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BRIEF NOTES

Additional comments on Suliciu, Malvern and Cristescu’s paper.
“Remarks concerning the “plateau” in dynamic plasticity(*)”

I. SULICIU (BUCURESTI)

It 18 proved that under certain loading conditions, a constitutive equation of type (1) with y
of the form (2), where « € (0,1), may admit an absolute plateau. This result corrects the false
statement contained in the previous paper, for « = 1/2.

THE assertion that the semilinear rate type constitutive equation
(1) 6 = Eé+yl(e, 0)
where

[—k@—f@)F, o> f(),
(2) TP(E, U) T 10 o g f(E),

for ¢ =2 O and ¢ = 0, with @ = 1/2, can not admit an absolute plateau, is false. We arrived
to this conclusion by applying formula (3.5)(*). It was proved by SuLiciu [15, 19] that
formula (2.11) can be applied to a semi-linear constitutive equation (1), in the case when y
is continuous on some domain & and possesses bounded partial derivatives on 2. The
function v given by (2) has no bounded partial derivatives on the domain 2 = {(g, 0);
o > f(e), e > 0,6 > 0}, the domain of interest for the instantaneous impacts discussed
here. Thus, the formula (3.5) does not hold.

We shall prove now, for a special class of histories of strain (i.e. for such histories of
strain that appear close to the impacted end, when a bar is impacted with constant velocity),
that the formula (2.11) can be applied and
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op op 0Oe
3) 0< ‘f I:exp— rf—a-; (e(s1), r(sl))dnl]gﬁds < const
o o

(*) Archives of Mechanics, 24, 5-6, 999-1011, 1972.
(" Relations with two groups of numbers refer to the paper under discussion.
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for any > t,, while

t
) exp[f—gf:— (&(5), ©(5)) ds] -0 when -1, <.
fo

This will lead us to the conclusion that an absolute plateau for ¢, v and ¢ is possible.

Since, close to the impacted end, a jump in strain ¢ > ey is found and, as the corres-
ponding stress lies on the instantaneous curve (in this case on Hooke’s line), one has
0; = Eg; > f(&;). Therefore, in the formula (2.9), w is computed for (¢, 6;) € 2 at t = t,,
with 7(f) =0 (and obviously 0% /07 = 1); thus (2.11) is valid as long as (&(2),
o(t) = Ee(t)+1(1)) € 2.

Now, one will prove that if ¢ reaches a plateau (in time and space) above a curve I"
from the characteristic plane, then there exists a curve I'* above I', where v and o also
reach a plateau. The proof of all these facts is based on the following

PROPOSITION. The initial value problem

0] 7= —k(z+Q), t(to) =0

with e € (0, 1) and Q:[t,, ©0) = R, R € C*, Q(t,) = 2, > 0, 2(t) > 0for all t € [t,, 0),
Q(t) > 0 for all t € [to, t,) and 2(t) = 0 for all t e [t,, ), admits a unique solution of
class C! [to, ) (see for instance HARTMAN Ch. III, §6 [18]). Moreover, the solution of
problem (5) has the following properties:
a) if
1-2z

2,
) 0<tyt g +Hoo

where 2, = $t,), then there exists t, > t, such that

©) (1) +Q(t) >0 for all teto,1,);
b) in the interval [t,, ), the solution of the Eq. (5) has the following expression:
1 -
(8) 1—{’) - —Q*+[(T*+Q‘)1"‘—k(1—d) (t_tt)]ﬁ, _‘E [t:k: tt]s
8, % ks

which is obtained by direct integration of the Eq. (5) over the interval [t,, ), with T(t,) = 7,.
Proof. Let us prove assertions (7) and (8). Denote by 2, = Q(z,) = () for all
t € [ty, o0); then we have

(&) —k(r+2)* > —k(z+2,)* for all te€ [ty, )

and therefore (see for instance HARTMAN Ch. III, §4 [18])

(10) (t) = 1o(t) for all re [ty, 0),

where #(¢) is the solution of problem (5) and 7,(?) is the solution of the following problem:
(11) To = —k(To+82,)*, 71o(ty) =0.

7o(t) has the following form:
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1 1-a
~Q,+ A -k(1-a) (~1)] T for re [‘“’ kﬁ a)]’
(12) 7o) =
_o, for f>m+‘0

From (10) and (12) we find that

(13) t(t)> -2, for telt,,t,),
where
o (r#'i'g*)ld‘

and thus (7) and (8) follow.
We now choose 2 = Ee—f(¢); since & = Ee+ 7, with 7(¢,) = 0, we have

ule, v) = (e, v+Ee)
and from (2.12) and (2) we obtain

(15) O W g ETG) g _ ke
b f (Ee=f@+7)~=> ot (Ee—flO+7)""

Now, since we assumed that £ has reached a plateau (in time and space) above a curve
T, ie. for t > t, = g(X,), (X, 1) EP,—:—;,(X,,, t) = 0,% (X, t) =0, then from (7) it

follows that (¢(z,), o(t,)) € 2 (i.e. this point is not on the relaxation curve), hence du/ds
and du/dr are finite and therefore (3) follows, since its left-hand side remains constant
for t > t,.

From (8) and (15) we obtain

du ka

2 e ey p y oy R CALD

SO we can write

exp(f a” ds‘) [exp(f F ] CEToR) [(ra+ Q) —k(1—a)(t—1, )]1_.:

for all € [ty, 1,). From this equality and (14) the assertion (4) follows and thus a plateau
in velocity and stress will appear for 1 > 1.

In his numerical analysis on rate effect, Kukupianov [9] did use examples of type
(2) for @ =1/2, a =1, « =3 and « = 5. A constitutive equation of type (1), with y
given by (2), cannot possess an absolute plateau for & > 1, as can easily be seen by apply-
ing formula (3.5); indeed, in these cases, formula (3.5) holds as the conditions of the theo-
rem cited above ([15, 19]) are satisfied.
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