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An analogue for non-linear hereditary viscoelastic membranes

Z. BYCHAWSKI and J. LEDZINSKI (RZESZOW)

THE PAPER deals with an analogue which exists between the problem of instantaneous deforma-
tion of physically and geometrically non-linear membrane and a similar problem for shallow
membrane under internal pressure which is made of the material showing the hereditary type
deformation dependent entirely of time. This analogue holds for physical operators of super-
position with the same degree of homogeneity. The solution for the time function and the in-
terpretation of the results obtained are presented.

W pracy wykamje si¢ analogie, jaka istnieje pomiedzy zagadnieniem deformacji natychmiasto-
wej fizykalnie i geometrycznie nieliniowej membrany a podobnym zagadnieniem dla membrany
malowynioslej pod ci$nieniem wewnetrznym z materialu wykazujacego deformacie, zaleina
wylacznie od czasu, typu dziedziczenia. Analogia ta zachodzi dla fizykalnych operatoréw super-
pozycji o identycznym stopniu jednorodnosci. Podane zostalo rozwiazanie dla funkcji czasu
oraz interpretacja wynikow.

B pabore nokaskiBaeTcs aHaNOTHA, CYINECTBYIOMIAA MeXKAY mpobnemoit mrHoBeHHO# nedopma-
muH GHIMYECKH M TeOMeTpHYeCKH HeNMHeHHOH memOpaHBl W aHanormuHoli mpoGiemoit ansa
MemOpaHBI MaJIOro MOABEMA TI0 BHEIIHHM JIaBJICHHEM H3 MaTepHaia obnafaioiero gedopma-
Lueli 3aBUCALIEH HCKITIOUHTENIEHO OT BPEMEHH, THIIA HACNEACTBEHHOCTH. ODTa QHAJIOTHA HMEET
mecTo 1A (hH3HUYECKHX ONMEpaTOPOB CYNEPIOSHIMH C OJMHAKOBOH CTENeHBIO ONHOPONHOCTH,
Hatorcss pewienne A1A GYHKIMH BPEMEHM, 3 TaKoKe HHTEPIpETalliA pPe3y/bTaToB.

THE KNOWN analogues in the theory of viscoelasticity are of great theoretical and practical
significance. They enable us to make use of the existing instantaneous solutions and apply
them in presenting time dependent ones. The idea of analogues is founded on the formal
similarity of fundamental equations for the analogous problems formulated within the
two theories. For example, such an analogue is well-known in the linear theory of visco-
elasticity.

As regards the non-linear creep theory, there is an analogue known as the Hoff analogy
for problems based on the power (homogeneous) constitutive forms set up for non-linear
instantaneous and creep behaviour. However, its validity is limited as the analogue finds
application within the geometrically linear deformation theory only.

It has been shown by one of the authors [1, 3] that some analogues founded on power
laws may also find application in geometrically non-linear two-dimensional problems.

For example, such analogues have been found for non-linear shallow membranes [3].
Recently, the present authors [4] pointed out an analogue which indicates the broader
possibility of application as regards the physical aspects. It is concerned with geometric-
ally non-linear membranes made of non-linear hereditary viscoelastic materials, char-
acterized by a non-stationary deformation process. The analogue has been given in the
special case of a cylindrical membrane under internal pressure. This specific problem seems
to be of great importance from a practical point of view.
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In the present paper the above analogue is generalized and applied to a non-linear
shallow membrane which undergoes a hereditary deformation process. The time-depend-
ent solution is founded on the analogous non-linear elastic problem.

Let the form of the non-linear constitutive equation for a homogeneous incompres-
sible viscoelastic material be
(1.1) e(t) = N@sy.

Here, ¢, is the strain tensor, s;; the stress deviato rand N® is a non-linear hereditary oper-
ator defined within the time interval T = [t,, ¢]

(1.1a) N@sy = — fH[r, 7, 5(V)]sy;(v)dr.
T

Alternatively, the operator N’ can be presented as
N® = LH,

where L is a linear integral time-operator and H the superpositional homogeneous oper-
ator of the »-th degree (of homogeneity).
It means that

(1.2) H#SU = #xHSu,
where u is an arbitrary constant.
Further, let us assume that
1.3) ey = N@s,,,
represents the constitutive law describing the instantaneous (elastic) state, where N
denotes a homogeneous superpositional operator(') of the degree g. Thus,
(1.4) N©@2s;; = 2N,

A being an arbitrary non-dimensional constant.

In order to point out the analogue we shall make use of the forms of the Egs. (1.1)
and (1.3). It exists between the analogous problems of shallow non-linear membranes
made of two different materials. The former is characterized by an instantaneous reaction,
as given by the Eq. (1.4), while the properties of the latter are time-dependent, as shown

by the Eq. (1.1).

The system of equations for shallow non-linear elastic and a shallow hereditary mem-
brane undergoing large deflections reduces to a system of two analogous differential
and integro-differential equations, respectively. These systems are obtained as follows.

(*) Such operators has been treated by Caratheodory.
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We assume a set of coordinates x,(« = 1, 2) which coincide with the lines of the main
curvatures of the membrane k™. Denoting by ( ), the differentiation with respect to x,,
we wri te strain components in the membrane surface

2.1) eup = %(Ha'g+ Up,ut W oW, g— 2k Whep),

which satisfy the condition of compatibility

2.2) Con,pp+€ppan— 2€apap = 82,  (a, f — not summed).

Here 2 denotes

(2.3) Q = (Wa0)?—WaaW,s5— E@Ow g5+kPwy,),  (ax, f — not summed).

The stresses o,z in the membrane surface satisfy the condition of equilibrium

24 Oope = 0,

and, therefore, the equilibrium of the deformed membrane is given by the equation

2.5) Gap (W g+ KD 0up) + |- = 0.

Here q is the constant uniform pressure and 4 the membrane thickness.
Further, by introducing the stress function @ defined as
(2.6) Oux = Ppp, Oup=—DPopg, a#p,

and the constitutive forms of the Egs. (1.1) and (1.3), we obtain the conditions of the Egs.
(2.2) and (2.5), respectively,

@7 0;,N® [; 20%,- 0%, )] +0u, N“ﬂ[—:f, Q0% - 0%, ] ~20,;,NH(-0%) = 2%,

28) DL, (D +wD,) + DX, (kD +w,) +2(~ DLWy = — L.

The unknown functions in the above sets of equations are the stress function @®
and the deflection w™®, where k = e, v we put for elastic and hereditary problems, respec-
tively.

As follows from the form of the Eq. (2.8), its left-hand side must be time-independent
as g/h = const(t). This fact should be taken into account when performing the separation
of variables, as shown below. Here
(2.9) Oup = 0%)0%,0xp, D o5 = 0*DP|0x,0x5,

the operators N and N being given by the Eqgs. (1.3) and (1.1), respectively.
If we apply to the Eq. (2.7) the inverse operation L* = L~! we obtain

2.10) aﬂ[; 2@55—@}1*’1)] +01, H[%(Zcbf‘f’; -0, ] ~20,;,H(-0%;) = L*Q®.

In the following we substitute into the Eq. (2.10) the separated fo rmsof resolving functions

(2.11) WOOD, 1) = W) (1), DO (X, 1) = Plxap(t).
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Furthermore, in the Eq. (2.8) we assume
2.12) k@ = k®g(t).

This is due to the fact that with such an assumption the left-hand side of the said equation
becomes a constant. This is also justified from the physical point of view as stress is pro-
portional to the current curvature. It follows from the assumption made that the Eq. (2.3)
is excluded from our considerations as regards analogy.

Further, we put

(2.13) H = BH,
where B is a function of time. Doing so, we find

E3| i i 7 I e 3
2149 9 {522 H[-S—ZG)‘ZZ “*@,11)] +011 H[g‘ (29,1, —¢'.22):|

—20;, ﬁ(—@_n)} = (By) 'L*¢2.
Furthermore, by putting
(2.15) N® = 4F,

where A is elastic constant, from the Eq. (2.7) we get the form analogous to (2.14)

2.16) Qa;{azzﬁ[} Q0P — DY, ]+ ‘“*[; (2¢ff’1—¢fﬁ’z)]—2ﬂ—¢ff’z -4,

Now, we shall point out the existing analogue between the solutions of the Eq. (2.14)
and the Eq. (2.16). By dividing side by side the former through the latter we obtain

R, _ (Bw)—lLsk(Pz
@) R, -~ AT

where R, , R, denote the left-hand sides of the Egs. (2.14) and (2.16), respectively. In partic-
ular, if the degree of homogeneity for both the physical operators is the same, i.e. » = g,
then we can write

(32) AL*g? = By.

The result indicates that the time-independent solutions of both the differential equations
are identical(?). Thus, the Eq. (3.1) gives the time-dependent solution for the hereditary
membrane. Here, the function ¢ is assumed as reciprocal of v [see the Eq. (2.11)]. The
above assumption follows from the fact that the stress state in the membrane is proportion-
al to the radii of curvature R,, being considered as time functions. The operator L* is

(®) It may easily be shown that the identical result is obtained from the boundary conditions for
a fixed flat contour of the membrane.



AN ANALOGUE FOR NON-LINEAR HEREDITARY VISCOELASTIC MEMBRANES 603

inverse to L and, therefore, may assume an integral or differential form in dependence
on the kernel of the latter. The symbol B in the Eq. (3.2) is a multiplicative time function
following from the representation (2.11).

In order to specify our considerations let us assume in accordance with the Egs. (1.1)
and (1.2) a particular form of constitutive law which specifies the kernel of the integral
operator L;

(4.1) N(B}Su = LHSU = LBI"iSU,
where
4.2) L..= [..K(7dr,
T

4.3) By =y" 'y =9,
(4.4) H.. =51,
and

.3
(4.5) 5 =E(.§'k].§'“).

Here K denotes the kernel of the operator L which we put into the form
(4.6) K(t, 7) = K(t—1) = —pCoe 7",

In such a case the inverse operator becomes a differential one, as may by checked by the
differentiation of the Eq. (4.2) where the Eq. (4.6) is substituted,

@7 L* ... = (Cop)"*(D+9) ..,

D denoting the time derivative.
Thus, from the Eq. (3.2) follows

4.8) A(Coy) ' (D+y)9* = o7
The solution of the above differential equation reads
4.9 @(t) = [CoA(1 —e~7/2=Du—to)]1/n+1)

and may be identified with the creep function of the structure. Here C,, y, n, are creep
constants and A should be treated as an analogue constant. In such a way the solution
of the time-dependent problem is given by

(4.10) W = b)), PO =d(x)e (r).
Both the values of the Eq. (4.10) disappear at # = 1, as # and ® represent the instantaneous
solutions.

The results of the analysis are given in Figs. 1, 2 and 3. In Fig. 1 is shown the depend-
ence of the solution (4.9) on time with varying ». It is seen that all curves possess the iden-
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tical asymptote for 1 — co. On the other hand, for n — oo the solution tends to the same
asymptotic value. This is clearly shown in Fig. 2. where as before the analogy coefficient
is put Co/4 = 1. In Fig. 3 is shown the dependence of the solution on the number n,
if all physical parameters are assumed as proportional to this number. The asymptote again
assumes the value @(c0) = 1 although the solution approaches it from above.
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