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A note on some crack problems in a variable modulus strip

C. ATKINSON (LONDON)

Two distinct problems are considered which have certain mathematical features in common.
The first problem is that of a semi-infinite crack in a strip which has elastic moduli which vary
in a direction perpendicular to the crack direction. The strip is subjected to a certain time de-
pendent loading and a small time solution is obtained for a general variation in moduli. The
second problem considered is a crack in a strip of a micropolar elastic solid with moduli which
vary with position. In this case time-independent loading is considered and results for the varia-
tion of the energy release rate at the crack tip are obtained in terms of quite general variations
in the moduli.

W pracy rozwazane s3 dwa odr¢bne zagadnienia, lecz majace pewne wspodlne cechy matematyczne.
Problem pierwszy dotyczy pdinieskonczonej szczeliny w warstwie, ktérej moduly sprezyste zmie-
niaja sie w kietunku prostopadlym do kierunku szczeliny. Warstwa poddana jest pewnemu
obcigzeniu zaleznemu od czasu. Rozwiazanie dla krotkiego czasu zostalo otrzymane dla ogélnej
zmiany moduléw. Drugim z rozwazanych zagadnien jest szczelina umieszczona w sprezystym
mikropolarnym ciele stalym z modulami zmieniajacymi si¢ wraz z polozeniem. W tym przypadku
przyjeto obciazenie niezalezne od czasu, a wyniki dla predkosci zmiany energii uwolnionej
na korcu szczeliny otrzymano dla calkiem ogélnych zmian modulow.

B pafoTte paccMOTpeHBI OBe OTHE/bHBIE 3aa4Yd, HO HMEIOIMe HEKOTOphle oDlLjHe MaTeMaTH-
yeckue cBoiicTBa. Ileppaa 3ajaua KacaercA Iony0eCKOHEYHOMH ILEJH B ClIoe, MOJYIH YIpyro-
CTH KOTOPOTO M3MEHAIOTCA B HANPABJIEHHH IEPNEeHANKYIAPHOM K HanpaBaeHuto menn. Croi
MOJABEPrHYT HEKOTOPOH HAarpy3ke saBHcAlleH oT Bpeménu. PellleHue A7 KOPOTKOIO OTpesKa
BpeMEeHH IIOJIyYeHO A oblIero MameHeHMs Mopayned. Bropoi m3 paccmaTpHBaeMbIX 3agad
ABNACTCA LIENEL NOMEIUIEHa B YIPYrOM MHKPOIONAPHOM TBEDAOM TeJle C MOAYJIAMH H3MEHA-
IOLUMMHCA COBMECTHO C TOJIOXKeHHeM., B 3ToM cnyuae MpMHATHI HArPY3KH HE3aBHUCALLME OT
BpeMEHH, a pe3yNBTaThl JIA CKOPOCTH H3MECHCHHA JHEPTrHH OCBOCOMIEHHOH Ha KOHLE INeTH
NOJYyYeHb! /1A cOBCeM ODIIMX MIMEHEHMIT MOIYNeH.

1. Introduction

IN THIS paper two problems are considered, both problems concerning cracks in strips.
In the first problem there is a semi-infinite crack in an infinite strip of width 2A (Fig. 1).
Conditions of plane-strain are assumed to exist so that the displacements do not vary
in the X, direction. The strip consists of isotropic elastic material and the elastic moduli
are functions of X, the crack lying on the X, = 0 plane. The problem when such a crack
moves uniformly, the sides of the strip being loaded by a time-independent fixed displace-
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ment, has been considered in [1] where general formulae for the energy flow into the
crack tip have been obtained. Here we consider the effect on a stationary crack of a time-
dependent loading on the sides of the strip. Such a problem for a constant moduli elastic
strip has been considered by NILsSSON [2] by the use of a certain path independent integral
It has been shown in [1] that a similar path independent integral can be derived for the
variable moduli case and this is used in Sec. 2 to obtain the crack tip stress field for small
times.

The second problem is considered for a strip of micropolar elastic material with a crack
situated as in Fig. 1. This problem has been considered in [3] for time-independent loading
of a constant moduli strip. In Sec. 3 we consider the situation when the moduli are functions
of X,.

2. A transient crack problem in a variable moduli elastic strip

Our approach to this problem is similar to that given in [2], so we consider only briefly
the initial equations. We consider the integral

= — 1 . _ Ou
(2.1) I= Cf([V'l‘ Egpzu,u,]du—auﬁ)d&,
where C is to be a contour embracing the crack tip. Tge bars denote Laplace functions
transformed over time, p being the transform variable. V is defined as

- 1_ _
(2:2) V(e,) = 'fo'u €y

with the property that ¢,; = . oy and g; are the usual tensor components of stress

v
ey
and strain, u; are the displacement components and X; Cartesian coordinates. The density o
and the elastic moduli are considered to be functions of X, and the crack lies on the axis
X, =0, X, < 0. The integral I can be shown to be path independent (see [1]) when
density and moduli vary only in the X, direction.

The Laplace transformed stress-strain relations can be written

= — _ = 1 - 1_
2.3) O =pGréy, Opy— 3 Ok 0y = pG, (Su— 3 Er 5:1)
and
i i =i
&y =5 (i, 5+u;,).

We have written equations (2.3) as they would apply to a linear isotropic viscoelastic
material with moduli which are functions of X, the analysis of this section would apply
to such media, although detailed attention will only be given to the elastic case. The Laplace
transformed viscoelastic moduli are related to the usual elastic moduli by

 G~B,

© 2G,4G, "

G
2.4 =1
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where p is the shear modulus and » Poisson’s ratio. Near the crack tip with polar coordi-
nates (r, 6) centered on the crack tip the variations of moduli and density will be functions
of X, = rsin#, so for small r these functions can be expanded by Taylor’s theorem and the
local results given in [2] should be valid for this case also with the moduli replaced by their
values at X, = 0; hence

Gy = El (p) 2nr)=2£,,(6) as r-0,

(2.5) ~ K, 2r \'?
u = __(_p)_ (‘;;) 80,v) as r-o0,

0
where the subscript zero denotes that # and » are evaluated at X, = 0. By a similar argu-
ment the integral I evaluated around a small contour enclosing the crack tip gives

I= K@) _(Gm-_ljZG'w_) plane strain,
(2.6) ) PG10(2G20+ Go)
I= -jf’—‘_&)— anti-plane strain,
PGio

where the subscripts zero mean the same as above; in Eq. (2.5) f;; and g, are known functions
and K,(p) is to be determined.

Having obtained I when taken around a small contour enclosing the crack tip in terms
of an unknown function K, , the approach is to deform the contour into a large contour
in such a way that the path independence can be used to relate the near field integral
(2.6) to a far field integral, which can be evaluated more easily. The chosen contour is shown
in Fig. 1 as a dotted line.

For the strip problem we take the same boundary conditions as in [2], i.e.

uy =0, u, = tupqt) on X, = +h,

@7) 022 =0,=0 on X,=0, X;<0,

where u, is a constant and g(¢) a dimensionless function of time which is zero for t < 0.
The boundary conditions of (2.7), are of course just those of a stress-free crack. Using
these boundary conditions and taking the integral 7 around the contour shown in Fig. 1
we see that the only non-zero contributions are from the small contour around the tip [Eq.
(2.6)] and from the vertical strips at X; = + oo which remain to be calculated. Along
these vertical strips we assume the stress field to be so far removed from the crack tip
that all derivatives with respect to X, are zero. The transformed equations of motion
then simplify to

(2.8) Gi2,2 = QP*Uy, Opz2 = 0P’U
with the stress-strain relations becoming

" G " G,+2G,) _
(2.9 012 =P21 Uy,2, 022 = (—2—3"—'12!’“2.2

and when taken together these two sets of equations become

d ( .
(2.10) ax; |G ZYZ) = 20pu;,
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d ((G,+2G,) dﬁz)_ 2
dxz( 3 dX, |~ %Pl

The boundary conditions on the vertical strips on which these equations are valid are:

(2.11)

(2.12) At X, =+, u; =0, u=Zuqg(p) on X,=th,
At XI. = ~—00 El =0, ﬁz = :tuoa(P) on Xz —_ ih,
(2°13) a;_z = O, I_Jz_z =0 on Xz = iO.

The two sets of boundary conditions (2.13) are for the strip at X; = — oo separated by the
crack, the derivative boundary conditions coming from the stress free crack conditions and
the Egs. (2.9). The boundary conditions and the Eq. (2.10) for u, are satisfied identically
for u; = 0. The solution of (2.11), however, subject to the boundary conditions (2.12)
or (2.13), is not so straightforward and so we consider solutions for small times, i.e.
for large p.

2.1, Small time solutions

If in (2.11) we write

(2.14) fury = Catoe
and make the substitution
(2.15) ¢ = [f(X)]"*u,,
then (2.11) becomes
¢ [ op? 1 d|([f H
(2.16) ‘Eng —'¢[ f + 21112 dXz\f”z ’

where the dash denotes differentiation with respect to X, and both ¢ and f are functions
of X,. For the elastic problems f is independent of p and is from (2.4),

20 =»)p
(1-2v) °

The solution of (2.16) for large p can be found by writing

(2.17) f(X2) =

(2.18) ¢ =exp[p D pVen(Xs)],
N=0

then substituting in (2.16) and equating like powers of p. This procedure is standard
and is outlined for example in NAYFEH [4]. Using a shorthand notation for the right-hand
side of (2.16) as:

(2.19) P*Pl90(X2) +p~%q,(X3)],
where

. !
A A N )



A NOTE ON SOME CRACK PROBLEMS IN A VARIABLE MODULUS STRIP 643

one gets from the above procedure differential equations for the functions gy(X,) which
have the following solutions (apart from arbitrary constants)

X
2 1 ,
8o = ij qé,z dX,, g = —‘2‘103(30),
(2.20) "
_ lg.—(g1)*—gi]
gZ = f 2g0 dXz etC‘

It remains to use these expressions to find solutions of (2.16) subject to the boundary
conditions (2.12) and (2.13) and then to evaluate the integral I along the verfical strips
at X, = +oo. After some algebra we obtain for the case when p and f are symmetric
functions of X, the expression

= g 2p e f

2.21) I = usq*[e(h)f(W) 3 p(h)f(h)]H? {—7 [(__ _) ]
_ _[( ¢ r ) ] ch2pgo(h)
o "7 )85 Ju shi2pgo(hy
[ ( ( ’ ] ch2pgo(h) }
Sgo(xz) sh?2pgo(h) ’
Higher order terms in the curly brackets will include terms like-}l’— exp( —2pgo(h))
for large p. Note that ( §— means that the expression inside the bracket is to be

evaluated at X, = h with a similar interpretation when the subscript A is replaced by zero.

Finally, substituting the above result into (2.6) gives a corresponding result for X, (p)
and once ¢(t) is specified K,(¢) can be obtained using the Laplace inversion theorem.
If following [2] we take as an example a linearly increasing time function

(2.22) q(t) = l—, hence gq(p) = -—-1—2,
fo Lop
where 1, is a constant, the following result is obtained for K, (¢);

1/2 1/4
(2.23) x1(1)=(_iﬂ_@_) NOM_“_.H(;_&)(;,))W

1-(0) % 712

o f’ 1 . 1 f} ~ 32
3 I:( e * f) 4go(h)+ -! 163'( f) dx!](‘ go(h)

L (1=3®)” (o (_ e }
T 60 I

In expression (2.23) it is understood that only real values of the square roots are permlsmble
h 1/2

so that K, (f) is zero for t < go(h) and from (2.20) go(h) = [ (—f,—) dX,. When g, », u are

0

constants the non-zero first term in (2.33) agrees with corresponding result in [2].
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3. A crack in a variable moduli micropolar elastic strip

The micropolar theory of elasticity has been reviewed by ERINGEN [5] where the field
equations are given (see [5] for earlier references to this theory). Perhaps this theory is the
least complicated of the generalised theories of elasticity which include the effect of couple
stresses; a comparison is made in [5] with the theory of couple stress elasticity and certain
deficiencies in this latter theory pointed out. In a recent note [3] we have considered the
problem of a crack in a micropolar elastic strip with constant moduli by using a path inde-
pendent integral which serves to calculate the energy flow into the crack tip. For plane
strain the following formula for the energy release rate is given in [3]:

G.1) G= ! [Wo—tuuy, —mys¢s,,1dS,,

where i and j take the values 1 and 2, ¢, is the stress tensor in the notation of [5], m;; are
components of the couple stress tensor and ¢, the component in the X; direction of the
micropolar rotation vector. W the strain energy function can be written (see [5])

3.2) 2W = Aewen+ (u+ %) e i+ pem e+ y(93,1 +63 2),

k, | take the values 1 and 2, 4, 4, » and y are material constants which we assume are
functions of X,. The strain measures &, are defined as

(3.3) & = U+ En3Ps,
where gy is the permutation tensor. The equations of equilibrium can be written
atyy
(3.4) = 0
and
om
(3.5) ij —epsty =0,

i and j going from 1 to 2. To complete the field equations we need the constitutive equa-
tions which are for the linear theory (cf. [5])

(3.6) ly = A6y O+ (u+ %) e +pen, My = P34,

In the Appendix we derive these equations via a minimum principle based on the strain
energy and show that the integral G can be derived in terms of a generalisation of the energy
momentum tensor used by ESHELBY [6] for classical elasticity. In particular we show that G
is a path independent integral even if the material constants vary in the X, direction the
crack lying on X, = 0 as in Fig. 1.

We now consider the problem of a semi-infinite crack in a strip as shown in Fig. 1; the
sides of the strip are now subjected to the following boundary conditions:

3.7 u, = tuy, Uy =xu,, ¢3=0 on X,=+h forall X,.

The calculation of the energy release at the crack tip is done most easily by relating the
integral of G around a small contour at the crack tip to that evaluated by taking G around
a large contour such as ABCDEF of Fig. 1. The two integrals have the same value since
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the contributions to G from the path along the surface of the crack AH and FG are both
zero from the stress free conditions of the crack. Because of the boundary conditions on the
sides of the strip the contributions from BC and ED are also zero, so the only non-zero
contributions come from the vertical strips CD and AB and EF. We now assume that these
are removed to X; = + o0 and that so far from the crack tip there are no variations in the
displacement and microrotation fields in the X, direction. With this assumption the equa-
tions of equilibrium (3.4) and (3.5) along CD and BE simplify to

11,2 =0, 13, =0,

and

(3.8) Mya,2+ti2—1 =0.

Further the strain measures (3.3) simplify to

(3.9) e =0, & =, &y = U 2tds, & = —@;.
From (3.8) 7,, and #,, must be constant on the vertical strips so we write
(3.10) t7 =B, and £, =C, on X, =+ o0,

where B, and C, are constants.
Equations (3.6) together with (3.8), (3.9) and (3.10) give the equations

d 2pu+x _ xB
3.11) ;ﬁ:(}*%.;)—x{m} b= oy

(#+x)t£1_2 = """¢3+B:, (Z+2ﬂ+x)uzlz = Ci'

The equations where the constants have + subscripts hold along CD and those with minus
subscripts hold along BA and FE. The boundary conditions on the crack surface, which
is stress free, are

(3.12) ty =0=1,, and my; =0 on X, =0, X, <0

which gives immediately B_ = 0 = C_ from (3.10). A suitable solution to (3.11), satis-
fying the boundary condition (3.7) is then ¢; = 0 and solutions of (3.11), and (3.11),
subject to (3.7) are u; = +u,, for X, 2 0 and u, = +u,, for X; = 0 when X, = —o0.
The solution of (3.11), on the strip CD when only the boundary conditions (3.7) hold
is not so simple when x and » both depend on X,. We thus consider y as a constant small
parameter and look for solutions of (3.11) with small y. This can be done in a similar way
to that outlined for Eq. (2.11). As can be seen from Eq. (3.11) the equation for u, , and
hence ¢,, is independent of ¢, and the contribution of u,, to the energy release rate will
have a similar form to that derived in [1] for the inhomogeneous elastic strip, so in the fol-
lowing we put u,, = 0 and consider only the effect of applying a displacement u, = +u,o
on X, = +h. After some algebra one obtains the result to order !/

G13) G u?, ' y12 [ 1 ( x )nz]
' - dx, dx, Qu+x) \(p+x) Qu+9)] L

+ h
of Qu+7) 2! Qutn)

This agrees with the result for an inhomogeneous elastic strip which could be obtained
by the method of [1] when y = 0. Also when u and x are constants, (3.13) agrees to order

R+
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»*/? with Eq. (4.2) of [3] which gives the corresponding result for an homogeneous micro-
polar strip. Note that the term in square-brackets in (3.13) is evaluated at X, = h and
we have assumed in the derivation of (3.13) that x and = are both even functions of X,.
The same approach should, of course, work for situations where this last assumption does
not hold.

4. Concluding remarks

In this paper we have shown how certain problems involving media with variable
elastic moduli can be reduced to the solution of ordinary differential equations such
as (2.11) or (3.11) and thus that explicit solutions can be obtained for general variations
in moduli for either small times (Sec. 2) or small variations from classical elasticity (Sec. 3).
It should be noted in Sec. 3 that the parameter y would usually be considered to be small in
situations where the micropolar theory is considered a possible model (cf. [5]). It should
also be noted that solutions for large times (p small) in Sec. 2 can also be obtained by
perturbation methods and solutions for intermediate times could presumably be obtained
efficiently by numerical solution of (2.11), whereas a direct attack on the problem, other
than by using the approach of Sec. 2, would be much more complex.

Appendix

The energy-momentum tensor in micropolar elasticity

The results derived in this appendix will not be restricted to plane strain the relevant
two-dimensional equations are given in Sec. 3. The argument below parallels that given
by ESHELBY [6] for the homogeneous elastic case. Suppose there exists a strain-energy
function

(Al) W = W(u!.ks ¢b qu.s)-;

where ¢; is the microrotation vector and a comma denotes partial differentiation with
respect to X (a similar argument to that given below could be given for large strains; here
we consider only infinitesimal strains). We assume that W has the property that

ow ow oW
A2 Ip = —5——, My = ————e d e ik tor.
(A.2) 1k Otte s 1k or an Obn Sk ki
The Euler equations for minimising the functional [ Wdo are then
A ow a [ oW ow
A3 - =0 and ( ) - =0,
) 0X; ( 0uy, ) Ouy 0X; \ 0¢yy ¢,

where i, j, k, I take values from 1 to 3. Equations (A.2) together with (A.3) give the equa-
tions of equilibrium

@f_" _ 3mﬂ _
héi?.r =0, _3“)‘(: —éepitiy = 0.

The two-dimensional counterparts of Eq. (A.4) are given in (3.4) and (3.5).

(A4)
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If we now define an energy-momentum tensor

ow aw
A.5 P,=Wd———uyj——=———¢ 1,
( ) J Jt 6”!.1 i a¢t._f ‘lbl-l

where i, j, I go from 1 to 3. It is not difficult to show by using (A.3) and some manipula-
tion that

aPJI 5W
*o =)
where we define
ow oo aW(uI.k’ ¢I7 ‘lbj.s’ Xm) I
ad ( 0X Jexp 0X, U; 1 @2 0 50 X, constant,
mel

where we are now allowing W to depend explicitly on X,,.
In terms of the energy-momentum tensor the crack extension force or energy release
rate can be written

(A.8) G = [ P,as;,
S

where S is a surface enclosing the crack tip; in the plane strain case this surface is that of
a cylinder with generators parallel to the X, axis so that the integral in (3.1) is effective-
ly a line integral in the (X, X,) plane. In (A.8) P;, is used since the crack extension
is assumed to take place in the X, direction. Applying the divergence theorem to (A.8)
and using (A.6) we note that the integral in (A.8) will be path independent provided W
does not depend explicitly on X .
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