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Structure of equations and estimation of solutions in non-linear shell
theory

Z.F. BACZYNSKI (WARSZAWA)

In THIS paper a new approach to non-linear shell theory is discussed based on a three-dimensional
constrained continuum theory which is being developed in WozZniAk’s papers [1, 2, 3]. The
constraints are introduced in such a way that the whole boundary-initial value problem can be
formulated in terms of functions depending on a coordinate Z belonging to a flat surface and
on the time r. It is shown that we are able to give a positive answer whether or not the present
theory is convenient to attack some particular problems.

Autor omawia w pracy nowe podejécie do nieliniowej teorii powlok, oparte na tréjwymiarowej
teorii kontinuum z wiezami, rozwijanej przez WoZNIAKA w pracach [1, 2, 3]. Wiezy sg tak
wprowadzone, ze catkowity problem poczatkowo-brzegowy moze by¢ sformulowany za po-
moca funkcji zaleznych od wspblrzednej Z, odnoszacej si¢ do pewnej plaskiej powierzchni,
zwanej powierzchnia podstawowa, i od czasu 1. W pracy wykazano, ze mozna odpowiedzie¢
pozytywnie na pytanie, czy obecna teoria nadaje si¢ do rozwigzania pewnych szczegblnych pro-
bleméw.

B nacroawei paGore obcy)aerca HOBBIH MOMXOM K HeMHHEHHOH TeopuH 060NoYeK, KOTOPBIH
OIMPAeTCH HA TPEXMEPHOM TEOPHH KOHTHHYYM CO CBA3fAIMM pasBuBaeMoii Bosusikom B paBorax
[1, 2, 3]. CBasn BBefeHB! TAK, UTO MOJHAA HAYalbHO-KpaeBasd 3ajjaua MOXKeT ObIT copmy-
JIMPOBaHa NPH MOMOLLM YHKIMHA 3aBHCALLHX 0T KOOPIHHATEHI Z, NpHHAIeKaIed K HeKoTopo#
IUIOCKOH MOBEPXHOCTH (HasbIBaeMOll OCHOBHOH IMOBEPXHOCTEIO), M OT Bpemenw f. B paGorte
MOKA3aHO, YTO MOXKHO IOJIOKHTEJIBHO OTBETHTH HA BONPOC FOAMTCA JM HACTOMINAA TEOPHA
A pellieHHsA HEKOTOPHIX YaCTHHIX 3afad.

1. General assumptions

WE ASSUME that the region of the shell or shell-like body under consideration in reference
configuration # is given by the relations

(1.1 #(B) = FxII, 0#%(B) = (0FxIT)u (AlIxF), X3F, Zell

and that each material element Fx {Z} is the rectilinear element. Parametrizing the shell
region by material coordinates {X*} we have the relations

(1.2) X® = 83ZX4+05X3, Z=(Z2,Z»ell, a€e{l,2,3} Ke{l,2},

which means that the material coordinates {X*}and the orthogonal Cartesian coordinates
{x*} coincide in a physical space when the shell is referred to # (Fig. 1). Treating the shell
as a three-dimensional constrained continuum we assume that the deformation y is
restricted by the integrable constraints of the form

(1.3) (e pef =0, e%ef =0, e-e=1,
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where the vector e denotes a direction of material line element for which the hypothesis
is established. The constraint equations (1.3) correspond to the hypothesis of uniform
strain of each material element.

A general solution of the constraint equation (1.3) has the form

(1.4 15(Z, X3, 1) = yMZ,0)+d*Z,0)X?, ke{l,2,3},

where the vectorial functions ¢ and d are unknown functions, and y* represents the motion
of the fundamental shell surface while @* are directors of the fundamental shell surface

(Fig. 1).

Fig. 1. The shell element related to the spatial and material coordinate system.

We assume that the constitutive function for elastic material has the form

d
(1.9) T#=2,"—, e=eXcy, «pefl,2,3},

Cap
where the elastic potential e depends on the material coordinates and the Green deforma-
tion tensor in the convected coordinate system {X*}. The Green deformation tensor is

expressed by

(16) Capg = x::xfﬁékh k: le {l’ 2, 3}
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If the reference configuration # at the time 7, is given, and no forces are acting in the
region of the shell, then we can assume that the Green-Saint Venant deformation tensor
has the form

1
(1.7) €up = E(cmﬁ_gaﬂ)’

where g, is the metric tensor of natural state. Assuming the elastic potential of the ma-
terial as a quadratic form, we have from (1.5) the constitutive equation

(1.8) T = %A‘”‘(c,,,-—-gﬂ), « B, y, 6€{l,2,3},

where A%* is the tensor of elastic moduli of the shell. In the Eq. (1.8) the tensor of
elastic moduli as well as the metric tensor g,; are known at each point of the shell re-
gion, if the geometry and material of the shell are given.

2. Basic equations of non-linear shell theory (in the case of small strains)

If we take into account that the shell deformation is described by the general solution
(1.4), and we compute the Green deformation tensor, then from the constitutive equation
(1.8) we get the expressions for the components of the Cauchy extra-stress tensor in the
form:

(2.1) T = A*™MVepyy +eunX> +emn(X3)?]+ 4% e,
+24"M3(eys +eyaX?), o, pefl,2,3}, M, Ne{l, 2},

where the deformation measures e,; are defined by the geometrical relations:

1 |
emn = E(V’ﬁﬂ"fu Omn—@amn), €m3 = ) ('P,ud Omn—an3),
1 1
(2.2 €33 = 5(d'd'6m,—a3,), euy = E(WM "N+ Y 'NA %) Omn +Drens

’ l e l 'm n
eM3 = E(J.Tcd"dm +bys), eun = E(d.Md.Namn_cMN)r

and a,;, b,s, c,s characterize the shell metric g in the reference configuration % according
to the formula

(23) Eys = Qps— 2b,,,X’ +Cya(X3)2.

Summing up, we see that using the quoted axioms, we get basic equations of our theory

in a convected coordinate system [4].
The equations of motion have the following form:

24) H¥ g+ f*=i% HXg+h*+f* =7,
where HX*|y and H**|g are the covariant derivatives of HX* and H**with the metric Gup =
= a7ay Omn.

All quantities in the Eq. (2.4) are related to the present configuration » and they have
the following sense:



378 Z. F. BACZYNSKI

Quantities i* i* denote the inertia forces and they are determined by the kinetic
energy K

1 (oK w_ 1 (0K
2.5 . n’ s — “", = det 36 »
@ eyl Tyl om o

au(Wk"'les).ﬂ = 45,
where the kinetic energy has the form

[

Y+ Y+ ¥+
(2.6) K= %( f B dX® 42 f Sprd X3dX3 + f 5&*&,,(,1'3)2&3).
Y- Y- Y-

Quantities f* f* represent the generalized densities of external loads, and they are
expressed by

¥+

-
@n rf= }! A +(FY (3, o= [ FXAC+[(FY - (P,
4 &

Quantities H** HX* h* represent generalized shell forces given by the constitutive
equations
HE = (JEr— JKPOVDE) o - (JEOPY — JEPOBE)er, - (JEMN — JKPMNpE) ol
(2.8) HX= (JEBY — JEPEIBE) e, + (JE*P? — TEPPYBE) €f, + (JX“MN — TEPMNDZ) epin,
= (J5P7 — JT903) ey, + (JEP7 — JEPBE) €+ (SMN — JEMNDS) efin
(summing up one should assume e3; = 0), where the modified tensors of elastic moduli

are defined by the integrals
Y+
1 —
Ol f Vg AX(X, 1) (X°ydX®, n=0,1,23,4.

y-

(2.9)
Y+
1 —
JiBr = "-/?‘I Vg A% (X, 1) (X3)"dX?,

and the curvature of the middle surface of the shell is characterized by the relation
(2.10) b3 = —d, pa™.
To formulate a boundary-initial value problem we can prescribe the boundary condi-

tions in the following manner: If a boundary of the shell is composed of the part 31T on
which a load is given, and of a part dI7 with a motion, then we have:

(i) for Z € 311

HSng =%, p°

Y+
1
Ve | e
(2.11)

—_ L] ]
s T

]

Y‘
1
_—l/_ f (X, 1)a*X3dx?;
a)
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(ii) for Z € dIT
(2.12) v =X, 1), d*=d"X,1) ie 7= @+dX>

Considering a dynamical problem, we have to introduce some information about
functions ¢, and d, as well as their time derivatives at a given time instant. If the functions
Y, and d are obtained from a solution of the appropriate boundary-initial value problem,
then by means of the formula

(2.13) x = Y+dx?

the motion at each point of the shell region and for time is described.

3. The formal procedure for finding solutions to boundary-initial value problems

A formal procedure for finding a solution to the boundary-initial value problem takes
into account the following steps.

(i) Unknown functions ¢, d are to be obtained by solving a suitable boundary-initial
value problem described by the following equations: equations of motion for generalized
shell forces (2.4); constitutive equations for generalized shell forces (2.8); geometrical
equations for strain measures (2.2); and boundary-initial conditions in terms of general-
ized forces and motions (2.11), (2.12) as well as in terms of initial values of generalized
coordinates and their time derivatives.

(ii) Once the vector functions Y, d have been found, the motion of the shell is given
by (2.13).

(iii) Using the constitutive equations for the components of the Cauchy convected
extra-stress tensor (2.1), we determine the stress field at each point of the shell region and
for arbitrary time.

(iv) Finally, we determine the body reaction field r, and the surface reaction field s,
using the formulae:

(.1) re = T/E'Tigkg“— (f’:b,‘g“w””,) in FxIT,
g g B

3.2 s* = T’y —p* on Fxall,

(3.3) s* = TPny—p*  on oFxII,

where all quantities are related to the present configuration ». Moreover T ""II, denotes
the classical covariant derivatives of T%* at an arbitrary point of the shell region in a three-
dimensional Euclidean space with the metric gq4, such that

(34 [T*lglx=0 = T,

and T%%, is the covariant derivative of T%* with the metric aq;.
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4. Estimation of the solutions (criteria of “error’’)

To obtain an estimation of “error” of approximation of the dynamical process for
the constrained shell, and to compare this with the analogical results for unconstrained
shell, we have to introduce some norms in the load space {b, p}. Proximity of the dy-
namical process will be given by proximity of the introduced norms in the load space
with the “error” defined by

(4. l) “error” = ﬂ{ﬂ}ﬂ

b, R}l

If the “error” is given a priori, the following inequality (an estimate criterion) can
be proposed [5]):

I{r, s}l
[I{b, p}I

where b and p are given body and surface loads, and r, and s stand for the body and
surface reaction forces of the constraints.

The set of elements {b, p} one can identify with a linear, normalized, and complete
vectorial space (Banach space). The norms in such a load space can be defined in many
ways according to the character of loads and reaction forces of the constraints. Let us
mention some of the most simple definitions of the norms. The first one can be introduced
using the vectorial densities of the loads and the found reactions of constraints, i.e.

1
4.3) l1{b, p}il = ( [ aibiPav+ [ Bipl2ds)a,
*(B) a%(B)
where «, B are suitable weight functions of the norms. The second one can be defined
by means of a maximum of the absolute value of the loads and found constraint reactionsi.e.

@4) l1{b, p}I = & Max bl +3 - Max|pl,
Xex(B) Xedx(B)

“4.2)

< “error”,

where @, 8 are suitable weight functions of the norms.

5. Illustration of the proposed theory (example)

Let us consider an infinite cylinder of arbitrary thickness (Rt—R~), where R* is the
external and R~ is the internal radius of the cylinder. Reference configuration %(B) is
given in x* or X* (¢ = 1, 2, 3) coordinate systems (Fig. 2), and the cylindrical region
FxIT is described by the inequalities

.1 —og<X'< +0, 0<X?*<2n, O0<X*<R*-R".
The cylinder is made of a homogeneous, orthotropic, elastic material, subject to a shear

deformation in the directions of X* and X2 such that relative displacements of the cylin-
drical shell are:

(5.2) u! = (R*—=R7)y¥, u?*=(R*—-R)y*?, u*=0,

where p3!, 932 are given angles of the shear deformations.
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F1G. 2. The infinite cylinder subjected to the shear deformation.

The problem is to be formulated with the non-linear shell theory of small strains
and a statical process {y, T} characterized by the deformation function and the Cauchy
extra-stress tensor is to be found. Some practical criteria of the estimation of the solutions

obtained will also be discussed.
Assuming that the cylindrical surface R = R~, (X3 = 0), coincides with the fundamental

surface
(5.3) x!=X', x?=RsinX?, x*®= R cosX?

we obtain, immediately, a solution of the boundary value problem described by the
Egs. (2.2), (2.4), (2.8), and the conditions (2.11), (2.12), in the form:

p' =X!, 9?=RsinX? ¢ = R cosX?

54) dt =3, d? =sinX?+93%cosX?, d*® = cosX?—y32X2

Using (2.13) we find the deformation functions

= X'+9¥X3,  x* = R-sinX?+(sinX? +y%?cosX?) X3,

5. i
G:) %> = Rcos X?+(cos X2 —y33sin X?) X°.
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Now, the definitions (2.2), (2.3), and (5.4) lead to the deformation measures:

1
ey =€ =e;=0, e3= "f[(?“)z‘*'(}’u)z],

—

iSI

(5.6) €1 =7V, €= ‘Q-R_?”;

1
' ’ ’ ’ it oo "o 32\2
€11 = €32 = €12 = €13 = €33 =0, ef1=¢e2=0, eh= T()’ )2

The constitutive equations (2.1), and (5.6), together with the definition of elastic
moduli for cylindrical orthotropy imply the following form of the Cauchy extra-stress
tensor:

_Tu" "Auu A1122 41133 0 0 0 8:1
T22 A2211 42222 42233 0 0 0 e,
.7 T33 _ A3311 43322 43333 0 0 0 e,
' i 0 0 0 4»23 0 0 efs |’
s 0 0 0 0 4113 ¢ ets
12| | 0 0 0 0 0 A2 et

where efy, ..., e}, are new deformation measures

*

exn = eun+epn X3 +eyn(X3)?,
eys = 2epstepsX®, el = ess.

(5.8)

The components of the Cauchy extra-stress tensor can also be written in the form:

T — _%_Aun(?azxs)z + %Ausa[(}.al)z +(®?)7,

T22 = %Azzzz(yazxa)z_,_%Azzaa[(.},a:)z_'_(},az)z],
(5.9

T33 — %Aaazz(yasz)z + _;_Aasss [(*1)2 + (32,

T12 - O, T13 = Al313y31’ T23 = A2323y32R—_

The introduced constraints of the form (1.3) produce the body and surface reaction
forces, which can be calculated from (3.1) and (3.3). In the static case, we obtain

(5.10) r* = —T,,
(5.11) s*=TPn,, a,fe(l,2,3}.
The components of the body reaction forces assume the form:
rl = _R—I(Al'.ilﬁyal +A2323}'32R_), f2 — —3R_1A3323‘}’32R_,

(512) ra T _Asazz(yaz)z(R_R-)_ __;_R-l {Aaazz(yaz)z(R_R—)z

+A3333[(.y31)2+(y32)2]}+_;_R {AZZZI(,,SZ)Z(R_R—)2 +A2233 [(,y31)2+(?32)2]}’
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while the components of surface reaction forces are:
(1)t = (sY)" = 41313913 (s2)F = (s2)" = AP32332R-,

(513) (5.3)1- s _;__A3322(y32)2 (R+_R—)2 +%A3333[(},31)2+(},32)2],

(33)—- = 7;’_143333[(?31)2'*'(?32)2]-

In the above formulae 3!, 932, are given angles of the shear deformations. All quantities
with index plus (...)* are related to the external cylindrical surface, and with minus (...)~
to the internal cylindrical surface.

To estimate the accuracy of the solution, we can apply the criterion (4.1) in the follow-
ing form:

" ” ” {I.', 0}“
5.14 “error” = ————,
- 10, s}l
where the norms of the load space ||{r, s}|| are given by
(5.15) [l{r, 0}|| = (R*—R")Max [r|, [[{0, s}|| = Max |s|.
Xex(B) Xeon(B)

In the case of isotropy and of the shear deformation of the cylinder in the direction
X! only, ie. if y*' # 0 and 932 = 0, we have a practical criterion

R*—R" pV1+ G
Y e pararony

(5.16) “error” =

where A, 4 are Lame constants.

For a very small angle of shear deformation, i.e. when p3!' ~ 0, the criterion (5.16)
becomes:

% 3 iR+—R—

(5.17) error” = ——p——,
where (R*—R™) is the shell thickness, and R~ is the main curvature radius of the funda-
mental shell surface.

In the case of isotropy and of the shear deformation of the cylinder in the direction
X? only, ie. if 3 =0 and 932 # 0 we have:

R*—R~  u)/9+R)2+(»?)>
= .
R s

Neglecting the value (R™)~2 in (5.18) as very small, and assuming that the angle of
shear deformation 932 is very small, we arrive at:
RT—R"
—x

As one can see from the above analysis, the accuracy of the solution depends on:
the ratio of the shell thickness to the main curvature radius of the fundamental shell
surface; on the elastic moduli; and on the load system, and distribution of the constraint
reactions.

(5.18) “error” =

(5.19) “error” = 3
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6. Conclusions and final remarks

The new approach regarding the foundation and formulation of the general non-
linear theory of shells and shell-like bodies allows us to describe boundary-initial value
problems of shell theory treated as problems of a three-dimensional constrained continuum,
and to give full and exact information about the dynamical process of the shell. By in-
troducing some constraints characterizing kinematics of shell, the boundary-initial value
problem has been formulated in terms of functions depending on arguments {Z, ¢},
i.e. depending on the point of a flat region I7 in reference configuration and on time.
The following conclusions are to be drawn from our consideration:

The treatment of a shell as a three-dimensional constrained continuum means, that
each boundary-initial value problem for the shell is consistent with the appropriate
problem of the three-dimensional theory. The dynamical process of the boundary-initial
value problem is uniquely defined by geometry, material, and loads of the shell treated
as a three-dimensional body.

When a solution to the boundary-initial value problem is found, we are able to esti-
mate its “error” in a direct manner, and to give the answer, whether or not the present
theory is adequate to attack the formulated problem.

It is easy to notice that if the reaction forces of constraints {r, s} are fading out in
the considered region of the shell, then the solution obtained for the dynamical process
{x, T} is exact in the sense of a solution to a boundary-initial value problem of three-
dimensional classical continuum. Also, the solution obtained seems to be exact in the
sense of a three-dimensional classical continuum, if the system {b+r,p+s} is to be
treated as a system of loads.

It also follows that, if the reaction forces of constraints {r,s} are sufficiently small
in comparison to the loads acting on the shell, then the solution obtained from a three-
dimensional constrained continuum is a good approximation to that of a three-dimensional
unconstrained continuum.
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