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One-dimensional shock waves in solids with internal state variables

W. KOSINSKI (WARSZAWA)

THE PROPAGATION of one-dimensional shock waves in solidlike materials with internal state
variables is analyzed. The system of quasi-linear hyperbolic equations which governs the problem
of the wave propagation in such materials is considered. It is proved by means of Rankine-
Hugoniot relations that the internal state variables are continuous functions across the shock
waves, but their time derivatives suffer jump discontinuity. The jump in the strain is assumed
to be the amplitude of the wave. After the derivation of a differential equation which governs
the changes of the amplitude of the wave in general case, the particular assumptions concern-
ing the region ahead of the wave are formulated. It is assumed that this region is either in
a homogeneous non-equilibrium state or in an equilibrium one, In both cases the governing
equations are derived and the existence of a critical strain gradient is noticed. The conditions
under which the amplitude grows or decays are specified. The discussion of the formation of
shock waves is carried out. After JEFFREY [16] the notions of the critical time and the critical
distance are introduced. The general investigations are examplified by an expansive shock wave
propagating into a material of grade two. Using results contained in the previous papers of
the author on acceleration waves, the explicit expressions for the critical time 7. and the critical
distance X, are given.

Analizowano rozprzestrzenianie si¢ jednowymiarowych fal uderzeniowych w cialach statych
z parametrami wewngtrznymi (wewngtrznymi zmiennymi stanu). Rozpatrzono ukiad quasi-
liniowych réwnati hiperbolicznych, rzadzacy problemem propagacji fal w takich ciatach. Za
pomoca zwigzkéw Rankina-Hugoniota udowodniono, ze parametry wewnetrzne sg ciaglymi
funkcjami na fali uderzeniowej, natomiast ich czasowa pochodna doznaje skokowej nieciagto-
§ci. Za amplitude fali przyjeto skok odksztalcenia. Po wyprowadzeniu réwnania rézniczkowego,
rzadzgcego zmianami amplitudy fali w og6lnym przypadku, sformutowano szczeg6lne zalozenia
odnosnie obszaru przed fala. Przyjgto, Ze obszar ten jest albo w jednorodnym stanie nierébwno-
wagi, albo w stanie réwnowagi. Dla obu przypadkéw wyprowadzono réwnania rézniczkowe
amplitud oraz stwierdzono istnienie krytycznego gradientu odksztalcenia. Przeprowadzono
dyskusj¢ nad formowaniem si¢ fal uderzeniowych. Za Jeffrey’em [16] wprowadzono pojecie
krytycznego czasu i krytycznej odleglosci. Ogélne badania zilustrowano przyktadem rozcigga-
Jjacej fali uderzeniowej w materiale rzedu drugiego. Wykorzystujac wyniki zawarte w poprzed-
nich pracach autora, dotyczacvch fal przyspieszenia, podano jawne wyrazenie na krytyczny
czas f. oraz krytyczna odleglo$é X..

Ananusupyercs pacnpocTpaneHHe OJJHOMEPHLIX YAApHBIX BOJIH B TBEPIBIX TEjaX C BHYTPEH-
HHMH napameTpamH (BHYTPEHHHMH II€pEMEHHBLIMH COCTOAHMA). PaccMoTpeHa CHCTeMa KBasu-
JIMHEHHBIX THIIEpGONMYECKUX YPABHEHHI ONMHCHIBAIOLIAS 3324y PaCIIpOCTpaHeHUsA BOJIH B Ta-
Kux Tenax. Ilpu momomm oTHoweHHHt Penxuna-IIOroHHO AOKas3aHO, YTO BHYTPEHHME mapa-
METPRI ABJISIIOTCA HENMPEPLIBHbIMM (DYHKIHMAMH Ha YAapHOH BOJHE, HX YK€ BPEMEHHAA MPOH3-
BOJIHAsA UCIIBITHIBAET CKAUKOOOpasHBIH paspbiB. 33 aMIUIMTYNY BOJHBI MPHHAT CKAauyoK [e-
topmauym. Ilocne BriBofa AHGGEPEHLMAIBHOIO YPABHEHHsI ONMCHIBAIOMIETO H3MEHEHHS
AMINHTYALI BONHBI B ofwiem coTyuae, copMyIMpOBaHBl YACTHBIE NPEMMOJIOMKEHMS Kaca-
1omueca obnactu nepex Boymmoi. IlpumsaTo, urto aTa 061IacTh HAXOOUWTCHA WIH B OHOPOIHOM
COCTOAHMHM HEPABHOBECHA, HJIH B COCTOAHHMHM paBHOBecuA. [lna ofoux c/ydaeB BhIBEEHBL
ArddbepeHImaNbEbIe YPaBHEHHA aMIUTATYA B KOHCTATHPOBRHO CYIIECTBOBAHHE KPHTHUECKOTO
rpaguenTa nedopmarmn. ITposeneHo obeyxaenune GopmupoBaHuA yaapHbx BoyH. [To [Hredup
[16] BEIBENEHO NMOHATHE KPUTHUECKOrO BPEMEHH M KDHTHUYECKOTO paccTosHms. OBbiue ncce-
FAOBaHUA MIUTIOCTPUPOBAHEI IPHMEPOM PacTATHBAIOLLEH YapHOH BOJHEI B MaTepHalie BTOPOro
nopsigka. Mcmonssys pesysmsTarhl cofiepykaBLIHECA B MpembLAylux pafoTax aBTOpa, Kaca-
IOIMXCA BOJNH YCKOPEHHMSA, A3eTCA ABHOE BHIPOKEHHE ANA KPHTHYECKOTO BPEMEHM !, M KpH-
THYECKOIO pacCTOAHHA X,.
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1. Introduction

IN the original theory of simple materials formulated by NoLL in 1958 the actual stress
state is determined by the infinite past history of deformation. In 1972, NoLL formulated
the new mathematical theory of simple materials which is free from this and the other
defects and in which only deformation processes of finite duration, not infinite histories,
ocurr in the description of the response of a material [1].

In the internal state variable description of a material take also place deformation
processes of finite duration. This approach may be a good example of the material element
defined by NoLL in [1]. On the other hand, it is also an example of the unique material
structure defined by PERzYNA and Kosisski in [2, 3]. _

Since the internal variable approach has no defects mentioned above and has connec-
tions with the original and new theories of simple materials (see lecture cited in Sec. 2),
this approach may safely be used in the description of various effects in dissipative ma-
terials, like plastic and viscoplastic ones(*).

Particularly, the material with internal state variable is a very convenient model for
carrying out investigations of the wave propagation phenomena in dissipative materials.
Here, it should be emphasized that the initial boundary-value problem for materials with
internal variables is governed by a system of hyperbolic equations.

In the present paper, shock waves in a solidlike material with internal variables will
be investigated. The propagation of shock waves in this material was studied, in the case
of fluid, by CHEN and GURTIN [4] and by Kosi<ski [5-7] and Szmit [8] for solids.

In Sec. 2 the fundamental relations and theorem for a discussion of shock waves in
the material under consideration is proved. By use of the Rankine-Hugoniot relation the
problem of the jump discontinuity in the internal state variable function is solved.

In Sec. 3 the governing differential equation for an amplitude of a shock wave pro-
pagating through the material, which has been in homogeneous equilibrium and non-
equilibrium states, is derived. The existence of a critical strain gradient A is noticed. It is
reamarked in the discussion of the behaviour of the amplitude in time, that the jump in
the strain [E] will increase, decrease or remain constant according as the strain gradient
dxE~ is greater than, smaller than or equal to A.

In Sec. 4 the problem of the formation of shock waves in systems of hyperbolic non-
linear equations is discussed. It is shown that the existence of the critical time ¢, of the
formation of shock wave was established in the previous investigations of the author
on the acceleration waves.

Finally, the example of the expansive shock wave in the material of grade two is consid-
ered.

(*) Toexamine that the internal state variable approach gives an adequete conceptual framework for
the mathematical description of plasticity and yield, see works by DiLLoN, KRATOCHVIL, PERZYNA, TEO-
DOsIU, VALANIS and the others on plasticity and viscoplasticity.
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2. The fundamental relations

In the present paper we consider one-dimensional motions in solidlike materials.
The motion of a material point (particle) is given by the function y of two variables such
that its value x = x(X, t) indicates the position at time ¢ of the particle labelled X in the
homogeneous reference configuration with mass density ¢. The displacement of a par-
ticle is then defined by the function u of two variables such that

2.1 u(X,t) = y(X,t)—X for each (X,1).

We denote, if they exist, the derivatives of the displacement function u [which according
to (2.1) may be expressed by the derivatives of the motion function %] as follows:

o(X,1) = %u(X, 1), EX,t)= FBX—'"(X’ 1),
@2)

52

pd
We call them respectively the velocity, the strain, the acceleration, the strain gradient of
a particle X at time ¢

In the framework of the mechanical theories of continuous media, materials are char-
acterized by one response function which determines the stress.

In the general theory of simple materials with memory the stress is determined at
a material point X whenever the strain and its past history are known at X. In that approach
the past history of the strain is an additional quantity (variable) which must be given
in order to describe the response of a material. There is another approach in which the
stress is determined when the actual values of strain and of additional parameters as well
are prescribed. These parameters, called the internal state variables, are introduced by
solution of an initial value problem. The solution is obtained in terms of the strain history
(rather finite) and an initial value of the parameters (?).

Thus we consider a class of homogeneous materials with internal state variables de-
scribed by the constitutive equation

(2.3) T(X,t) = T (EX, 1), a(X,1)), tel0, ®)

2
(X, = -jr—zu(X, 1, dxE = u(Xx,1).

for the stress in particle X at time ¢, which is supplemented by the evolution equation (initial
value problem) for the internal variable vector

2.4 a(X, 7) = a(E(X, 1), a(X, 7)), «(X,0) = ay(X), 7te€[0, ®).

Here a represents n-vector of internal variables (parameters), which was introduced
to define uniquely the state of the particle of dissipative material (i.e. material with in-

(*) The problems of the similarity and the equivalence of these two approaches are very important
in the theory of materials. There are some papers in the literature treating this subject. For instance WoiNo
and KosiNskr [9] formulated the conditions under which both approaches give the same stress for the
same history of deformation. MaziLu and KosiNski examined in [10] the mathematical conditions under
which the mzmory of a simple material can be parametrized and showed that materials with internal varia-
bles are a special case of materials with parametrical memory.
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elastic, added to elastic, properties) (?). Internal variables may have different physical
interpretation, for example, the work-hardening parameters, the inelastic or anelastic
strains.

Since the pair (E, a) has to define uniquely the state of the particle, we must be sure
that the evolution equation (2.4) has a unique solution. In [9] the theorem of existence
and uniqueness of the solution of the evolution equation for internal variables was formu-
lated. That theorem is true for the continuous strain (deformation) function. The present
paper deals with discontinuous strain functions, which appear in the analysis of shock
waves. Hence we must formulate the appropriate theorem for the case under consideration.

The basic system of equations for a one-dimensional material with internal state va-
riables comprises: the law of motion

ov T

the geometrical compatibility condition
dE ov
@8) T S
the evolution equation for internal state variables
da
2.7 -5 —a(E,a)=0

and the constitutive equation
(28) T= y(Es d'.),
where b is a prescribed body force.

We can see that here we have to deal with the system of equations with two independent
variables # and X and #+2 dependent variables v, E and a. Let U be the column vector
with components U, = v, U, = E and U; = a. By F = F(U) we denote the column
vector with components F, = =19 (U,, U;), F, = —U,;,F; =0. The letter B(U)
denotes a vector with the components B, = b, B, = 0 and B, = a(U,, U;).

The above notations anable to rewrite the basic system of equations in the following
divergence form (of generalized system of conservation laws, say):

2.9 2,U+dxF(U)+B(U) = 0.
If we denote the gradient operator with respect to U by Vy, then
(2.10) oxF = (VuF)oxU,
or
0xF = Ad,U,
where

0 —9"359'(0’2, U;), _Q-lac‘g-(UZ: UB)
AU =| -1 0 0
0 0 0

(®) In [2, 3] PERZYNA and Kosmisk1 defined the unique parametrical material structure in the mathe-
matical framework for the description of dissipative materials. This structure contains materials with
internal variables.
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Using this result we can see that the system of Egs. (2.9) [or (2.5)-(2.8)] transforms
into the gquasi-linear system

(2.11) d,U+AdyU+B =0 with A = VyF,
which is hyperbolic when the eigenvalues of A are real and distinct. In fact, its eigenvalues
A= — ]/.9“1325-(02, Us), =0, Ayp= nglasy(vz,va)

are real provided that d;J (U,, U,) is positive.

Since our system (2.11) is hyperbolic, the solutions U of it may have some singularities
(e.g. the discontinuities of the first derivatives of U across the characteristics). Further-
more, the solutions themselves may suffer a jump discontinuity. The last case denotes that
a shock wave takes place. In linear hyperbolic systems the discontinuity surface of the
solution coincides with a characteristic manifold but in a quasi-linear system does not.
This fact is the essential difference between linear and quasi-linear hyperblic system.

In a discussion of discontinuous solutions of hyperbolic equations the so-called
Rankine-Hugoniot relation is often used.

Let Y = {(t,X): te[0, ), X = Y(t)} be a curve across which U has jump discon-
tinuity. Then the vector

’ .
2.12) n= ("a? Y@), —1)

is normal to ) at (¢, Y(r)).
We use the well-known notation [G] for the jump G~ —G* in the function G(X, 1)
across the discontinuity curve ), i.e.

@.13) G- =limGX,t), G*=limG(X,1).
XYy X-Y()*

The Rankine-Hugoniot relation expresses (*) the continuity of the normal component
(in two-dimensional #— X space) of the vector field (U, F) across the discontinuity line, i.e.
2.14) o ([UL[F)) =0 or [(U,F):n]=0.

In order to prove (2.14), one needs to assume that the vector B is a continuous function

of U and to integrate the Eq. (2.9) over a domain D in ¢-X space. Using the Gaussian
divergence theorem, in the limit as D shrinks to zero, we obtain (2.14).

If we denote the derivativesgr- Y(t) by V(¢t) and call it the intrinsic velocity of the

shock wave, then the Rankine-Hugoniot relation (2.14) can be written in the following,
more convenient for further considerations, form

2.15) v[u] = [F].

THEOREM 1. In the motion with shock waves of the material described by the constitutive
equation (2.3) and the evolution one (2.4) the internal state variable vector function a has
no jump discontinuity (°) across ).

(*) Cf. for example JerFrey and Taniutt [11].
(*) In [5-7] other proofs of this fact are given.
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Proof. The Rankine-Hugoniot relation applied to our case (2.9) gives (2.15). Since

v —0"'T(E, o)
(2.16) U=|E and F= -0 .
o 0
hence

eVle] = -[7],
.17 VIE[ = —[v],
[«] =0,
where (2.8) was used. The last equation in (2.17) gives the proof of the theorem.

The proved fact is fundamental for an investigation of shock waves in a material
with internal state variables. It solves the question concerning the continuity of the internal
variable function.

Let us notice that (2.17), expresses the law of motion on the discontinuity curve ),
The relation (2.17), is often called the kinematical condition of compatibility. Here we
should remark that the general condition of compatibility, in the one-dimensional context,
has another form than (2.17),. This condition is expressed as follows (®). Suppose that
functions f(,*), f(+, *) and dxf(-, *) defined on & x [0, o) have jump discontinuities
across the curve ), but are continuous functions everywhere else (7), then

(2.18) —:?[f]] = [f1+V[oxf].

where 8/dt is called the displacement derivative.
In view of the form of the evolution equation (2.4) and the continuity assumption of a,
we have for a time derivative of a:

(2.19) [a] = a(E~, @)—a(E*, a).
The kinematical condition (2.18) applied to this case gives
(2.20) [a]+V[oxa]l =0 or [a] = —V[oxa].

Furthermore, in a dynamic process with a shock wave the law of motion (2.5) holds on
either side of the curve 2 and across it, in addition to (2.17),, we have

(2.21) [oxT] = o[ 2],
where the continuity of the body force b was assumed.
The Egs. (2.17);,, imply the well-known result

T
@22 oV = H
for the velocity of the shock wave, while (2.18) with f = E and f = v in conjunction with
(2.21) yield the relation

2.23) 2V7 5 (VVIED = Vi[oxE] - [oxT].
(%) Cf. for example Cuen [12].

(") In [13] the precise conditions of regularity in term of the function fare given to verify the Eq.
(2.18), Cf. also [12]. Here & denotes the body.
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In the present study the jump in the strain is the basic variable under consideration,
so that the jump [E] will be called the amplitude of the shock wave. It may be treated as
a function of time only.

It should be noticed that the Eq. (2.23) is independent of any constitutive equations
and must be fulfilled by the amplitude of each shock wave.

3. Amplitude equation

In this section we derive general and explicit expressions for the change in amplitude
of one-dimensional shock waves propagating through arbitrary homogeneous materials
with internal state variables. This derivation will be done under the special assumptions
concerning the region ahead of the wave. We will assume that the wave propagates through
the material which has been in homogeneous states of equilibrium or non-equilibrium.

In the paper [6] the definition of the homogeneous equilibrium state of the material
under consideration was given. In reference to this we say that the body (material) is in
a homogeneous equilibrium state (E,, o) if

(B.)  a(Ep, ) =0, 0xEo=FE,=0 and dxa,=0 for XeA.

The condition (3.1); means that the pair (E,, o) is an equilibrium point of the evolu-
tion equation (2.4). In other words, the constant function a(f) = a,, where t € [0, o),
is the solution of the Eq. (3.1), with the initial value a(0) =

The notion of the homogeneous non-equilibrium state introduced in [14] tells that the
pair (E(X, t), a(X, t) forms such a state if

E(X,t) = Eo+wt, EX,t)=w, 0&xEX,1)=0, dxa(X,t)=0,

@2 a(X,1) = a(Eo+wr, a(X,1)), for Xe®B, w=const.

Now, we can try to derive the expression for the change in the amplitude of the wave.
This expression is based on the amplitude equation (2.23). In that equation the jump of
9xT takes place. In view of our constitutive assumption (2.3), we have

(3.3) [a,,'r]] = [0:T 0xE]+[0.T -dxa].
Substitution of (3.3) into (2.23) yields

Ge  ovid ém + 2L a Vz[axE]]—l?{[agyapr[a.f -9y al}.

In this equation the displacement derivative of the wave velocity ¥ occurs. By an addi-

tional calculation this derivative may be determined by -g; [E]. Let us compute

3.5 ‘SE;] [T1+V[exT] = [0: 7T (E, a)]—+a_,,y(£ a ‘5[51

+[0.7 (E, )] a " fOT(E, ) 5[“].
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Now, let us assume that the wave is propagating in the direction of increasing X. This
implies the positive velocity V().

We suppose additionally, that the shock wave advances into a body being either in
a homogeneous non-equilibrium or in a homogeneous equilibrium state; then the body is
in one of those states and we have

(3.6) 0xE* =0, odya* =0 or OxE*=E+*+=0 and &ya*t=a* =0,

respectively. In the first case Ef’—= E* and % = a*. In view of Theorem 1

@7 [e]=0 and - [a]=0.

Hence, for the non-equilibrium state, we have
3.8) igl = g T(E-, a)igf—]] +[2:T(E, a):ﬂi'?* +[0.T (E, @)]- a*.
In the case of the equilibrium state (E,, &)
or] _ - o]

(3.9 7 e e T (E-, U.)T ;
If we notice that, by (2.22),

A1) _ 12 6EE]I

o T oV +29V[[E] d 7

or

6V 1 é[Tﬂ o[E]
3.10 v: ,
3.10) 29V[E]( ‘
then we obtain the proof of the following

LeMMA. The velocity of the shock wave propagating into a material in a homogeneous
non-equilibrium state obeys the equation:

LA
3t~ 2V[E]

@) sz 07 & 9-orn) L]

+[0eT(E, ®]E* +[0.7 (E, @)]- &+}.

When the material ahead of the wave is in the homogeneous equilibrium state (E,, &),
then

OV 3T (E-, a)—oV? O[E]
ot - 2V[E] [T

Let us notice that in the second case for gV = ;7 (E~, a,) we have 6V/dt = 0. Such
a situation will not be treated here. It takes place in the case of a linear in E constitutive
function 7, cf. Kosiiski [6, 7].

Now we are able to derive the explicit expression for the change of [E] in time.

(3.12)
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THEOREM 2. The amplitude [[E]| of a shock wave propagating into the material satisfies
the equation
o[E] 2V

o 4oV*
r

(3.13) (dx E-—12),

where V is given by (3.10) and (2.22), and the form of the quantity A depends on the state ahead
of the wave (in + region), i.e. if the material is in a homogeneous non-equilibrium state, then

(G149 A= i'_— ;—V(][agy(g, ]E* +[0.T(E, @)]- &* )+ 0. T (E-, o) -y~

but if the material is in the homogeneous equilibrium state (E,, a,), then

— 1 e . -
(3.15) A= ——5 0.7 (E7, ag)-a(E7, ).

In both cases r is given by
(3.16) r=oV?—3;J(E", ).
Proof. The equations (3.4), (3.8) and (3.11) for the non—equilibrium case give

2y A ‘5[[51 + A(asy(z- @)—or?) =4 ‘5[5] ( 35.9"(E‘ a)) OxE-

2% EB,.?’(E”, ®)- dya~ — W {[2:7 (E, ®]E* +[0.7 (E, ®)]- &*}.

Then

[£] _ 2v { _ " - ST
0t 3VP4 9T (E, @) (V*~0p T (E™, @))0pE™ — 0T (E™, @) * Oyt

- —'F([agy(g, @] E* +[0.7(E, )] &* )}.

Introducing the symbol r, after some calculations we obtain (3.13) with 4 given by (3.14).
In the equilibrium ahead of the wave, the relations (3.1) and (2.20) imply another form
of A, given by (3.15).

Let us notice that, assuming the strain and the internal variables in the homogeneous
non-equilibrium state given by (3.2), the relation (3.14) may be written as follows

3.17) = l?iz—ly— (e T (E-, a)—0x T (Eo+wt, a))w
+ (0T (E~, @)= 0, T (Eo+wt, &))" a(Eo+wt, o)
— -;,—B,f(E‘, ) (a(Eo+wt, @)—a(E™, @)},

where we have used (2.20) and
_}f_(o‘ﬁ-a-) = dya-.

6 Arch. Mech. Stos. or 3/75
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Now, our aim is to discuss the local, in time, behaviour of the amplitude [Eﬂ It is
evident that this behaviour depends on the sign of r and on the magnitude of dxE~ in
comparison with 4. By the Eq. (3.13) we establish the existence of a critical(®) strain
gradient A in the propagation of the shock wave in the material under consideration.
To discuss the behaviour of [E] on the wave we consider two cases, i.e. compressive and
expansive shock waves.

Case A. Compressive shock waves

A compressive shock wave is defined by the conditions

(A.1) [E]<0 and E*<0O.
From the condition of the hyperbolicity of our system of equations [cf. (2.11)] we have
(A2) 0T (E, a) > 0.

We assume, additionally, that for each value of a the strain-stress relation T = J(E, &)
in compression is concave from below, i.e.

(A.3) (T (E,a) <0 for E<O.
Then, by (2.22) and

(A4) [T) = 7(E", a)-T(E*, a),
we have

(A.5) r=pV*—gy7(E-,a) <0.

This fact implies that the sign of the right-hand side of (3.13) depends on the magnitudes
of dxE~ and A. Since [E] < 0, then |[E]| = —[£]. Hence in view of the positive wave
velocity, ¥ > 0, we can formulate the following theorem(®).

THEOREM 3. In the propagation of a compressive shock wave in the material under
consideration the assumptions (A.2) and (A.3) imply: '

1) if at a given time dx E~ > A, then at that time and immediately behind the wave

the jump magnitude in the strain |[E])| is increasing, i.e. % ILEQ > 0;
o
2) if dxE~ < A, then the jump |[E]| is decreasing, i.e. -glﬁEm <0;

3) at any instant 3x E~ = Aif, and only if, the jump [ E] remains constant, i.e. --;:; [E] =0.

Let us notice that the critical strain gradient A in both cases (3.14) and (3.15) is a function
of time. Further, the statement 3) of the preceding theorem does not imply that the wave
has a constant amplitude over some period of time, for 4 may increase or decrease during
this period. Clearly, the wave can have a constant amplitude over some period of time

only if —gt-(ax E~—21) = 0 during this period.
Case B. Expansive shock waves

(® Like in materials with memory, cf. CHen [12].
(°) In the theorem given by CHEN and GURTIN in [4] only the case of the positive critical strain gradient
A was considered.
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For such waves the amplitude is positive:
(B.1) [E]>0 and E*>0.

We assume that for each value of a the relation T = 7 (E, @) is concave from above(*9),
as the function of E only, i.e.

(B.2) (T(E,0)>0 for E>O0.

If (A.2) is used, then (A.5) is still valid and we have
THEOREM 4. In the propagation of an expansive shock wave the assumptions (A.2)

and (B.2) imply:
1) if dxE~ > A, then the jump in the strain is decreasing, i.e. %[E] < 0;

2) if axE~ < A, then the jump is increasing, i.e. %[E] ol

3) the jump remains constant if, and only if, dxE~ = A

The properties of the wave given in the preceding theorems are valid under the assump-
tion that the material ahead of the wave is in the homogeneous equilibrium or non-
equilibrium states. But in the case of the equilibrium the similar properties may be for-
mulated for the wave velocity(*!).

In the previous paper [5] the amplitude equation and the general form of its solution
in the case of the infinitesimal shock wave were furnished. There it was shown that the
limit value of the critical strain gradient with the amplitude [E] tending to zero is equal
to twice the critical amplitude of an acceleration wave(*?).

4, Shock wave formation

It is a well-known fact that, in the case of a linear system of hyperbolic equations, shock
waves cannot occur spontaneously. They may happen only by externally imposed impacts.
Furthermore, the shock wave, i.e. the discontinuities in the solution U of the equations,
are propagated only along the characteristics of the system, like the discontinuities of
its first derivatives (we call them acceleration waves). Quite another situation takes place
in the case of non-linear (quasi-linear, say) equations. Here acceleration waves propagate
along the characteristics, too, but the shock waves may occur not only under the dis-
continuous initial conditions. Perhaps one of the most striking features of non-linear
hyperbolic systems is that even when starting from analytic initial data, a discontinuity
can develop in the derivative(**) of the solution U and can then tend to an actual jump

('°) Here (B.2) is the necessary condition for the existence of the expansive shock wave, like (A. 3)
was the condition for the compressive wave. The negative r denotes that the shock wave velocity is subsonic

with respect the rear of the wave.
(*') This was remarked in [5], where the case of the equilibrium state ahead of the wave was considered.

(*?) Cf. Cuen and GurTIN [4, 15].
(*?) It is a Lipschitz discontinuity in the derivative of U normal to the wave front (characteristic),

Cf. [11].

6*
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discontinuity in U itself. This jump discontinuity, called the shock wave, propagates in
a totally different manner from the derivative discontinuity.

The solution U is a function of 7 and X. Thus, in view of the paper by JEFFREY [16],
at some critical time 7. and at some critical distance X, the solution ceases to be Lipschitz
continuous on the characteristic and finite jump or shocklike discontinuity appears in U.

If the solution loses the Lipschitz continuity it means that at least one of its
derivatives goes to the infinity. This condition used(*#) in [16] enabled Jeffrey to
obtain analytic expressions determining the critical time 7, in terms of the eigenvector
gradient of the matrix A cf. (2.11) and the functions of jumps.

Now, there is a place in which our previous investigations of the behaviour of ac-
celeration waves in the material with internal state variables may be helpful in the deriva-
tion of the conditions of the shock wave formation. In [5, 14, 17] we have established
the existence of the finite time ¢, at which the amplitude of the acceleration wave becomes
the infinity. The fact that an acceleration wave will have infinite amplitude within a finite
time means that a shock wave is produced. So the conditions derived in [5, 14, 17] con-
cerning unbounded growing of the amplitude of the acceleration waves give us the simple
expression for the critical time. In the next section we use the results of [17] to this problem.

5. Wave in a material of grade two

In this section we would like to give an example of the shock wave propagation. It
will be done in the case of expansive waves in a material of grade two. In [14, 17] such
a material was considered. In reference to this paper we postulate the following form
of the constitutive function  and the preparation function a in the right-hand side of
the evolution equation:

T(E,a)= blE'i'bzﬂ'l'ngz +b,,
G0 a(E, @) = ¢, E+c,a+cy)

where b, ¢; are some physical (material) constants. For them we have the following
inequalities
by >0, by >0,
Hence the assumptions (A.2) and (B.2) are satisfied
(5.2) 0rT(E,a) = b, +2b;E>0, OJHE,0)=by;>0 for E=0.
The wave velocity ¥ obeys the equation
(5.3) QVZ = '[I]' = bl ‘+‘b3[£]+2b3£+.
[£]
For r we have
5.4 r=goV*—0sJ(E-, a) = —b,[E] < 0.
(*4) In [16] this condition was formulated in term of the vanishing Jacobian of the transformation

of (t, X) variables into (t’, ) variables, where ¢ = 0 was the wavefront. This condition, geometrically,
denotes that the family of characteristics ¢ = constant intersect at a cusp.
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The velocity ¥V changes according to [cf. (3.11)]

v by [4[E] v
(5.5) P T ZQV( o1 +2E*).
Since
1/: c,'b
A= ——|E+ 2L 2
o[
the amplitude equation has the form
E] _ 2Vh5[E] ( 1 (-+ e,-b,))
(&3 0t  4by+3bsE* +5bE- OxE”+\E" = by |I°

Hence we can formulate the following
THEOREM 5. In the material of grade two the amplitude of the expansive shock wave
undergoes the following behaviours:

1) if OxE~ > lV(clbl b, _ w), then  O[E]/ét < O;
3

2) if 9 E- < iy(

CI . bz
b,
3) if ¢, b, <0, then O[E]/ot is always smaller than zero provided that the strain
gradient dy E~ is not negative;

4) if O E- = 717(

= w), then  O[E]/ét > 0;

¢ ' b,
bs

In the above statements we used the notation E* = w [cf. (3.2)] and the inequality
w2 0.

Now we give the expressions for the critical time 7. and the critical distance X, in the
case under consideration. According to Theorem 2 in [17] for the acceleration wave
propagating through the material of grade two being in the homogeneous equilibrium
state (Eo, a,), the amplitude [X] (+) = a(f) goes to minus infinity in the finite time
[0, ¢.] if either

a) b,:¢; < 0 and a(0) < By ]/b‘ +2b3 B or

2b, e
b) b, ¢; > 0 and a(0) < 0.
For both cases the critical time ¢, is given by

2(by +2b5 Ey) b, ¢, ]/b1+2b3£'°)
5.8 t, = Inf1- ‘
A g 2a(0)b e

- w), then O[E]/dt = 0.

Here a(0) denotes the initial value of the amplitude of the acceleration wave. Because
the critical distance X, fulfils the formula

(5.9) X.=Xo+ V{,I—%‘n
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where X, is the material point at which the acceleration wave is to be found at time
t = 0 and the square root is the wave velocity, we have

2 (b; +2b3.80)3 bz cl bl +2b3E0
(.10) X, =Xo+ l/ In(1
) *he o ~ 22(0)b;

The statement a) above tells that the shock wave will be formed whenever the initial
amplitude a(0) is less than some value equal to the critical amplitude for acceleration
waves. The statement b) pronounces, however, that each expansive acceleration wave
turns out, in the finite time, to be a shock wave.
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