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BRIEF NOTES 

Effective stress in mixture theory(*) 

1. Mixture theory 

L. W. MORLAND (NORWICH) 

DESCRIBING the gross response of a fluid-saturated porous solid or composite medium 
by a mixture theory introduces partial stresses and partial · densities through the 
concept of overlapping particles. An effective stress-effective deformation theory 
is used to retain the known properties of the individual constituents, but the partial 
stress-effective stress relation becomes a constitutive postulate. An interpretation 
of effective stress is introduced which rationalises and extends the earlier direct 
postulates, and in particular · equates the cross-section area and volume fractions 
of a constituent within a mixture element. 

A MIXTURE or interacting continua theory is a convenient framework in which to de­
scribe the gross response of a continu~ composed of two or more constituents [e.g., 
TRUESDELL, 1965]. That is,, when a representative element of mixture, small compared 

with the length scale of interest, contains sufficient of each constituent ~> ( a= ·1, ... , · r) 

to assume that every point x in the mixture is occupied by a particle ofeach ~> at all times· 

t. Then for each <;> there is a velocity field<;> (x, t) which. represents in some mean sense 

the velocity of<;> particles in a neighbourhood of x attime t, and an associated particle 
path 

(1.1) <a> . <et> <et> a· <et>; a 
X = X (X, t), V = X t~ 

h <Xet> . fi . . f h <et> . I Th d fi . d' f h <et> w ere IS a re erence positiOn o t e s partic e. e e ormation gra Ient o t e s mo-
tion is 

(1.2) 
(a) (a) 

F= Vz, 
(a) (a) (a) 

Fij = a xJo xj. 

where the indices (i,j = 1, 2, 3) refer to rectangular Cartesian coordinates. 
Mass conservation implies 

(a) (a) (a) /(a) 
(1.3) J = ldetFI = eo !! , 

h (a) • h · 1 d · f h (a) • 1 f ' d (a) • h w ere e Is t e partla ensity o t e mass s per umt vo ume o rmxture, an f!c Is t e 
value in the reference state. The traction on unit cross-section of mixture with unit out-

(*) The paper has been presented at the EUROMECH 54 (:OLLOQUIUM on .. FINITE DEFOR­
MATIONS IN PLASTICITY .. , Jablonna, September 30-0ctober 3, 1974. 
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d I · h f h · 1 · (ex) h · d b (ex) · ·war norma n ts t e sum o t e partta tractions ~a> - t e tractiOn supporte y s m 
the unit cross-section of mixture. Linear momentum balance implies the existence of a partial 

(ex) 
stress tensor a such that 

(1.4) 
(ex) (ex) 
t(a) = an, 

and then 
(ex) (ex) (ex) 

<ex> D vi iJ au <ex> <ex> <ex> 
e Dt = ax

1 
+ e h,+eP, i = 1, 2, 3. (1.5) 

<Dex>/D • h ·a1 . d . . c 11 . <ex> . h f . 1 f . t t.s t e maten time envattve .o owmg s, e ts t e mass o umt vo ume o Dllxture, 
oooo oo oo oo 

the sum of the (b b is the external body force on s per unit mass of s, and P is the inter-

action body force per unit mass of .mixture on<;> due to other constituents. Finally, angular 
momentum balance in the absence of external body couple shows that the skew part of 
(ex). . b 
a ts gtven y 

(<l) (ex) 
(1.6) ac 1 = el, 

h (~) . k d fi · h · · 1 · f · (ex) w ere ~~. ts a s ew tensor e rung t e Interaction coup e per umt mass o mixture on s . 
Here thermomechanical coupling is excluded for brevity, since it does not influence 

the concept of effective stress introduced shortly. Energy balance is needed only to compute 
energy storage in a given motion. This mechanical theory is completed by prescribing 

(ex) (ex) 
constitutive laws for the interaction terms ~' l subject to the restrictions 

(1.7) 
~(ex) 

LJ ~ = 0, 
~(ex) 

£.J l. = 0, 
ex ex 

and for the symmetric parts of the partial stresses, <r;] < ) • 

2. Effective stress and deformations 

Here attention is focussed on constitutive laws for the symmetric partial stresses c;]0 , 

following the effective stress, effective deformation theory proposed by MoRLAND [1972]. 
. . (ex) . (ex) . . E(ex) (ex) 

Introducmg the volume fraction n of each constituent s, the effective denstty f! of s -

h · 1 f (ex) · · b t e mass per umt vo ume o s - ts gtven y 

(2.1) 

and 

(2.2) 

(ex) (ex)E(ex) 
f! = n f!, 

(ex) 
O~n~l. 
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E(a) 

Then an effective deformation gradient F was defined by 

(2.3) 
E(a) (a) (a) 1 (a) 

F = ( n I n0 }"3 F , 

h (a) · h · · · 1 1 ~ · f(a) w ere n0 IS t e Imtia vo ume .ractwn o s. 

Similarly, it was proposed that on a cross-section of mixture a constituent <a; would 
(a) E(a) (a) 

occupy only an area fraction m, so that the effective traction t<n> on s is given by 

(2.4) 
(a) (a)E(a) 

t(n) = m t(n)' 

and hence 

(2.5) 
E(a) E(«) 

t(n) = an, 

where 

(2.6) 
(a) (a)E(a) 
a =m a. 

(a) (a) 

In the case l =/= 0 only the symmetric part a< > is taken in (2.6). It was then postulated that 

the constituent<;> retains its constitutive description, defined by a symmetric stress func­
<a> 

tional §' of deformation history say, within the mixture in terms of the effective stress and 
deformations; that is 

(2.7) 
E(a) (a) E(a) 

a(x, t) = .F{ F(x, r),- oo < r ~ t}. 

The constitutive description of the mixture is then completed by prescribing laws for each 
(a) (a) 
n, m subject to (2.2) and 

(2.8) 
~(a) (a) 

_L,m=1, O~m~l. 

An implicit assumption in (2. 7) is that E<r;J is independent of the orientation n. This only 

follows from the assertions (2.4)-(2.6) if~ is independent of n which is a further assump­
tion of structural isotropy. A simplifying restriction, which incorporates this require­
ment, is 

(2.9) 
(a) (a) 
m=n, ~X=1, ... ,r, 

which was deduced [MORLAND, 1972] from a mathematical axiom, but without physical 
motivation. The restriction (2.9) was postulated directly by BlOT [1956] and ScmFFMAN 
[1970] for defining · effective fluid pressures in linear elastic-fluid mixtures, but effective 
stress in the elastic motion was not defined in like manner. It is now shown that appro­
priate interpretation of partial and effective stress leads directly to the result (2.6) with 
the restriction (2.9). 
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(a) 

Let V be the volume of a representative element of mixture, and B the configuration 
(<X) (IX) 

occupied by s within the element. Let E be the actual stress tensor (symmetric) within 
00 00 00 
B, and T<n> the traction on any section with orientation n within B. Then for each n, 

(cc) (a) 

T<n> = _.2; n. (2.10) 

Now interpret the partial stress as the mixture volume average 

(2.11) 
(IX) 1 J ~ (IX) (IX) (IX) 
a = V L..; dV +e;., = a 0 +el, 

(IX) 
B 

where the skew contribution is the interaction term required for angular momentum bal­
ance (1.6) of the element. The partial traction for each n is 

(2.12) 
(x) (cc) (a) 

t <n> = <1 0 n + e ;. n. 

Similarly, interpret the effective stress as the <cc; volume average 

(2.13) 

(IX) 
E(a) 1 1• ~ 1 (oc) 
a=~ L..;dV,=wa<» 

n V (a) n 

and the effective traction for each n as 

£(«) 1 J (ex) 1 (cc) 1 («) 1 (ex) 

t(o) = -(~ T(a) dV =(a) a () n = (a) t(o)- (a>!!;. D. 
n V («) n n n 

(2.14) 

(B) 

The result (2.13) is (2.6) applied to~<> and subject to (2.9), while (2.14) shows that the 
effective traction is not just a scaled partial traction (2.4) subject to (2.9), but also in­
corporates a contribution from the interaction couple. This is an extension of the postu­
lates (2.4) consistent with (2.6) when an interaction couple is present. Using the effective 
stress law (2.7) with the interpretations (2.11), (2.13) to determine the partial stress shows 

(IX) 

the explicit role of div el in the linear momentum balance. While it is plausible to set 
(<X) ;. = 0 in a fluid-saturated porous solid, it is not clear that there is no interaction couple 
between bonded solids in a representative element of a composite material. 

The above interpretations of effective stress are the volume average definitions of mean 
stress adopted by HILL [1963] in his linear elastic composite theory, there using the initial 
volume fractions. The present theory applied to a mixture of elastic solids and linearised 
in the infinitesimal strain approximation [MoRLAND, 1972] is analogous to Hill's theory 
if the effective strains are also interpreted as the volume average means adopted by HILL, 

but here the volume fraction <r;/ can be a linear function of the strains. 
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