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Large strain, viscoelastic and elasto viscoplastic numerical
analysis by means of the finite element method

M. KAWAHARA (TOKYO)

FintTE elemsnt procedures and illustrative numerical examples for linear and non-linear visco-
elastic and elasto viscoplastic bodies are discussed in this paper. According to the well known
th2ory in rh2ology, th2 constitutive equation of viscozlastic body can be described by the first-
ordzr simultanzous diffzrantial equation system. Using this result, the finite element equation
leads to an equation similar to Hookean elastic body except for the inclusion of the time in-
cremznt. The procedure is applicable to certain forms of non-linear viscoelastic body and elasto
viscoplastic body. To solve th: non-linear simultaneous equation system, it is convenient
to employ the incremzntal displacemznt msthod for non-linear problems such as large deforma-
tion loading, unloading and cyclic loading behaviours.

W niniejszej pracy przeprowadzono dyskusje techniki elementéw skoriczonych oraz nielinio-
wych cial lepkosprezystych i sprezysto-lepkoplastycznych. Zgodnie z dobrze znang w reologii
teoria rownanie konstytutywne dla ciata lepkosprezystego moZe byé opisane réwnoczesnym
ukladzm réwnad rézniczkowych czastkowych. Korzystajac z powyiszej wlasnoéci réwnanie
elemzntu skoficzonzgo jest doprowadzone do réwnania podobnego do sprezystego ciala Hooka
z wyjatkiem uwzglednienia przyrostu czasowego. Procedurg te stosuje si¢ do pewnych form
nieliniowego ciata lepkosprezystego i sprezysto-lepkoplastycznego. Do rozwigzania jednocze-
sn2go nieliniowzgo uktadu réwnan wygodnie jest zastosowa¢ mstode przemieszczeh przyro-
stowych, w szczegblnosci do takich zagadnied nieliniowych jak duze odksztalcenia spowodowane
obciaZeniem, odcigzeniem lub obcigzeniem cyklicznym.

B Hacromme#t paGore npoBefeHo oGCY)KIACHNE TEXHHKH KOHEUHBIX 3JIEMEHTOB, & TAKOKE He-
JAHEHHBIX BASKOYNPYTHX H YIpPYro-BAIKOMIACTHUecKHX Ten. COr/IacHO XOpOIIO H3BECTHOH
B PEOJIOTHH TEOPHH ONpE/ieNAollee YpaBHEHHE U BASKOYIIPYTOTO TeJIa MOXKeT OLITh OMACAHO
COBMECTHOI cuctemoli nuddepeHIHANEHBIX YpaBHEHHI B YaCTHLIX Npon3BoaHsIX. HMemomsaysa
BBILENPHBEACHHbIE CBOHCTBA YpaBHEHHE KOHEYHOrO 3JIEMEHTA NPHBEACHO K YPaBHCHHIO
aHAJOTHYHOMY ynpyromy Teny I'yka 3a HCHIIFOYEHMEM Y4YeTa NPHPOCTa BpeMeHH. DTa mpoile-
Aypa NPHMEHACTCA JUIA HEKOTOPLIX GopM HenuHEeHHOro BASKOYOPYToro M YOpYyro-BA3KO-
nnacTHyeckoro Tena. J{ns pellieHus COBMECTHON HeNWHEHHON CHCTeMBI ypaBHeHuHit yAoGHO
TMPHMEHATE METOJ NepeMellieHlii B MpUpOCTax, B YACTHICTH [UIA TaKMX HenuHeHHBIX 3agad,
Kak Gonpume fedopManyy, BLISBAHHLIE HAMPY3KOHN, PasrpysKoH MM LHMKITHYECKOH HATPY3Kol.

1. Introduction

THE PURPOSE of this paper is to discuss a finite element method for the analysis of visco-
elastic and elasto viscoplastic bodies based on both small and large strain theories. In
general, viscoelastic body is defined by assuming either generalized strains, i.e., observed
strain and hidden strain, or certain forms of Helmholtz free energy. The present paper
describes a finite element analysis of viscoelastic body based on the theory of generalized
strains and their associated generalized forces. The paper also states that the procedure
can be applied to a certain class of non-linear viscoelastic body and elasto viscoplastic
body.
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According to the concept of generalized strains proposed mainly by Bior [I] and
SCHAPERY [2] the constitutive equation of viscoelastic body can be derived as the first-
order simultaneous differential equation system with the relation of Kirchhoff stress,
Green strain and hidden strain. Eliminating the hidden strain from this equation system,
a higher order differential equation can be obtained relating stress, strain and their time
derivatives. The conventional analyses normally use the eliminated equations as the con-
stitutive equations. The concept of the elastic viscoplastic body was developed mainly by
PERZYNA [3, 4], after being introduced by HOHENEMSTER and PRAGER [5]. Because the
theory is a so-called rate type theory, the procedure for the numerical analysis may be
carried out by a method similar to that of the above-mentioned viscoelastic body.

The application of the finite element method to viscoelastic body has been developed
and presented by several writers [6—16] under the small displacement assumption. On the
basis of large strain theory, ODEN and RAMIRETZ [17] and also ODEN and others [18-22]
have discussed finite element methods postulating the functional form for the free energy
of the constitutive equation. The author [23-26] has already presented the theoretical
basis and several numerical examples for linear and non-linear viscoelastic analysis using
the concept of generalized strains. This paper discusses the general numerical procedure
of the finite element method on the basis of the constitutive equation involving hidden
strain. Taking viscoplastic strain as the hidden strain, the constitutive equation with
hidden strain can be regarded as including the elastic viscoplastic body. Thus, the numeri-
cal procedures in this paper can also be adopted to the analysis of elastic viscoplastic
body.

Replacing the differentiation with respect to time by the difference with respect to
short time increment and eliminating the several hidden strains leads to a stress-strain
equation similar to elastic body with initial stress components including the time increment
in the coefficients. With this stress-strain equation and the fundamental equations of
non-linear continuous mechanics, the numerical procedure can be formulated by the follow-
ing conventional finite element method. The method yields to the non-linear algebraic
simultaneous equation system. In order to solve the equation system, the Newton-Raphson
method is commonly used. Moreover, the perturbation method is also employed, as it is
suitable for adjusting the effects of higher order terms.

2. The basic equation

Let x; and X; denote spatial and material coordinates, respectively, using the rectangu-
lar Cartesian coordinate system with indices i = 1, 2 and 3. Indicial notation and summa-
tion convention with repeated indices are employed throughout the paper. A subscripted
comma ,; means the partial differentiation with respect to X; and a superposed dot denotes
the material time differentiation. It is convenient to take the reference coordinate system
X; and the current coordinate system x; to coincide in the initial reference state. Then,
the relation:

2.1) x = Xitu,
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can be introduced denoting u; as the components of displacement vector measured along
X; coordinate system. Using the Eq. (2.1), displacement grandient is obtained as:
2.2 Fyjy = iy = 6j+uj,

where 6;; is the Kronecker delta (function). The Green strain tensor y;; is expressed
in the form:

1 1
(2.3) Yij = E(Fx:Fu—éu) = E(“i.j Fuji+ U, ilm,j) -

Strain-rate tensor j;; is derived by differentiating both sides of the Eq. (2.3) with respect
to time;

" - . 2 a
(2.4) Y= (Wi, U5+ U, iV, U, iU, ) -

Consider an arbitrary volume V¥ of a continuum surrounded by surface 4 in the
current state, and suppose that ¥, is the corresponding volume in the reference state
with surfuce 4,. When the surface force P, is applied across the surface 4, Kirchhoff
stress tensor Sj; is introduced as follows:

(25) P{ = F‘ijgNk = Sj*(a,‘j+ﬂ|.})N;,

where N, are the components of outward unit normal to the surface 4,. Using Kirchhoff
stress S;;, the equilibrium equation is expressed. as:

(2.6) (FijSia+eofi = 0,

where g, is the mass density in the reference state and f; is the body force. The virtual
work equation is introduced from the Eq. (2.6) in order to apply the finite element method.
For this purpose boundary conditions of a continuum should be introduced. On the
boundary A4,, the components of the displacement are prescribed as:

(2?) U = ﬁg on AI M

where #; is the prescribed value of displacement on boundary 4,. The surface force P;
applied on boundary A4, is:

(2.8) P = ﬁl onAd,,

where P; is the prescribed value on surface A,. It is assumed that
2.9) A, VA, = A,

(2.10) A, nAd, =D,

where @ is the null set. Multiplying both sides of the Eq. (2.6) by virtual displacement
u?, which is an arbitrary function except where zero is assumed on boundary 4,, and
integrating over the whole volume ¥, it follows that

@.11) [ 1FsSwautldVo+ [ (oofiut)dVe = O.

The application of Green’s theorem to the first term of the left-hand side of the Eq. (2.11)
leads to the virtual work equation as:

212 [ Syypave = 2,
Vo
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where virtual strain pfj is

1 1
(2.13) v = 7 (Frjuii+Fyaury) = b (Ul +ul s+ up i,y + i i, ),
and
(2.14) Q= [ ISyNGu+u)uflddo+ [ (ofiut)dVs.
Ao Vo

From the Eq. (2.8), the Eq. (2.14) is rewritten as follows:
@.15) Q= [ @upyddo+ [ (oofiud)aVo,
A; Vu

considering uf to be zero on boundary A4,.

3. Constitutive equations

The basic idea of the constitutive equation employed in this paper was presented by
BioT and SHAPERY. A certain state of the body is assumed to be expressed by generalized
strain ¢; (i = 1,2, ..., p). Generalized strain consists of observed strain and hidden
strain. Green strain y;; is employed as observed strain in this paper. Hidden strain is
denoted by Af; (x=1,2,...,49). Generalized force Q;, corresponding to generalized
strain g, is introduced in such a manner that the product Q,q; would be equivalent to
the work Sy¥;. Namely, the part of Q; corresponding to observed strain is Kirchhoff
stress Sj; and the part corresponding to hidden strain is taken to be zero. Assumptions
are made on the generalized force that it consists of a reversible part O{* and an irrevers-
ible part Qf” and, moreover, Q{®) and Q}" are given by linear functions of generalized
strain g; and its time rate §;, respectively.

Based on the above assumptions, the constitutive equation of the viscoelastic body
can be expressed in the following form:

(3.1 Qi = ayq;+byq;,
where a;; and bj; are positive semi-definite constant arrays. If g, through g are taken

to be strain yy;, then O, through Q, will be stress Sy;. Taking this into account, the Eq. (3.1)
is rewritten into two systems of equations as follows:

3.2) Sy = Alyu+ Al b+ Bl v +B§f;r=il::.

33) Afihyy+ Ahphfy + Bijhay+ Biiephfy = 0.

For brevity, the constitutive equations (3.2) and (3.3) are expressed in the form:
(3.49) QY = AuMe+Bubl, ij,k,1=1,2,3;0,8=1,2,..,4,

where

(3.5) Qlj =Sy, hiy=yy and Qf=0(8+#0).

The constant arrays A%, and Bffi; can be obtained by formulating in accordance with
the so-called rheological model. Consider an arbitrary rheological model as shown in
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Fig. 1. The rheological element of the model is both spring element Efj;, and dashpot
element CJj};. Numbering arbitrarily the nodes of the model to which the elements are
connected and regarding the generalized strain A, to correspond to each model, the
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FiG. 1. Rheological model.

following procedure for A}, and Bfj;, can be obtained. Namely, if the mth spring element
ETjy; (or nth dashpot element Cfy,) is connected to the nodes A and g, then the array
A% (or Bijiy) can be constructed by algorithm

Al = Alfa+Efu, By = Biju+Clju,
(3.6) Al = At = —Elu, Bl = Bija= —Clu,
Affa = Affa+E, Bffu = Blfu+Cliu,

in which the range of index m (or ) is from 1 to r (or s) where r (or s) is the total number
of spring (or dashpot) elements of the model.

In the conventional analysis of viscoelastic body, the higher order differential equation
is often employed involving only stress, strain and their time rate. This equation is ob-
tained by eliminating hidden strain A; from the Eq. (3.2) using the Eq. (3.3). From the
computational point of view, it is more convenient to use the Eq. (3.4) directly than to
use the above-mentioned eliminated equation because of its simplicity and because its
system is suitable for the application of the finite element method. The Eq. (3.4) is the first-
order differential equation. The right-hand side of the Eq. (3.4) does not involve stress
and stress rate implicitly. The former statement is important because it is easier to handle
the first-order simultaneous differential equation in the case of computation by digital
computers. The latter statement implies that the constitutive equation (3.4) is suitable
for the application of the displacement method, which is one of the main procedures of
the finite element method.

4 Arch. Mech. Stos. or 3/75
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4. The finite element method

Consider a short time increment A¢, and suppose that fr}’, can be regarded to be constant
during this increment, i.e.,
(CB)) Hy = (Hy—Ky(0))/41,

where h and ¢ 4(0) mean the final and initial value of the time increment At, respectively.
Using the Eq. (4.1), the Eq. (3.4) is transformed into the following form:

4.2) 0% = Kifuhfi+ Hifu b1 (0),
where
1
Kfu = Affu'i‘—d?ﬁr'ftn Hfy = =7 Bips
which is resolved into two systems of equations taking the Eq. (3.5) into account;
(4.3) Siy = Ky +Kiahi+ Hya(0) + Hif)h5(0),
(4.9) K(Ravy+ KGhashly+ Hifay(0) + HGouphf)(0) = 0.

From the Eq. (4.3) and (4.4), the stress-strain relation of the viscoelastic body can be
expressed by an equation similar to Hookean body as follows:

4.5) Sy = Dyuyu+Sy,
(4.6) kY = —StVyy—SP,(0)— SGH;(0),
where

Sil) L}}k)lur Jk!r! ng) = gjturH ((Jtlp S(S) = }fx’mﬂ?mm.
K es Lipars = OimOyn Oxp 814 82y Bpa,
Dtm = Kfm‘“KE:} Lm NK(?M,
Sy = (HGA— K SEN D + (H Ry — K5 S5 1 0).
According to the conventional finite element procedure, a continuous medium should
be divided into small regions called finite elements. The displacement of ath node in the

ith direction is denoted by u, on each finite element. The displacement inside the finite
element is assumed to be approximated with the aid of the shape function @, as follows:

(47) u = Quuai;
substituting this into the Eq. (2.3) and the Eq. (2.13), yy and pJj are expressed as:

(4.8) 2yy = Dy ittgy+ Py, jttgs +Po,i D, yUak Upx s
and
4.9 298 = Do ud+ Py, judi + P i Dy, juditipy + Pt P, jUak Ugk -

Introducing the Eq. (4.5) into the Eq. (2.12), it follows that

4.10) J @iyt ave+ [ Syyhave = 2
Vo Fo
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Substitution of the Egs. (4.7), (4.8) and (4.9) into the Eq. (4.10), rearrangement of the
resulting equation and the use of the arbitrariness of the virtual displacement u¥ leads
to the finite element formulation

4.11) Kogjugy = Qu—2y,

where

(4.12) K.ip = f[¢a.k(5:t+¢'a,l uai)DHmn(am} + —;—‘py.mur}) Cbau]dVo,
Vo

@.13) Qu= [(pP)ddo+ [ (ofi®dVo,
Az Vo

(4.14) Q= f[311(6::'5‘@.5,1“5()(5:.&]‘3’;’0-

Vs
The term K,; in the left-hand side of the Eq. (4.11) corresponds to the stiffness matrix
in the conventional finite element method and is related to the viscoelastic modulus and
short time increment At. The term 2, — 2, is the equivalent load term and ﬁ,, expresses
the influence of the history of deformation.

5. Solution procedures

For each time increment Az, the simultaneous equation system on the whole continuum
can be formulated by following the conventional finite element method and is expressed
as follows:

(5.1 Fy = 'Fn(ﬂu)_ﬂn =0,

where uy, are the displacements of all the nodal points of the continuum, ¥y(uy) is the
non-linear function resulting from the left-hand side of the Eq. (4.11) and 2y is the
prescribed function from the right-hand side of the Eq. (4.11). For the solution procedure
of the non-linear simultaneous equation system, the Newton-Raphson method is com-
monly used. The procedure is expressed as follows:

(i-1)7]~?
(5.2) ud) = ufi-v- [BF“: ] Fy G-,
31:”

where (i) represents ith iteration cycle of the procedure and [gf—"] is the gradient of
M

Fy, which is easily calculated using the Eqgs. (5.1) and (4.11).

To solve the non-linear simultaneous equation (5.1), the perturbation method is also
utilized in this paper. The method involves the calculation to proceed step by step applying
the increments of external load or prescribed displacement. The former method is called
the incremental displacement method. Let the term be expanded into the following ex-
pression:

(5.3) Qy = QO+ +%szrzﬁ>+

4*



424 M. KAWAHARA

where ¢ is the given small parameter. By expanding the displacement uy, as:
1
(5.4) Uy = ui?’+su§}’+-2—szu}.§’+ ey

introducing the Eqgs. (5.3) and (5.4) into the Eq. (5.1), and comparing the terms of the
same order of &, the following linear simultaneous equation system is obtained
PP -2 = 0,
PGP ) - = 0,
(5.5 YA, ul)ui— QP = 0,

The equation (5.5) with the unknown u{} can be solved provided the solutions up to the
(i—1)th order are all known. This procedure is called the incremental loading method
or the incremental displacement method as £y is calculated from the external applied
load or the prescribed boundary displacement.

P | m
(ton) '} l ; %
= { E = 2100 ton /cm?
v=03
H"‘o.
500
\Q
3\.,
"-;:%
400
300 Incremental displacement method
—s—e—  (3rd. order)
e i ( 2nd. order)
—Oa—pe (1st. order)
Incremental loading method
—t—t— (20ton step)
200 ——— ( 40ton step)
o
T !
0 0.5 1.0 1.5

(cm)

Fic. 2. Load displacement diagram of Hookean elastic body.
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Figure 2 shows the calculated load displacement diagram assuming Hookean elastic
stress-strain relation between Green strain and Kirchhoff stress. Comparative results
obtained by the incremental loading method and the incremental displacement method
are illustrated. Truncated errors by the incremental displacement method are also compared
numerically. From these results, if the increments of the prescribed displacement are
taken to be small enough, as illustrated in the figure, then the difference of the truncation
up to the third-order and second-order can be regarded as negligibly small.

P B
(ton) O e i
40}
3.0} o
A
S {E:Z!OOkg/cm?-
:. = / v=03
2.0} : / 10cm

| 1

0 5 10

(em)
F1G. 3. Load displacement diagram and deformation shapes.

Figure 3 shows the calculated load displacement diagram and the deformed shapes
of cantilever beam calculated by the incremental displacement method. These figures
indicate that it is more appropriate to compute the unloading behaviour or the com-
paratively large deformation behaviour by the incremental displacement method than by
the incremental loading method.
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6. Small strain non-linear creep analysis of beam

In order to illustrate the procedure, non-linear creep analysis of a three-bar truss
and cantilever beam is performed. The following constitutive equation is often employed
to express non-linear creep in one-dimensional case:

I B O 2
The Eq. (6.1) is rewritten in the following form using hidden strain A
g E'—ET[ e 0' 0 I &
(6.2) ---1= -——'l-—— ———+———: —————— el e
0 -E| E h 0 Ao'*(i*) h
1 ] L

in which E, A and o* are the viscoelastic constants. The Eq. (6.2) expresses a similar
relation to the Eq. (3.4). Accordingly, the same procedures as described in the previous
section can be applied to the analysis.

%)

6.5+

6.0

Stress Strain Relations
t=(8)(&)-+ (&)

) - =B

(dt)_1'° % = A

5.0 - - L 1 1 L ! 1 |
0 1 2 3 4 5 6 7 8 9

E*
b t

>

F1G. 4. Time stress diagram of three-bar truss.

Figure 4 shows the stress changes in the middle member of a three-bar truss for the
various exponents n. The time stress relation of a cantilever beam is calculated in Fig. 5.
In the case of a cantilever beam, the stress distribution within one element differs across
the section of the beam. Therefore, the finite element is subdivided into smaller sub-
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FiG. 5. Time stress diagram of cantilever beam.

elements for the calculation of stress and integral evaluation. Figure 6 shows the stress
distribution in section as compared with the analytical solution. The conventional shape
functions are used, i.e., linear for truss analysis and the third-order for cantilever beam
analysis, assuming small deformation.
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F1G. 6. Stress distribution of section A-A.
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7. Large strain, creep and relaxation analysis
The constitutive equation formulated by a three-element model as shown in Fig. 7

is a commonly used rheological equation to express creep and relaxation behaviour of
a continuum. In the analysis shown in Figs. 7 and 8, the volumetric components of stress

+—=:Newton Raphson method

698 o—o: Incremental displacement method
" P=170,000ton
ey
4.0 g £=60000ton

e

2o a-+P=50,000ton

et

,._-.——.—-.—-.P=30.m0 ton

2.0
-------------- linear theary
e e—e—e—2P-_30,000ton
P/2 f P/2
6®=3.0x10°t/m ¥ v
6 6%= 3.0 x 10°t/m2
. €= 3.0 x 10°t/m2-sec. E
K - 5 ™~
K =1.0x10°t/m?
T
deviatoric  volumetric —2m
component component
I
0 1.0 2.0 _gf{i;,

Fig. 7. Time displacement diagram (creep curve).

and strain are considered to respond as an elastic body expressed by the three-element
model. Following the algorithm of the Eq. (3.6), the constitutive equation is expressed
as follows:

Ty 26" ' -26M €y 0 0 &y
an  [-Ef |- L IS B Y e | 5.0
0 =26 | 2(G™M+GP) hyy 0,2C™ hi,

(7.2) Su = 3Kyu,
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Fi1c. 8. Time reaction force diagram (relaxation curve).

where 7;; and e;; denote deviatoric stress and strain, respectively, and they are expressed
in the following forms:

S
(7.3) Ty = Sy— '_;lal_h

(7.4) ey = yij— Z%L‘su—

In the Eqgs. (7.1) and (7.2), quantities G*?, G®, C® and K are the viscoelastic constants
as shown in Fig. 7 and hj; is the hidden strain. Corresponding to the Eqgs. (4.5) and (4.6),
the following equations (7.5) and (7.6) are derived from the Egs. (7.1) and (7.2),

a.5) vy =260{1- g 126 A g

’ ) GO +GD+C®[4t )™ GO +GD +C3 4 "IV
G\ C®/At

(1.6) hy = / iy (0).

GO+ +CO4; Ut GO 16D+ oA

Employing a triangular finite element and a constant strain type shape function with area
coordinate, the computation, of which numerical results are shown in Figs. 7 and 8, is
carried out using the Eq. (4.11) with the Egs. (7.5) and (7.6).

In order to illustrate the procedure, a simple numerical example in Fig. 7 is treated,
which is the calculation of the tertiary creep as well as the secondary and initial creep.
In Fig. 7, calculated results obtained by the Newton-Raphson method and the incremental
displacement method are plotted comparatively. When the values of the external load
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do not exceed 60.000%, the calculated results by both methods are well in agreement.
However, when the external load reaches up to 70.000%, the calculated displacements by
both methods show a discrepancy. In view of this, the difference seems to come from
the numerical procedure, especially from the difference of the transformed relation of
the constitutive equation. In the procedure of the Newton-Raphson method, the Egs. (7.5)
and (7.6) are employed. For the incremental displacement method, introducing the se-
cond part of the Eq. (7.1) into the first part of the Eq. (7.1), the following is obtained:

(7'?) Tij = 2G‘”(€U—ku),
(?'8) tl’j+2G{2)kU +2C(3}){;U = 0.

Differentiating both sides of the Eq. (7.7) with respect to time ¢ and eliminating fru from
the resulting equation using the Eq. (7.8), the following equation is obtained:

Gt 2GMIGD

(7.9) ty = 26y~ 5 T~ — ey
From the Egs. (7.2) and (7.9), it follows that
(7.10) Sy = {u(8a 0y + 0u ) + Ady b} P+ Ky Sy + k2 by,
where
u =GN, k, = ——g:w;-:—,
1 = 3K=26" 261G

3 ] 3= C(a) ¥
By expanding Sy, yy and Ay into Taylor’s series as:

@.11) Sy = s.g°>+s.tp.4:+%s.tf)mu...,
(7.12) Yy = yff’+y{}’dr+-;—y}f’dt2+...,
(1.13) hy = HP+HPALE S HPAC ..,

introducing the Eqgs. (7.11) to (7.13) into the Eq. (7.10) and rearranging them, S}’ is
obtained as

(7.14) Sip = Euu}’g)i-kl S{;‘l)+k2h§j-’1)’

for the nth order term of A¢. Using the Eq. (7.14), a finite element governing equation
concerning the first two order terms is obtained.
For the first-order term:

(1.15) Kapy uf) = Q-0
For the second-order term:

(7.16) anﬂﬁ) = QL?’—!?S‘—-QS.}’,
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where

Ky = f (B + P, 115D) Eva (B + Byt ) B+ B 8 SOBy 1V,

oW = f [P, *(6,,+®3;u§°))H£ NdV,,
mt) = {i—l)_i_kzhu 1}

Qf:iz ) = f [Qaa.k(&ﬂ * (pﬁ.l u,g? )) E&fmqpy.m (pé.n “#: ) U.‘s.‘- ) ¥ zq}u.t ‘Dﬁ,tuﬁ ) Sﬂ }] dVO .
Vo .

Figure 8 is an illustrative example of a relaxation behaviour of viscoelastic body
calculated by the incremental displacement method. Figure 8 shows the time reaction
force diagram, which is calculated in the following manner. Up to a certain time, the
prescribed displacement of the nodal point 1, 2 and 3 is made to increase by steps, and
then to keep the displacements fixed at the constant values.

8. Elasto viscoplastic analysis by Newton-Raphson method
Introducing deviatoric stress 7;; and strain e;; as in the Egs. (7.3) and (7.4), it is

assumed that strain ey; is decomposed into the sum of elastic strain e{f? and viscoplastic
strain ¢ff) as:

(8.1) ey = e,?+e§”

Hookean elastic law is assumed to be valid for elastic strain ef’ and »{;
(8.2) Ty = 2Gef = 2G(ey—¢f}),

(8.3) Su = 3Ky,

where G and K are shear and volumetric modulus, respectively. In the viscoplastic body
introduced by PERZYNA, its viscoplastic strain e{f’ can be expressed in the following form:

34) HP = kO 5
where k, n and y, are constants, F is the yielding function and the notation { ) means:
®5) @O =lpm & reo
@F) if F>0.
For the yielding function F, the following von Mises type function is employed:
112
(8.6) = g ﬂ(r.; )2 -1

In the Eq. (8.9), J3/ is the second invariant of deviatoric stress 7;;. The constant k de-
notes the shear strength of the material. For the function @(F), the following is introduced:

@7 PF) = | -1
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Using the Egs. (8.1) to (8.7), the constitutive equations of the elasto viscoplastic body
employed in the present analysis are arranged in the following forms:
For the elastic region (J3/* < k):

(88) Ty = ZGeu, Sa = 3K}’u.
For the viscoplastic region (J3/2 > k):
(8.9 Ty = 2G(ey—eff),  Su = 3Kyu
e e 1
eu = ’}‘( k e l) leﬁ'il = ;Tu,
o Yo
where y = %

The Eq. (8.9) can be rewritten in a similar form to the Eq. (3.4) under the same
procedure as that of the Eq. (6.1) to the Eq. (6.2). However, in this case it seems more
convenient to proceed with the analysis by the direct use of the Eq. (8.9).

% _P2P P P P PP2
(kg/em) 4 + & 4 4 &

a L~ P=160kg
42} E E =3.5 x10°kg/cm?
V4 I S Yf?é?km:yew
401 3m | V=01666 o 0= 05
39}
KLY
37}
36}
35|
3}
33}
2t
3
30}
29 L
4t b elf_ﬂlent 5=15
T
§=05
t -
0 1 ) 030

=

-20 ¢ element

C ~0.10 . '
- | bt P '_."'.—h’-._..—l—._,...h._.__g-:_' 1.5
-:; =t g ._.._.__:h""”""-‘—-—o-.._,_.l §=09
N\'“’-—-\_\a“:o_s
-23

FiG. 9. Time stress diagram of elasto viscoplastic body.
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Assuming that the differentiation with respect to time ¢ is replaced by the difference

with respect to time increment At, then
(P = eff’—ej’)(ﬂ)
(8.10) e = gt

where e{f? and ¢{}’(0) represent the final and initial value of the viscoplastic strain in the
short time increment At, respectively. Substitution of the Eq. (8.10) into the Eq. (8.9)
and the rearrangement of the terms yields the following equation:

(8.11) Ty = 2u*ef))— Hy,
where
(4
26—
2G At i
u*=G[1- , Hy=— )
Fi +2G ¥ 73 +2G

«0

1.5m

7=0. OO‘I?cm/yenr P=160kg, o=10kg/£mz £=3.5 x10° kg m3 V=1.666
= =09 =1.

0.09year

0.13year 0.12year

0.22year 0.33year 0.20year

Fig. 10. Yielding regions corresponding to various exponent 4.
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The Egs. (8.9) and (8.11) lead to the constitutive equation for viscoplastic body in the
yielding region as follows:
(8.12) Sij = Cipuyu+Hy,
where
Cipa = A*8y; 0+ p* (0 851+ 84 9p),

A=A+ %(,u—p‘).

The following analysis can proceed in the same manner as the conventional finite element
method with the use of the Eq. (8.12).

As an illustrative numerical example of elasto viscoplastic body, a cantilever beam
with linearly varying cross-section as shown in Figs. 9 and 10 is analyzed under the small
strain assumption. Figure 9 is the time stress diagram for the various values of the ex-
ponent § in the Eq. (8.7). Developments of the plastic region are shown in Fig. 10. It
can be understood from the figure that the development of the plastic region is dependent
on the values of the exponent 6. Figure 11 illustrates the calculated results of the time

p, 0
P e
(cm) Pl K‘ e
Pl \ o
n
P ~ | 3.
J'L ! —Tp = 40t
P, /
X
e
B= 5m /
151 € =3.5x 10°kg/cm? /
5=0.9
7.—.1.7x10"cm/year./ 2
At=0.1year —* Y%
| P =40t
/f //
e
W O —. 0%
o L
A /,/
/ g
' / L
5 Wi EoT el P = 30t
A /-
'/ A
//.-—-"»--c.—-.-—-"-"."_"_—'_'.__. 32 P=20t
—
:_,:__ & P=20t
0 0.5 1.0 1.5 ¢
(year)

Fic. 11, Time displacement diagram of elasto viscoplastic body.
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displacement diagram obtained by the Newton-Raphson procedure using the constitutive
equation (8.12) and the finite element formulation of the Eq. (4.11). The calculation was
carried out under different values of the external applied load.

9. Elastic viscoplastic analysis by the incremental displacement method

Assume that plastic strain rate &%’

©.1)

9.2)

and stress 7;; are expanded into a power series as:

Hp = PO +ePPO) At + 5 dPPO A2+,

7 = #PO) +HPO A+ PO A+ .

(cm)/
P =400ton

/v = 350ton

1.0 // /) P = 320ton
/ ]
Ve //
P =300t
//' /,,/ on
f".’.
- e
///_.x
/ ' P = 250ton
et
0.5 /.'..—.-_._____..o—"
Ph f By E = 2100 ton/cm
¥ Voo
L 7 = 0.0017cm/year
&=09
o= 10t/em2
0 1.0 2.0 3.I0 t
(year)

FiG. 12. Time displacement diagram of elasto viscoplastic body.



436 M. KAWAHARA

The Eq. (8.9) with the help of the Eqs. (9.1) and (9.2) yields the following linear simulta-
neous equation system by comparing the terms of the same order of A¢ under the assump-
tion that the coefficient = in the Eq. (8.9) is constant during short time increment A4¢.

ne{)PN0) = 7{(0),
.3) e P(0) = 7{}(0),
ne]’P(0) = 7{(0).

............

From the first part of the Eq. (8.9), the relation:

9.9 Sy = Elm}’tl"‘zﬂéi(f 0),
is obtained. In the Eq. (9.4), the elastic modulus E;, is used and shown as:
.5 Eij = Ay 0+ p(0u 85+ 04y Op) -
P
(ton)
| l elastic
400-p2 5 P2 E =2100ton/cm? Ve
14..l3.b v=03 /
¥ = 0.02cm/year
: 6% 6‘: 0'9mr / ‘*-‘-1?3.2{“‘/:’“2
7z » at=0.1 / /" i
LZ:III_I o =86.6ton/cm?
300 / /"
/,-.f" . |
200 / dy = 37. 64ton/cm?
1
o ~ ™ &, =17. 32ton/cm?
0 0.2 0.4 0.6 0.8 &;

(cm)
Fig. 13. Load displacement diagram.
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Substituting the Egs. (9.1)-(9.3) into the Eq. (9.4) and rearranging the resulting equation
leads to the following equations:

S}f N0) = Efju)’i?’(o)—zﬂeﬁ YeX0),
9.6 Si0) = Ejpyii?(0)—2uel)?)0),
S{P0) = Ejyii(0)—2uef®(0),

Using the Eq. (9.6), the final governing equation of the finite element method is obtained
in the following form:

K’aapjﬂﬁ) = Q(0)+24,

9.7 Kogu$d = Q2(0)— 2P + 9P,

.............................

(ton) /

100 - ‘&/. =t
_é’. ﬁ-\\.ﬂ:::u“
50 B /

0 ’ L 1 I/ 1 | -
/ 0.1 0.2 0,3 0.4 05 &
(em)
| /
: /' (response for repeated
<&l /- forced displacement)
P
: Fr2 l P2 E = 2,100ton/cm2
v ¥ i v =03
ol & =09
~ & =0.02cm/year
-100 //‘ o 2_ = ¢, = 17.32ton/cm?
cm

Fia. 14. Load displacement diagram of cyclic loading.
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where K, is the non-linear incremental stiffness matrix as shown in the Eq. (7.15),
O and Q) are the equivalent load terms as given below:

9.8) Q0 =2 [ B0y (Out+P,un0))elPPdV, n=1,2,
.4

and the equivalent load term Q) being the same as in the Eq. (7.16).

Figure 12 shows the calculated time displacement diagram for the different values of
the external load P. According to the values of the external load, the tertiary creep as
well as the secondary creep is calculated in the figure. The load displacement diagram is
illustrated in Fig. 13. Calculation was carried out with the different values of yielding
stress oy. Unloading behaviour exceeding the maximum load is calculated in the figure
employing the incremental displacement method. For the calculation of cyclic loading
behaviour, it is convenient to use the incremental displacement method as shown in
Fig. 14. Time stress and the time reaction force diagram are shown in Fig. 15.

r, (ton/,:mz)
R (ton) Kirchhott Stress o
SOt -]
-100 | Y ey
1 Reaction Force R f‘
=50
0 . v L .
1.0 2.0 4.0 5.0 6.0 ¢
(year)
50 -
&(cm)| Time-Forced Displacement Diagram \b.\\-
-0.4} o~
-0.2
0 A 1 L L il
1.0 2.0 3.0 4.0 5.0 6.0 ¢
(year)

Fia. 15. Time — stress and reaction force diagram.
10. Non-linear creep analysis of concrete structure

In the creep analysis of concrete structure, the analysis becomes non-linear since the
effect of concrete age should be considered. The constitutive equation for creep behaviour
of concrete commonly employs the following equation originally introduced by ARuU-
TYUNYAN:

(10.1) ey = 7;%—)— i ru(s)%[alﬁ {1+¢(s,r)}]dn
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kk . d
(102) Vi = % B ) Su(s)—a';[‘f:ﬁ {1+9Gs, r)}]dr,

where e;; and 7; are the deviatoric stress and strain, and ¢(s, t) is the creep function
represented as:

(10.3) @(s, t) = k(s)pnf(1—s).

The function k(s) expresses the effect of concrete age, gy is the creep coefficient of
concrete and the function f(f—s) is assumed as:

(10.4) f(t=s) = 1—g20=9),

where « is the relaxation constant. The constitutive equation expressed by the Egs. (10.1)
to (10.4) can be transformed into the following incremental form:

(10.5) ‘E;;+%;,-~G(:§5;G(—n - G‘"Efjwt—(igg-;iéu,
where
GV = G(1),
¢ = %01 ,
()~ G
c® = 2L —
G(1)

C‘?’Nk(f)—c—(f)‘

Following the algorithm described in Sec. 3, the Eq. (10.5) is rewritten as:

'-[u G“) ‘-‘G(” éu 0 0 'égj
(10.6) = 1y 2 I 3 P

0 -G GG hu 0 Cc® hu
where Aj; is the hidden strain. Since the Eq. (10.6) has a similar relation to the Eq. (3.4),
the previously mentioned procedure can be adopted for the Eq. (10.6). Replacing the

differentiation with respect to time with the difference with respect to time increment
At, the Eq. (10.6) is transformed into:

. 1 . 1 ..
(10.7) 6y = 15 PO i His
c®
; G» . At .
(10.8) hy = . C® Yiit R ) h(0),
where
1 GIG® +GIC) At
‘i+v'D(f) = G“)'i'Gu)'!'CU]/At E
1 GCdar
T+ U = GO16D3COt hy(0).

5
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For the volumetric components, the same relation is obtained as follows:

. 1 . |
(10.9) Skx = '1—“_“5;9(‘)?&&- 1=, P
Finite element procedure is applicable in the conventional manner using the Eqs. (10.7)
and (10.9) as the constitutive equations.

Figure 16 shows the creep curve of axisymmetric concrete structure subject to the
internal and external sustained load and prestressed forces as given in the figure under
the small strain assumption. Displacements at the nodal points marked 1, 2 and 3 versus
concrete age are plotted according to the various constitutive relations. The quadratic
shape of finite element with four nodal points was employed in the calculation.

11. Conclusion

The present paper has dealt with a finite element method using the constitutive equation
expressed by the first-order differential equation related to Green strain, Kirchhoff stress
and hidden strain. The replacement of the first-order differential with respect to time ¢
by the difference with respect to the arbitrary short time increment Az led to an equation
similar to Hookean elastic body except for the inclusion of the time increment. The pro-
cedure was also applied to the study of elasto viscoplastic analysis and certain forms
of non-linear creep analysis where all of the non-linear coefficients in the constitutive
equation are unchanged during the short time increment. In order to solve discretized
non-linear simultaneous equation system, the perturbation method as well as the Newton-
Raphson method was employed.

There are two special facts to be noted in the present analysis. The first is the use of
the first-order simultaneous differential equation, i.e., the Eq. (3.4) as the constitutive
equation. The second is the application of the incremental displacement method to solve
large deformation creep and relaxation analysis. The former, namely the use of the first-
order simultaneous constitutive equation, is characterized by the following points. It is
clear that the Eq. (3.4) corresponds to the rheological model, and the equation can be
formulated systematically with the use of the arrays 4%, and B!}, by the algorithm in
the Eq. (3.6). The method is to proceed in steps and the governing equation is formulated
as having a similar relation to Hookean elastic body, with corrections to both stiffness
coefficients and load terms. The constitutive equation of elasto-viscoplastic body and
certain sorts of non-linear creep behaviour can be transformed into an equation having
a similar relation to this constitutive equation. The latter, namely the calculation by the
incremental displacement method, is marked by the convenience of applying the procedure
to highly non-linear problems such as large deformation loading, unloading and cyclic
loading behaviours, etc. as illustrated by the numerical examples. The procedure is also
applicable to the analysis of relaxation behaviour. The method presented can be adopted
for a wide range of rheological analysis of structures and continua.
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