
Archives of Mechanics • Archiwum Mechaniki Stosowanej • Brief Notes • 27, S-6, pp. 889-89S, Warszawa 197S 

Effect of temperature on the initial yield stress of single crystal (*) 

1. Introduction 

Y. HORIE (RALEIGH) 

A diSCUSSION is given of a thermodynamic technique to compute the variation of 
initial yield stress with temperature in uniaxially loaded single crystals. It assumes 
a sharp and thermodynamically reversible elastic-plastic boundary and the linear 
thermo-elasticity. The result is a differential equation da,fdT = -(1/2)a,fT for 
all crystal systems in which a, is the uniaxial yield stress and T the absolute tempera­
ture. It is believed that since plastic transition consists in the onset of the migration 
of defects such as dislocations, and is sensitive to structural inhomogeneities, the 
above equation is expressing the extent of the role, if any, played by reversible thermo­
dynamic parameters in the variation of yield stress with temperature. The theoretical 
result was compared with measurements in several crystallographic systems. 

PLASTIC deformation of crystalline materials involves the motion of lattice defects such 
as dislocations through crystal grains or round their boJ,lndaries. Twinning provides an 
exception, but it can supply only a limited amount of plastic deformation. According to 
the dislocation theory of plasticity in metals, the yield stress which signifies the beginning 
of significant sliding of dislocations is governed by several temporarily energy storing 
processes: (a) Interaction of dislocations, (b) Peierls-Nabarrow forces, (c) Local dis­
arrangements of structure, (d) Pinning of dislocations by dissolved atom, known as Cottrell 
mechanism, etc. Therefore the temperature dependence of yield stress has been interpreted 
mostly from the standpoint of activation energies involving various temperature sensitive 
dislocation mechanisms. For example, FISHER [1] showed that in the case of Cottrell mech­
anism, the yield stress is inversely proportional to the temperature, and that the result 
is in agreement with the experimental data concerning Mo and Fe. Some of the other 
equations which have been proposed are 1) CJy = a-bT1' 2 [2, 3], 2) CJy = a-bT [4-7], 
3) CJy = a+b/T [8], 4) lnCJy = a+b/T [9], where CJy is the yield stress, T the temperature, 
a and b are constants. In general, each of these equations is restricted to certain materials 
and over a limited temperature range. 

There are, however, other athermal effects which influence the effect of temperature 
on the initial yield stress~ In particular, the variation of elastic moduli is a well known 
example [10]. Therefore, the aim of this paper is to present an approximate method of 
computing the variation of the yield stress with temperature on the basis of a purely thermo­
dynamic approach. This approachis conceived in part to test the validity of a widely accepted 
contemporary continuum view [11-13] that there is always an elastically strained lattice 

(*)The paper has been presented at the EUROMECH 53 COLLOQUIUM on "THERMOPLASTIC­
ITY", Jablonna, September 16--19, 1974. 
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imbedded in every plastically deformed state, and that this elastic state is inherently revers­
ible and can be recovered by suitable reversible processes. However in order to concentrate 
on essentials, the discussion will be limited to the variation of the initial yield stress of 
uniaxially loaded single crystals in simple tension. And the equilibrium equation of state 
will be confined to that of linear infinitesimal thermo-elasticity. 

2. Elastic-plastic boundary and a reversible loop 

Experimentally speaking, there are several ways to identify the elastic-plastic transition, 
but here is simply assumed the existence of a sharp boundary between the elastic and the 
plastic domains in the stress-strain-temperature space ·for uniaxially loaded crystals, Fig. 1. 
Then in order to characterize the boundary, we introduce reversible isothermal and adia­
batic loadings starting from a common origin, 0, an unloaded state at temperature T, as 
shown in Figs. 1 and 2. They intercept the boundary at states 1 and 2. Since in normal 

FIG. 1. Reversible loop. 
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FIG. 2. Linear approximation of the reversible 
loop at T. 

crystals simple tension produces a very small temperature drop, the adiabatic loading 
path will lie above the isothermal one, provided that the yield stress decreases as the 
temperature of specimens increases. 

Obviously, a loop 0120 is formed by the isothermal and adi(\batic processes and the 
elastic-plastic boundary. However, if the elastic-plastic boundary is replaced by a reversible 
path represented by a broken line in Fig. 2, the resulting loop consists of entirely revers­
ible paths. Hence one complete loop must restore the original value of internal energy 
at T, 

http://rcin.org.pl



EFFECI' . OF TEMPERATURE ON mE INmAL YffiLD STRESS OF SINGLE CRYSTAL 891 

where eo is the density, U and S are the specific internal energy and the entropy per unit 
mass, and G;i and e1rare stress and strain components, respectively. 

Then one observes that, since the area of a loop is finite, the slope of the boundary 
must be reflected in the difference between the isothermal and the adiabatic deformations. 
A quantitative relation may be revealed by evaluating the internal energy change along 
each path. 

Path 01. Since there is no entropy change along the path, 

(2.1) i dU =i ( G;ideii) . 
0 0 eo s 

If the linear-thermo-elasticity is assumed, the Eq. (2.1) reduces to 

1 

(2.2) j dU = a!._:(T-L1T)/2eoE5
, 

0 

where a!_r signifies the tensile yield stress in a loading direction 1, L1 T the small temperature 

drop between states 1 and 2, Es the adiabatic Young's modulus along the path 0-1. 
Path 12. The internal energy change involves both work and entropy terms. However, 

since the adiabatic temperature drop LJT is ordinarily very much smaller than T (this will 
be seen later), the path integral may be approximated by the following expressions, 

2 2 2 

(2.3) J dU = .r a!_rdeifeo+ J TdS = 2~0 [G~r(T)+a!_r(T-LJT)] [G!r(T)/E 
1 1 1 

-a!r(T-LIT)/E'l+ j r[( :i}lj+ ( ;:. L ~i}r = 2~. [a!y(T) 
1 -

+a~r(T-LIT)][a!r(T)/E-a!r(T-LIT)fE'] +Ll{ C + ::~~-( ~nJ. 
where E is the isothermal Young's modulus for the axis j, and the following equilibrium 
relations are used, 

r( :: LJ = c. = a specific heat. 

( iJS ) ( iJe1i) h l . ffi . Qo -0 .. = iJT = aii = t erma expansiOn coe c1ents. 
G,J R C1tJ 

Path 20. Since the path is isothermal at T, 

0 

f afr(T) 
dU = - i E -T[S(G1r, T)-S(O, T)]. 

2 eo -
(2.4) 

If a.!!_ is independent of G!., then it is found that by use of Taylor's expansion of S 

0 

J afr(T) T 
dU = ----- --aiiG;r(T). 

2eoE eo - -
2 

(2.5) 
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Now combining the Eqs. (2.2), (2.4), and (2.5), one obtains 

O'jy(T) a,r(T- L1 T) ( 1 1 ) [ T ( da,y )] T 
(2.6) - 2eo E- es + Ca+ eo a~ dT LiT- eoa~a!_r(T) = o. 

In order to simplify the equation, we need Ll T and ( ~ - ~·). According to TlluRSTON [14], 

adiabatic temperature changes are given by 

where 

dT = - Tc ;.ii deii, 
eo e 

Ali = eo(:~t = a.,.c,~,J = a.,.c~,.. C, = r( !:}.,/ 
C~km = ( ~O'ii) , de~ = sfikmdO'~cm, sij1cm = (::::.oe;i) . 

UEkm T UO'km S 

Hence the magnitude of temperature drop L1 T for the uniaxial stress O';y( T- L1 T) is 

(2.7) 

For steel, L1Tis about 0.125oC when T = 274.7oK and· a = 109 dynesjcm2
• 

The difference (1/E-1/£3
) can be determined by use of adiabatic and isothermal 

compliance coefficients, 

and an identity relation 

where s~~cm = ( oe;i/ oa~cmh . 
The result is 

(2.8) ( 
1 1 ) 2 E --p = Ta!}eoCa. 

Finally, the substitution of the Eqs. (2. 7) and (2.8) into (2.6) yields 

(2.9) 

We see in the above equation that the derivative on the left-hand side comes from the 
approximation used for Path 12 "in the Eq. (2.3), and that it is the only term that 
reflects the slope of the elastic-plastic boundary between T and T- L1 T. Therefore, in 
view of (2.7) the ratio O';y(T)/a;y(T-L!T) in the last term can be approximated by 
one. Then we find 

(2.10) 
dO'!_y 1 Ce (Xii 

dT = - 2 Ca a,m crmopS~pii 
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This result can be further simplified by the following relation [15] 

'] eT Ce cs 
"-ij = a km kmij = c a km kmij' 

17 (2.11) 

where Clmtj = ( oakm! oelj)s. 
Then the substitution produces a simple result, 

da~y ( a.!y ) 
dT = - 1/2 T' 

or 

(2.12) air T1
'
2 = constant. 

3. Discussions 

Contrary to our experience, the Eq. (2.12) predicts an infinite yield stress at T = 0. 
This singularity results from the fact that at T = 0, the method breaks down due to 
the third law of thermodynamics (Nemst law), that is, there is no difference between 
isothermal and adiabatic processes at the absolute zero. Otherwise within the limit of the 
approximation involved, the Eq. (2.12) determines the equilibrium effect of temperature 
on the initial yield stress of single crystals. 

Figures 3-6 compare the curves ay T1' 2 = constant with experimental data in various 
crystal classes. The Eq. (2.12) may be a result of oversimplification, but the simple 
analysis appears to be adequate in representing a reversible change in the yield stress. 
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FIG. 3. Effect of temperature on the initial yield stress. 
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FIG. 6. Yield stress versus temperature for iron (References are given in Ref. [1]). 
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At low temperatures, metals with a bee structure show a stronger temperature depend­
ence than the Eq. (2.12). This is not unexpected, because there are other effects in the yield 
stress which are structure sensitive and cannot be accounted for by a reversible thermo­
dynamics. Such effects must be related to the detailed nature of dislocation structures in 
crystals and their irreversible motions. 
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