­
JO~c.JI BOJIH yCKopeHJHI, )laeTC.JI .JIBHOe Bblpa>«eHHe ,llJI.JI Kp~eCKOI'O BpeMeHH le H KpH­
TuqeCKOI'O pacCTO.JIHH.JI Xe. 
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446 W. KOSINSK 

t. Introduction 

IN the original theory of simple materials formulated by NoLL in 1958 the actual stress 
state is determined by the infinite past history of deformation. In 1972, NOLL formulated 
the new mathematical theory of simple materials which is free from this and the other 
defects and in which only deformation processes of finite duration, not infinite histories, 
ocurr in the description of the response of a material [I]. 

In the internal state variable description of a material take also place deformation 
processes of finite duration. This approach may be a good example of the material element 
defined by NOLL in [1]. On the other hand, it is also an example of the unique material 
structure defined by PERzYNA and KosL\SKI in [2, 3]. 

Since the internal variable approach has no defects mentioned above and has connec­
tions with the original and new theories of simple materials (see lecture cited in Sec. 2), 
this approach may safely be used in the description of various effects in dissipative ma­
terials, like plastic and viscoplastic ones(!). 

Particularly, the material with internal state variable is a very convenient model for 
carrying out investigations of the wave propagation phenomena in dissipative materials. 
Here, it should be emphasized that the initial boundary-value problem for materials with 
internal variables is governed by a system of hyperbolic equations. 

In the present paper, shock waves in a solidlike material with internal variables will 
be investigated. The propagation of shock waves in this material was studied, in the case 
of fluid, by CHEN and GURTIN (4] and by KOSL~.SKI (5-7] and SZMIT [8] for solids. 

In Sec. 2 the fundamental relations and theorem for a discussion of shock waves in 
the material under consideration is proved. By use of the Rankine-Hugoniot relation the 
problem of the jump discontinuity in the internal state variable function is solved. 

In Sec. 3 the governing differential equation for an amplitude of a shock wave pro­
pagating through the material, which has been in homogeneous equilibrium and non­
equilibrium states, is derived. The existence of a critical strain gradient A is noticed. It is 
reamarked in the discussion of the behaviour of the amplitude in time, that the jump in 
the strain [E] will increase, decrease or remain constant according as the strain gradient 
axE- is greater than, smaller than or equal to A. 

In Sec. 4 the problem of the formation of shock waves in systems of hyperbolic non­
linear equations is discussed. It is shown that the existence of the critical time tc of the 
formation of shock wave was established in the previous investigations of the author 
on the acceleration waves. 

Finally, the example of the expansive shock wave in the material of grade two is consid­
ered. 

(1) To examine that the internal state variable approach gives an adequete conceptual framework for 
the mathematical description of plasticity and yield, see works by DILLON, K.RATOCHVfL, PERZYNA, TEO­
OOSIU, VALANIS and the others on plasticity and viscoplasticity. 

http://rcin.org.pl



ONE-DIMENSIONAL SHOCK WAVES IN SOLIDS WITH INTERNAL STATE VARIABLES 447 

2. The fundamental relations 

In the present paper we consider one-dimensional motions in solidlike materials. 
The motion of a material point (particle) is given by the function x of two variables such 
that its value x = x(X, t) indicates the position at time t of the particle labelJed X in the 
homogeneous reference configuration with mass density (!. The displacement of a par­
ticle is then defined by the function u of two variables such that 

(2.1) u(X, t) = x(X, t)-X for each (X, t). 

We denote, if they exist, the derivatives of the displacement function u [which according 
to (2.1) may be expressed by the derivatives of the motion function x1 as follows: 

a 
v(X, t) = 7fiu(X, t), 

a 
E(X, t) = ax u(X, t), 

(2.2) 

u(X, t) = ::2 u(X, t), 

We call them respectively the velocity, the strain, the acceleration, the strain gradient of 
a particle X at time t. 

In the framework of the mechanical theories of continuous media, materials are char­
acterized by one response function which determines the stress. 

In the general theory of simple materials with memory the stress is determined at 
a material point X whenever the strain and its past history are known at X. In that approach 
the past history of the strain is an additional quantity (variable) which must be given 
in order to describe the response of a material. There is another approach in which the 
stress is determined when the actual values of strain and of additional parameters as well 
are prescribed. These parameters, called the internal state variables, are introduced by 
solution of an initial value problem. The solution is obtained in terms of the strain history 
(rather finite) and an initial value of the parameters (2). 

Thus we consider a class of homogeneous materials with internal state variables de­
scribed by the constitutive equation 

(2.3) T(X, t) = ff(E(X, t), m(X, t)), t e [0, oo) 

for the stress in particle X at timet, which is supplemented by the evolution equation (initial 
value problem) for the internal variable vector 

(2.4) il(X, -r) = a(E(X, -r), m(X, -r) ), m(X, 0) = m0 (X), -re [0, oo). 

Here m represents n-vector of internal variables (parameters), which was introduced 
to define uniquely the state of the particle of dissipative material (i.e. material with in-

(2) The problems of the similarity and the equivalence of these two approaches are very important 
in the theory of m1terials. There are some papers in the literature treating this subject. For instance WoJNo 
and K03INSKI [9] formulated the conditions under which both approaches give the same stress for the 
same history of deformation. MAZILU and KosiNSKI examined in [10] the mathematical conditions under 
which the m~m:>ry of a simple material can be parametrized and showed that materials with internal varia­
bles are a special case of materials with parametrical memory. 

http://rcin.org.pl



448 W. Kosn~SKI 

elastic, added to elastic, properties) (3). Internal variables may have different physical 
interpretation, for example, the work-hardening parameters, the inelastic or anelastic 
strains. 

Since the pair (E, ex) has to define uniquely the state of the particle, we must be sure 
that the evolution equation (2.4) has a unique solution. In [9] the theorem of existence 
and uniqueness of the solution of the evolution equation for internal variables was formu­
lated. That theorem is true for the continuous strain (deformation) function. The present 
paper deals with discontinuous strain functions, which appear in the analysis of shock 
waves. Hence we must formulate the appropriate theorem for the case under consideration. 

The basic system of equations for a one-dimensional material with internal state va­
riables comprises: the law of motion 

(2.5) 
ov oT 

e----eb = o at ax ' 
the geometrical compatibility condition 

(2.6) oE - ov = 0 at ax ' 
the evolution equation for internal state variables 

oex 
(2.7) Tt -a(E, ex) = 0 

and the constitutive equation 

(2.8) T = !T (E, ex), 

where b is a prescribed body force. 
We can see that here we have to deal with the system of equations with two independent 

variables t and X and n + 2 dependent variables v, E and ex. Let U be the column vector 
with components U1 = v, U2 = E and U3 = ex. By F = F(U) we denote the column 
vector with components F1 = e- 1!T(U2, U3), F2 = - U1 , F3 = 0. The letter B(U) 
denotes a vector with the components B1 = b, B2 = 0 and B3 = a(U2 , U3). 

The above notations anable to rewrite the basic system of equations in the following 
divergence form (of generalized system of conservation laws, say): 

(2.9) a,u +oxF(U)+B(U) = o. 
If we denote the gradient operator with respect to U by Vu, then 

(2.10) oxF = (VuF)oxU, 

or 

where 

AM= [ -! -e- 1 oE!T(U2, U3), 
0 
0 

-e-1 oa.!T(U2, U3)1 
0 . 
0 

(l) In [2, 3] PERZYNA and KosiNSKI defined the unique pararnetrical material structure in the mathe­
matical framework for the description of dissipative materials. This structure contains materials with 
internal variables. 
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Using this result we can see that the system of Eqs. (2.9) [or (2.5)-(2.8)] transforms 
into the quasi-linear system 

(2.11) 

which is hyperbolic when the eigenvalues of A are real and distinct. In fact, its eigenvalues 

At = - J!e- 1aEf/(U2, U3), Ak = 0, A2+n = Ye- 1aEf/(U2, U3) 

are real provided that aEf/(U2, U3) is positive. 
Since our system (2.11) is hyperbolic, the solutions U of it may have some singularities 

(e.g. the discontinuities of the first derivatives of U across the characteristics). Further­
more, the solutions themselves may suffer a jump discontinuity. The last case denotes that 
a shock wave takes place. In linear hyperbolic systems the discontinuity surface of the 
solution coincides with a characteristic manifold but in a quasi-linear system does not. 
This fact is the essential difference between linear and quasi-linear hyperblic system. 

In a discussion of discontinuous solutions of hyperbolic equations the so-called 
Rankine-Hugoniot relation is often used. 

Let _r = {(t, X): t e [0, oo), X= Y(t)} be a curve across which U has jump discon­
tinuity. Then the vector 

(2.12) (
d ' 

n = dt Y(t), -1) 
is normal to 1; at (t, Y(t) ). 

We use the well-known notation [G] for the jump o- -G+ in the function G(X, t) 
across the discontinuity curve I, i.e. 

(2.13) o- = lim G(X, t), o+ = lim G(X, t). 
X-+ Y(t)- X ... Y(t)+ 

The Rankine-Hugoniot relation expresses (4
) the continuity of the normal component 

(in two-dimensional t-X space) of the vector field (U, F) across the discontinuity line, i.e. 

(2.14) n · ([U], [F]) = 0 or [(U, F)· n] = 0. 
In order to prove (2.14), one needs to assume that the vector B is a continuous function 

of U and to integrate the Eq. (2.9) over a domain D in t-X space. Using the Gaussian 
divergence theorem, in the limit as D shrinks to zero, we obtain (2.14). 

If we denote the derivatives ! Y(t) by V(t) and call it the intrinsic velocity of the 

shock wave, then the Rankine-Hugoniot relation (2.14) can be written in the following, 
more convenient for further considerations, form 

(2.15) V[U] = [F]. 

THEOREM 1. In the motion with shock waves of the material described by the constitutive 
equation (2.3) and the evolution one (2.4) the inter11al state variable vector function Cl has 
no jump discontinuity (5

) across l,. 
( 4 ) Cf. for example JEFFREY and TANIUTI [11]. 
(

1
) In [5-7] other proofs of this fact are given. 
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Proof. The Rankine-Hugoniot relation applied to our case (2.9) gives (2.15). Since 

(2.16) 
U= [!J [ 

-e-15'(£, «)J 
and F = -v , 

0 

hence 

(2.17) 
(! V[ v] = - [ T], 
V[E[ = -[v], 

[«]=0, 
where (2.8) was used. The last equation in (2.17) gives the proof of the theorem. 

The proved fact is fundamental for an investigation of shock waves in a material 
with internal state variables. It solves the question concerning the continuity of the internal 
variable function. 

Let us notice that (2.17) 1 expresses the law of motion on the discontinuity curve .I. 
The relation (2.17h is often called the kinematical condition of compatibility. Here we 
should remark that the general condition of compatibility, in the one-dimensional context, 
has another form than (2.17)2 • This condition is expressed as follows (6

). Suppose that 
functions j( · , ·), j( · , ·) and ax j( ·, ·) defined on PJ X (0, 00) have jump discontinuities 
across the curve }; but are continuous functions everywhere else C), then 

(2.18) 

where ~/M is called the displacement derivative. 
In view of the form of the evolution equation (2.4) and the continuity assumption of a, 

we have for a time derivative of «: 

(2.19) [ ci] = a(E-, «)-a(£+, «). 

The kinematical condition (2.18) applied to this case gives 

(2.20) [ci]+V[ax«] = 0 or [ci] = -V[ax«]. 

Furthermore, in a dynamic process with a shock wave the law of motion (2.5) holds on 
either side of the curve l., and across it, in addition to (2.17) 1 , we have 

(2.21) [axTJ = e[v], 
where the continuity of the body force b was assumed. 

The Eqs. (2.17)h2 imply the well-known result 

(2.22) eV2 = m 
for the velocity of the shock wave, while (2.18) with f = E and f = v in conjunction with 
(2. 21) yield the relation 

(2.23) 

(
6

) Cf. for example CHEN [12]. 
(') In [13) the precise conditions of regularity in term of the function I are given to verify the Eq. 

(2.18), Cf. also [12]. Here Bl denotes the body. 

http://rcin.org.pl



ONE-DIMENSIONAL SHOCK WAVES IN SOLIDS WITH INTERNAL STATE VARIABLES 451 

In the present study the jump in the strain is the basic variable under consideration, 
so that the jump [ E] will be called the amplitude of the shock wave. It may be treated as 
a function of time only. 

It should be noticed that the Eq. (2.23) is independent of any constitutive equations 
and must be fulfilled by the amplitude of each shock wave. 

3. Amplitude equation 

In this section we derive general and explicit expressions for the change in amplitude 
of one-dimensional shock waves propagating through arbitrary homogeneous materials 
with internal state variables. This derivation will be done under the special assumptions 
concerning the region ahead of the wave. We will assume that the wave propagates through 
the material which has been in homogeneous states of equilibrium or non-equilibrium. 

In the paper [6] the definition of the homogeneous equilibrium state of the material 
under consideration was given. In reference to this we say that the body (material) is in 
a homogeneous equilibrium state (E0 , ex0 ) if 

(3.1) a(Eo,ex0)=0, oxE0 =E0 =0 and oxex0 =0 for Xef!l. 

The condition (3.1) 1 means that the pair (E0 , ex0) is an equilibrium point of the evolu­
tion equation (2.4). In other words, the constant function ex(t) = ex0 , where t e [0, oo), 
is the solution of the Eq. (3.1) 1 with the initial value ex(O) = ex0 • 

The notion of the homogeneous non-equilibrium state introduced in [14] tells that the 
pair (E(X, t), ex(X, t) forms such a state if 

E(X, t) = Eo+wt, E(X, t) = w, oxE(X, t) = 0, oxex(X, t) = 0, 
(3.2) 

ci(X, t) = a (Eo +wt, ex(X, t) ), for X e f?l, w = const. 

Now, we can try to derive the expression for the change in the amplitude of the wave. 
This expression is based on the amplitude equation (2.23). In that equation the jump of 
a x T takes place. In view of our constitutive assumption (2.3), we have 

(3.3) 

Substitution of (3.3) into (2.23) yields 

(3.4) 2V d~E] +[E] ~V = V 2 [oxE]- _l {[oE9" oxE]+[oe~ff" ·ox ex]}. 
ut ut (! 

In this equation the displacement derivative of the wave velocity V occurs. By an addi­

tional calculation this derivative may be determined by :t [ E]. Let us compute 

(3.5) 
d[ T] · dE+ _ d[E] 
~ = [T]+V[oxT] = [oE9"(E, ex)]fu +oE9"(E , ex)-& 

dcx+ _ d( ex] 
+[o119"(E, ex)]·~ +o~~ff"(E , ex) ·61. 
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Now, let us assume that the wave is propagating in the direction of increasing X. This 
implies the positive velocity V(t). 

We suppose additionally, that the shock wave advances into a body being either in 
a homogeneous non-equilibrium or in a homogeneous equilibrium state; then the body is 
in one of those states and we have 

(3.6) a:xE+ = 0, a:xa.+ = 0 or a:xE+ = i+ = 0 and axa.+ = i£+ = 0, 

. h fi ~E+ E.+ d ~a. . + I . f h respectively. In t e rst case-~,-= an Tt = a. . n vtew o T eorem 1 

(3.7) [a.]= 0 and 

Hence, for the non-equilibrium state, we have 

In the case of the equilibrium state (E0 , a.0 ) 

(3.9) ~[T] = a dr(E- ) ~[E] 
~t £.7 ' a. ~t . 

If we notice that, by (2.22), 

~[T] = V2 ~[E] 2 V[E] bV 
~t !! ~t + !! M 

or 

(3.10) ~ = _1_( ~[T] _ V2 ~[E]) 
~t 2gV[E] ~t (! ~t ' 

then we obtain the proof of the following 
LEMMA. The velocity of the shock wave propagating into a material in a homogeneous 

non-equilibrium state obeys the equation: 

~V __ 1 -{ _ 2 ~[E] 
(3.11) 6(- 2gV[E] (aEff'(E , a.)-gV )(5( 

+[a,r(E, ex)]£+ +[a.r(E, ex))- eX+}· 

When the material ahead of the wave is in the homogeneous equilibrium state (Eo, a.o), 
then 

(3.12) 

Let us notice that in the second case for gV2 = aEff'(E-, a.0) we have ~V/~t = 0. Such 
a situation will not be treated here. It takes place in the case of a linear in E constitutive 
function 9", cf. Kosi.\SKI [6, 7]. 

Now we are able to derive the explicit expression for the change of [E] in time. 
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THEOREM 2. The amplitude [ E] of a shock wave propagating into the material satisfies 

the equation 

(3.13) <5[£] = 2V (o E--A) 
<5t 4e V2 x , 

---I 
r 

where V is given by (3.1 0) and (2.22), and the form of the quantity A depends on the state ahead 
of the wave (in + region), i.e. if the material is in a homogeneous non-equilibrium state, then 

but if the material is in the homogeneous equilibrium state (E0 , ex0), then 

(3.15) 

In both cases r is given by 

(3.16) 

Proof. The equations (3.4), (3.8) and (3.11) for the non-equilibrium case give 

<5[ E] 1 2 <5[£] ( 2 I ) 
2V-<5t + 

2
eV (oEff(E-, ex)-eV )~ = V - eoEff(E-, ex) oxE-

- ~ oa.ff(E-, ex)· oxex-- 2~V {[oEff(E, ex)]E+ +[oa.ff(E, ex)]· ci+}. 

Then 

Introducing the symbol r, after some calculations we obtain (3.13) with A given by (3.I4). 
In the equilibrium ahead of the wave, the relations (3.1) and (2.20) imply another form 
of A, given by (3.15). 

Let us notice that, assuming the strain and the internal variables in the homogeneous 
non-equilibrium state given by (3.2), the relation (3.14) may be written as follows 

(3.17) A= ~{2~ (a • .r(E-, a)-a,S"(E0 +wt, a))w 

where we have used (2.20) and 

6 Arch. Mech. Stos. nr 3nS 

+(oa.ff(E-, ex)-oa.ff(E0 +wt, ex))· a(Eo+wt, ex) 

- ~ a.S"(E-, a)· (a(E0 +wt, a)-a(£-, a))l, 

I "+ ·- a -y(a. -ex ) = xex . 
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Now, our aim is to discuss the local, in time, behaviour of the amplitude [ E]. It is 
evident that this behaviour depends On the Sign of r and On the magnitude of 0 X£- in 
comparison with A. By the Eq. (3.13) we establish the existence of a critica/(8

) strain 
gradient ). in the propagation of the shock wave in the material under consideration. 
To discuss the behaviour of [ E] on the wave we consider two cases, i.e. compressive and 
expansive shock waves. 

Case A. Compressive shock waves 
A compressive shock wave is defined by the conditions 

(A.I) [£] < 0 and £+ ~ 0. 

From the condition of the hyperbolicity of our system of equations [cf. (2.11)] we have 

(A.2) 

We assume, additionally, that for each value of ex the strain-stress relation T = !7{£, ex) 
in compression is concave from below, i.e. 

(A.3) 

Then, by (2.22) and 

(A.4) 

we have 

(A.5) 

o~fT(E, ex) < 0 for E ~ 0. 

[T] = fT(E-, ex)-9'"(£1-, ex), 

This fact implies that the sign of the right-hand side of (3.13) depends on the magnitudes 
of oxE- and A. Since [E] < 0, then I[E]I = -[£]. Hence in view of the positive wave 
velocity, V> 0, we can formulate the following theorem(9

). 

THEOREM 3. In the propagati~n of a compressive shock wave in the material under 
consideration the assumptions (A.2) and (A.3) imply: 

I) if at a given time a X E- > )., then at that time and immediately behind the wave 

the jump magnitude in the strain I[E]I is increasing, i.e. :t I[E]I > 0; 

fJ 
2) if oxE- < ;., then the jump I[E]I is decreasing, i.e. Tt I[E]I < 0; 

3) at any instant ox E- = ). if, and only if, the jump [ E] remains constant, i.e.-:~ [ E] = 0. 

Let us notice that the critical strain gradient). in both cases (3.14) and (3.15) is a function 
of time. Further, the statement 3) of the preceding theorem does not imply that the wave 
has a constant amplitude over some period of time, for ). may increase or decrease during 
this period. Clearly, the wave can have a constant amplitude over some period of time 

only if :t (ox E--).) = 0 during this period. 

Case B. Expansive shock waves 

( 8 ) Like in materials with memory, cf. CHEN [12). 
( 9 ) In the theorem given by CHEN and GURTIN in [4] only the case of the positive critical strain gradient 

A was considered. 
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For such waves the amplitude is positive: 

(B.l) [E] > 0 and £+ ~ 0. 

We assume that for each value of a the relation T = !/(E, a) is concave from above(1°), 
as the function of E only, i.e. 

(B.2) 8~ff(E, a) > 0 for E ~ 0. 

If (A.2) is used, then (A.5) is still valid and we have 
THEOREM 4. In the propagation of an expansive shock wave the assumptions (A.2) 

and (B.2) imply: 

I) if 8x E- > A., then the jump in the strain is decreasing, i.e. :t [E] < 0; 

~ 
2) if 8x E- < A., then the jump is increasing, i.e. Tt[E] > 0; 

3) the jump remains constant if, and only if, 8xE- = A.. 
The properties of the wave given in the preceding theorems are valid under the assump­

tion that the material ahead of the wave is in the homogeneous equilibrium or . non­
equilibrium states. But in the case of the equilibrium the similar properties may be for­
mulated for the wave velocity(11). 

In the previous paper [5] the amplitude equation and the general form of its solution 
in the case of the infinitesimal shock wave were furnished. There it was shown that the 
limit value of the critical strain gradient with the amplitude [E] tending to zero is equal 
to twice the critical amplitude of an acceleration wave(1 2

). 

4. Shock wave formation 

It is a well-known fact that, in the case of a linear system of hyperbolic equations, shock 
waves cannot occur spontaneously. They may happen only by externally imposed impacts. 
Furthermore, the shock wave, i.e. the discontinuities in the solution U of the equations, 
are propagated only along the characteristics of the system, like the discontinuities of 
its first derivatives (we call them acceleration waves). Quite another situation takes place 
in the case of non-linear (quasi-linear, say) equations. Here acceleration waves propagate 
along the characteristics, too, but the shock waves may occur not only under the . dis­
continuous initial conditions. Perhaps one of the most striking features of non-linear 
hyperbolic systems is that even when starting from analytic initial data, a discontinuity 
can develop in the derivative(l 3) of the solution U and can then tend to an actual jump 

(t 0) Here (B.2) is the necessary condition for the existence of the expansive shock wave, like (A. 3) 
was the condition for the compressive wave. The negative r denotes that the shock wave velocity is subsonic 
with respect the rear of the wave. 

(ll) This was remarked in [5], where the case of the equilibrium state ahead of the wave was considered. 
(u) Cf. CHEN and GURTIN [4, 15]. 
(l 3) It is a Lipschitz discontinuity in the derivative of U normal to the wave front (characteristi~). 

Cf. [11]. 

6* 
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discontinuity in U itself. This jump discontinuity, called the shock wave, propagates in 
a totally different manner from the derivative discontinuity. 

The solution U is a function oft and X. Thus, in view of the paper by JEFFREY [16], 
at some critical time tc and at some critical distance Xc the solution ceases to be Lipschitz 
continuous on the characteristic and finite jump or shocklike discontinuity appears in U. 

If the solution loses the Lipschitz continuity it means that at least one of its 
derivatives goes to the infinity. This condition used(1 4

) in [16] enabled Jeffrey to 
obtain analytic expressions determining the critical time tc in terms of the eigenvector 
gradient of the matrix A cf. (2.11) and the functions of jumps. 

Now, there is a place in which our previous investigations of the behaviour of ac­
celeration waves in the material with internal state variables may be helpful in the deriva­
tion of the conditions of the shock wave formation. In [5, 14, 17] we have established 
the existence of the finite time too at which the amplitude of the acceleration wave becomes 
the infinity. The fact that an acceleration wave will have infinite amplitude within a finite 
time means that a shock wave is produced. So the conditions derived in [5, 14, 17] con­
cerning unbounded growing of the amplitude of the acceleration waves give us the simple 
expression for the critical time. In the next section we use the results of [17] to this problem. 

S. Wave in a material of grade two 

In this section we would like to give an example of the shock wave propagation. It 
will be done in the case of expansive waves in a material of grade two. In [14, 17] such 
a material was considered. In reference to this paper we postulate the following form 
of the constitutive function ~ and the preparation function a in the right-hand side of 
the evolution equation: 

(5.1) 
a(E, ex)= c1 E+c2 ex+co,i 

where b, c1 are some physical (material) constants. For them we have the following 
inequalities 

bl > 0, b3 > 0. 

Hence the assumptions (A.2) and (B.2) are satisfied 

(5.2) oE~(E, ex) = b1 +2b3E > 0, oi(E, ex) = b3 > 0 for E ~ 0. 

The wave velocity V obeys the equation 

(5.3) eV2 = -~~~- = h, +h.[E]+2h.E•. 

For r we have 

(5.4) 

(
14

) In [16] this condition was formulated in term of the vanishing Jacobian of the transformation 
of (I, X) variables into ( t', fP) variables, where fP = 0 was the wavefront. This condition, geometrically, 
denotes that the family of characteristics fP = constant intersect at a cusp. 
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The velocity V changes according to [cf. (3.11)] 

(5.5) <5V = _!2__( <5[£] +2£+). 
<5t 2eV <5t 

Since 

(5.6) 1 = _ ~ (t• _ (c·~.b2). 
the amplitude equation has the form 

(5.7) 

Hence we can formulate the following 
THEOREM 5. In the material of grade two the amplitude of the expansive shock wave 

undergoes the following behal·iours: 

. I (c1 • b2 ) [ ] I) if ox E- > V ~- w , then <5 E /bt < 0; 

. ~ I (c1 · b2 ) .!:[ ] 2) if u x E- < V ~ - w , then u E I bt > 0; 

3) if c1 • b2 < 0, then <5[ E]l bt is always smaller than zero provided that the strain 
gradient ox E- is not negative,· 

. a I (c1 · b2 ) [ ] 4) if x E- = V ~ - w , then <5 E I bt = 0. 

In the above statements we used the notation £+ = w [cf. (3.2)] and the inequality 
w~ 0. 

Now we give the expressions for the critical time tc and the critical distance Xc in the 
case under consideration. According to Theorem 2 in [17] for the acceleration wave 
propagating through the material of grade two being in the homogeneous equilibrium 
state (E0 , «0), the amplitude [x] (t) = a(t) goes to minus infinity in the finite time 
[0' I c] if either 

b2 • c1 -. /b +2b3E0 
a) b2 • c1 < 0 and a(O) < -u;;- V 1 e or 

b) b2 • C1 > 0 and a(O) < 0. 

For both cases the critical time le is given by 

(5.8) le = 2(bl +2b3Eo) In(!- b2 • c1 ~ jb1 +:3 £ 0 ). 

b2 · c1 2a(O)b3 V 
Here a(O) denotes the initial value of the amplitude of the acceleration wave. Because 
the critical distance Xc fulfils the formula 

(5.9) 
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where X0 is the material point at which the acceleration wave is to be found at time 
t = 0 and the square root is the wave velocity, we have 

(5.10) Xc=Xo+_2_./(bt+2b3Eo)
3 ln(I- b2 ·c1 ,/b1 +2b3E0 ). 

b2 · c1 V (! 2a(O)b3 Jl e 
The statement a) above tells that the shock wave will be formed whenever the initial 

amplitude a(O) is less than some value equal to the critical amplitude for acceleration 
waves. The statement b) pronounces, however, that each expansive acceleration wave 
turns out, in the finite time, to be a shock wave. 
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