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Symmetric waves in materials with internal state variables (*)

I. SULICIU (BUCHAREST)

Conpitions for the existence of symmetric waves are given. A non-linear Cattaneo’s heat con-
duction constitutive equation is found and heat flux becomes an internal state variable. It is
proved under certain conditions that there are two real symmetric and coupled acceleration
waves propagating with finite speeds. The shock waves of small amplitude propagate with
a velocity close to the adiabatic sound speed.

Podano warunki istnienia fal symetrycznych. Wyprowadzono nieliniowe réwnanie przewod-
nictwa ciepta Cattaneo. Strumien ciepla wystepuje jako wewnetrzna zmienna stanu. Udowod-
niono przy niektorych warunkach, ze istnieja dwie rzeczywiste symetryczne i sprzezone fale
przyspieszenia, rozprzestrzeniajace si¢ ze skonczonymi predkoéciami. Fale uderzeniowe o ma-
fej amplitudzie rozprzestrzeniaja si¢ z predkoscia bliska adiabatycznej predkosci diwieku.

JatoTca ycIoBHA CYLIECTBOBAHHWA CHMMETDHUHBLIX BOJMH. BeIsemeno HenumeifHoe ypaBHeHue
TeronposoaHocTy Karraneo. ITorok Temna BRICTYNaeT KaK BHYTPEHHASA IEDEMEHHAs COCTO-
anuA. [JokasaHo, IPH HEKOTOPALIX YCIIOBHAX, YTO CYLLECTBYIOT B AeiICTBUTEIEHEIE CHMMETDHY-
HbIE H CONpPSOKEHHBIE BOJHB! YCKODEHUsA, PaCIpacTPaHAION[HECH ¢ KOHEYHBIMH CHOPOCTAMH.
YnapHEle BOJHEI MaNoOi aMIUIMTYAbI PacHPOCTPAHAIOTCA CO CKOPOCTBIO Gim3Kkoil ammabaru-
YeCKOH CKOPOCTH 3BYKa.

1. Introduction

THE ONE-DIMENSIONAL theory is considered. The framework concerning internal state
variables is that of CoLEMAN and GURTIN [1]. The present work may be considered as
a further development of KosiNski and PERzYNA’s paper [2] in which some additional
assumptions are made. These assumptions are inspired by CATTANEO’s work [10, 11] on
hyperbolic heat conduction constitutive assumption (used instead of Fourier parabolic
heat conduction constitutive assumption). See also VERNOTTE [16, 17], Kaziskr [12],
CHESTER [27), BAUMEISTER and HAmiILL [18], MEIXNER [28], TAITEL [29] for the linear
hyperbolic heat conduction constitutive equation; Lykov [19], LorD and SCHULMAN [20],
Porov [21], AcHENBACH [22], KaLisk1 [23], Tokuoka [26], for coupled linear thermo-
elasticity with a total hyperbolic system of equations. For the non-linear constitutive
equations see SULICIU [13], GURTIN and Prpkin [14], CHEN [24], KosINsKI and PERZYNA
[2], McCarTHY [32]. BoGY and NaAGHDI [33] found that the acceleration waves are not
generally symmetric with respect to the direction of propagation, though they become
symmetric when the corresponding constitutive equations are linearized (see also
CHEN [25]).

It is proved, under the constitutive assumptions (3.1), (3.2), (3.11) and (3.12), that the
acceleration waves are symmetric and, if the conditions of Proposition 4.1 and (5.4)-(5.6)

(*) The paper has been presented at the EUROMECH 53 COLLOQUIUM on “THERMO-
PLASTICITY?”, Jablonna, September 16-19, 1974.
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are satisfied, the accelerations waves are real in the neighbourhood of a totally relaxed
state. The obtained acceleration waves are coupled i.e. they carry jump discontinuities of
both mathematical and thermal quantiti_s. It is also proved that heat flux does not jump
across the shock waves.

When only thermal waves are considered, the second law of thermodynamics together
with (5.5) imply here that the acceleration wave velocities are real (and symmetric), while
in the framework of I. MULER [15] these velocities might only be real, i.e. the second law
does not imply that acceleration waves are necessarily real.

2. Preliminaries

A material point X of a one-dimensional body £ is characterized here, by two groups
of four functions: F, S, N, Q and F, S, N, Q. These functions have the following meaning:
if at a time 7, the one-dimensional strain £ = (dy/0X)—1 (where x = x(X, t) gives the motion
of the point X € &), the absolute temperature 6 and its gradient g = 80/6X and the internal
state variables y, @, 77 and g are known, then the free energy v, the one-dimensional stress
a, the entropy # and the heat flux g are determined by

y=F(e,0,g;0,71,9,9),
g = S(S, 8,8', (_T, 7_?’ E! a)!
?? =N(£!99g;&!ﬁ’a’§)!

q=0(,0,g;0,7,9,9),

@.1)

while the time derivatives of the corresponding internal state variables are determined by

= F(e,0,8:3, 7,9,4),

<

22) ‘f= f(s,ﬁ,g;a. 7,9, 9),
-1-?=N(8l6!g;6'!ﬁ!i}a!é)’
7 =00,0,80,7,%, 9.

The set of numbers s = (e, 0, g; o, 1, ¥, q) will be called a thermodynamic state.
A family of real valued functions s(t) = (e'1), 3(¢), g(t); o(t), n(z), w(t), q(t)) defined of
an interval [t;, t,], will be called a thermodynamic process at a material point X € 4, if
s € R'[t;, t,] and if it satisfies the second law of thermodynamics

qg = 0,

o 1 .
2.3) T .
¥ Qo k. 200
where g, is the mass density in the reference configuration. We say that a real valued func-
tion f'e R'[t;, 7,] if f'is a regulated function on [¢;, ¢,] and has one-sided derivatives which
are regulated functions on [#;, 7] (see for instance DIEUDONNE, Sec. 7.6, [S], Suriciu [6, 7]).
The functions of class R* naturally appear in the studies on wave propagations.
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If, for the Eq. (2.2), the initial conditions

(2.4) o) =0, ) =m, ) =wi, @) =q

and the functions ¢, 8, g € R'[¢;, 1] are given, and F,S,N, Q are good enough functions
(for instance Lipschitzian functions with respect to s* = (@, 7, ¥, 4)), then the initial
value problem (2.2) and (2.4) has a continuous and unique solution &(¢), 7(t),% (¢), q(t)
for t € [t;, w), where w € (¢, t;] is a determined number; moreover, for a fixed ¢ € [¢;, w),
this solution is continuous with respect to &(z), 6(z), g(z), 7€ [t;, 1), in the topology
of uniform convergence. (For additional properties and discussions on this matter, see
Suriciu [6, 7)).

From now on we assume that F, S, N, Q are at least smooth functions and F, S, N, Q
are at least continuous functions, with the property that any initial value problem for (2.2),
with given functions ¢, 0, g € R[t;, #,], has a unique solution.

The restriction imposed on the functions F, S, N, Q and F, S, N, é by the inequality
(2.3), obtained by CoLemMAN and GURTIN [1], are

dF oF aF
(2 S=ezer N=-% =0
0F—- 0F— 0F-~- 0F— 1
2-6 — — S e B é 2
(2.6) aaS+6qN+ 5th+3qQ+9°3Qg 0

Next, we wish to define the notion of instantaneous response.
Let ¢, 0, g € R [t;, t,] and oy, 7;, v;, ¢; be given. For ¢, € [t;, w), we denote
o = &(to—0), ..., go = Q(2 b0, &0} o, Mo Yo, Go)-

Then, due to the continuity of the solution a(t), %(¢), 7(¢), g(t) with respect to ¢, for ¢ €[t;, ),
we have

W(fo +0) = F(E(r0+0)9 6(fu+0), g(rﬂ+0), &09 7_?0, 609 aﬂ)

and we get similar results for o(t,+0), 5(t,+0), g(f, +0).

We call the instantaneous response functions with respect to the given histories
&(7), 6(7), g(v), for 7€ [t;, t;) and the given initial conditions s¥ = (oy, 7, ¥4, ), the
following well defined functions

v = yi(e, 0) = F(e, 0; 57),
o = ay(e, 0) = S(e, 0; 5%),
n = m(e, 0) = N(e, 0; s3),
q=q(e,0,8) =QC(,0,¢;53),

2.n

where 3* = (EO! ;?_0’ EOQ 60)
From (2.5) it is obvious that

, 0 5}
(2.8) 0 = @o ;;], 7?|=-—a%!—-
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3. Acceleration waves

Since it is known that the family of all possible acceleration waves is a subfamily of
all characteristics of a quasi-linear hyperbolic system of partial differential equations, we
shall compute here the characteristics of the corresponding hyperbolic system.

We put down now the following additional constitutive assumptions:

3.1) Q. S, F, N do not depend on g and Q is linear in g, i.e.
- o e e sy G i =
(32) Q(ss ﬂ;g;ds 7?9?’! Q) = —B‘M(E, B;d’ n, ‘P' Q)EY-+9‘J'(£,G,G, n, '}’; Q)°

The complete system of partial differential equations governing the one-dimensional
thermomechanical motion of the body %, can be written as

v de 0  do  0p oy 09
(3.4) Qo5 ~Segy ~Sogxy ~Seoy ~Sigy ~Svax ~Sizy =0
de ov
64 E i
(3.5) 0N 25+ 000Ny - +0,25 4 [0 (F+8N)B] 22
. 90 t'_'a_ Co v a ] aX 00— %o ' aX a 3X
e =40 F;+6N;)N
+00(Fz+0Ng) F+0o(F; +0N7)01 = 0,
oy - Ry =
(3.6) Ta'f-j" = F(e,0;0,7,9, 9),
ds — -
(3.7 ¥ T S(e,0;0,7%,%,9),
M - e —
(38) ‘a—f s N(S, 6: a,n, v, ‘I);
dg ;i o B e
(3.9 —6—r~+6,u(e, 6;0,7, 9, q)Ei; =0A(e,0;0,7,%,9),

where v = Jy/0t is the particle velocity.
The characteristic equation for this system will be

050Ny c* — 0o [Qs— 000 p(F7 +0N7)1c® — 0o 0[S, Ny — N, S5+ puQg) ¢

(3.10) + {S.[Qo— 00 O0u(F7+0N7)1+ 00 0*N, uS; — Se Q. } ¢ +6uS, Q7 —0uS;Q, = 0,
X
T dt

This characteristic equation coincides with the Eq. (3.12) of KosiNskl and PERZYNA
[2] under the hypotheses considered here.
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Of course, a necessary and sufficient condition to obtain symmetric roots from the
Eq. (3.10) is to vanish the coefficients of ¢ and ¢?. But, for the obtained relations, between
the functions F, N, S, Q@ and g, it is not easy to find a physical meaning.

If we set

3.11) S; =0, F;+3Nq_=0
then the symmetry requirement implies
(3.12) 0,=0, 0.,=0

and vice versa.
Conditions (3.11) involve

(3.13) F(e,0;0,7m,9,9) = Fi(e,0; 0,7, p)+0F:(0, 7, 9, 9).
Under the conditions (3.11) to (3.12) the characteristic equation (3.10) becomes
(3.14) 05 Noc* —0o(S: No+ 00 N3+MQ§)£2+#S,QE =0.
From (3.1) and (3.12) we obtain
(3.15) q=0(,7,%,9),
i.e. ¢ becomes itself an internal state variable.

4. Further consequences of the second law of thermodynamics
4.1

First we wish to examine some of the second law consequences in the context of the
symmetry assumption.

The hypotheses (3.1), (3.2) and the form (3.13) of the free energy function F used in
the inequality (2.6) lead to the following conclusions

oF,
e 503 902
4.1 Q = pofu o
and

OF . OF -~ OF - dF.
4 Rl 2 R il = - Mcial S
4.2) =S+ aﬁN+ E@Fﬂi_«l % <0.

Since Q and F, depend only on the internal state variables, the function x# must be of
the form

(43) ﬂ;(&,ﬁ; E! ;i! T,_U, ‘}) = ’u_(o_" g; ¥ q! g
We may choose

(4.4) q=000,7,%,9) =4,

which implies that the function i and 3F,/3g must be related by

_ e BF, . _ _ _
(4.5) g = 0o (@, n,w,q)ﬁ?—(mmw,f;)-
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4.2

Another important requirement of the constitutive assumptions (2.1) and (2.2) is that
the symmetric roots of the Eq. (3.14) must be real. This requirement together with the
second law of thermodynamics will make the above constitutive equations more precise.
But the determination of the set of all functions, which will satisfy both conditions, is
a very difficult problem to solve.

Since we wish to get a better insight concerning the above requirements, we shall
restrict, in that which follows, our generality. To restrict our generality, more than was
done by the symmetry requirement, we introduce the notion of a totally relaxed state.

We say that a state 5; = (&, 0, g = 0; o4, i, ¥, qi) is totally relaxed if
F(Sj = ?(Ei’ 91; &ia ?}js Eis a’:) e 0,

S(s)) = S(ess 655 G, 7ii> Pis G) = O,

Jﬂ'\7('!"l} o ﬁ(ﬁ;, ﬂl; ai, ﬁi, ai! ai) = 0’

Asy) = A&, 043 04, M, ¥1, 4)°= 0,

where we have chosen o; = a;, etc. We observe that if at 7 = ¢, we are at a totally relaxed
state we remain there for all ¢ > 1;, since it was supposed that the functions F,S,N,u
and 1 are defined in such a way that any initial value problem for the Egs. (3.6)-(3.9)
has a unique solution.

We can prove the following:

PROPOSITION 4.1. If the symmetry requirement is satisfied [i.e. if (3.11) and (3.12) hold]

and if: a) p and ) are of class C? with respect to g and p # 0, 83/3q # 0; b) F, N, S do not
depend on q and ¢) s; = (&, 0:, g = 0; o1, M, Wi, i) is a totally relaxed state, then:

(4.6)

@.7) @=0,
(4.8) p(s) A7(s) < 0

Proof. Consider the process generated by
4.9 et)=¢, 6(t)=06;,, gt)=g=const, t=1
and which starts at 1 = ¢; with
(4.10) ot) =01, ) =m, Pt)=w, qt)=q,

where s; = (g, 0;, 8 = 0; o1 mi, ¥i, q:) is a fixed totally relaxed state. Then according to
conditions b) and c) the initial value of problem (3.6)—(3.9) and (4.10) has a unique solution
v =w, @) =90, T(¢)=m,
(4.11) q(t) = q(t,8) = q(t, &, 0;, 85 05, i, 91, 4),  E 2 14,
q(t,0) = g;.

The solution (4.11), the condition c) and (4.5) used in (4.2) lead to the following
inequality

A(E,, ai; Tis Mis Yis a(f, g))‘é(r! g)
4.12 A(t, ) = L A <0.
( ) (t g) P(ab Nis Yis ‘?(f, g)) &4
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We observe that
(4.13) A(t,0)=0 forany =1,

i.e. for any fixed ¢, 4 as a function of g has a maximum at g = 0.
Thus we have

0A |
(4.14) o=

[(s) (50 i+ K50)~ As)aiig(s0] 22z, 0)
S _ g ___-o.
g=0 (u(s)?

Since
¥@) = 21, )
og
is the solution of the initial value problem (see for instance Hartman, Chap. V, §3 [9])

dy (a,u oA
ar T\8%g T &g

it follows by condition a) of the proposition that

)Y+9:# =0, Y() =0,

4.15) g—g(r, 0)#£0, >t

Now we choose a fixed ¢ > ¢; in (4.14) and we find that (4.7) holds. (4.8) follows from
0*A4/dg* < 0 at g = 0 in the same way. Q.E.D.
Under the conditions of Propositions 4.1 the second law implies that at a relaxed state
the heat flux must vanish. The meaning of the relation (4.8) will be discussed later on.
Consider now the state

So = (€0, 00, 80 = 05 00, 10, Yo, 9o = 0)
which is totally relaxed. Suppose that there exists a neighbourhood U, of the point

(€0, 0,) in the (e, 6)-plane, such that the solution of the system (3.6)-(3.9) with the
initial conditions

(4.16) pt) =y, o(t) =00, 7t) =1, qt:)=0
and
4.17) e(t) =e=const, 6(t) =0 =const, =1

has a finite and unique limit when ¢t — oo, i.e.
limy(r) = Pr(e, 0), lima(r) = or(e, 0),
=00

r—o0

lim%(r) = 7&(e, 0), l,iﬂ,a(t) = gr(e, 0),

=00

(4.18)

where 5§ = (00, 70, Yo, §o = 0) is fixed. Of course, in this case 7, is supposed to be in-
finite. B )
From (4.18) and the continuity of F, S, N and 4, we obtain limy(¢) = 0, ..., limg(t) = 0,
=00 =00
ie.
(419) F(S, 8; ER(S, 8), ;?R(sy 6)9 ER(S, 8): 53(8, 9) = 0:

Me, 0, 0(e, 0), Nr(e, 0), Yr(e, 0), gr(e, 0)) = 0.
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for any (¢, 0) € U,. This means that any state s = (¢, g = 0; ox(e, 0), nz(e, 0), yg(e, 0),
QR(es 6)): (6! B) € UO (Where UR(S’ 6) = S(B’ 6, aR(‘E’ 8)’ ﬁk(e: 6)’ ER(E! B))! B‘.C.)ES a tOtally
relaxed state. It is obvious that

4.20) ¥a(eo, o) = Yo, etc.

Concerning (4.6), and the function gg(¢, 0), we observe that if the material is isotropic
(with respect to the full orthogonal group, which in the one-dimensional case reduces to
the elements 1, —1), then
4.21) Me,0;0,7,9,0) =0

for any s = (¢,0,g =0, 0,7%, 9, g =0), which means that g(¢) = 0 and gg(e, 6) = 0.
Next, we consider isotropic materials only.
From the inequality (4.2) we obtain

dp @F- oF— oF=
¥l 2 a“N+“F{°

which leads to
(4.22) wile, 0, 53) = p(t) > yr(e, 0),

where y(t) = F(e, 0, a(2), 7(1), p(2)).
The relations (4.22) tell us that the function

(4.23) A(e, 0) = wi(e, 0, s)—yr(e, )

has a minimum at ¢ = g, § = f,. Thus, we can write

oy,
G0 = Qo 3¢ (80, bo, -5'0) . 90 (50, o) = or(&o, o),

(4.24)
To = =TV ey, B, 58) = — X (eq, ) = maleo o),
and
“29) L (e s 8> a;“;“ (¢o, ),
-
(@26) T (e0r 0, 8) > T2 (e, 0,

day(eo, 0o, 58) dog(eo, 0o) dngr(eo, Bo) (&0, by, 53)
B30 [ de T G ][ o a6 ]

6 2
[ (;I (50!60!30) 3 (EOs 80):' ;03
(4.24) to (4.27) are valid for any totally relaxed state

So = (€0, 00,80 = 0; do, 70, Yo, go = 0).
Such relations of the form (4.24) and (4.25)—(4.27) are known in the literature. For
relations of the form (4.24) see COLEMAN and GURTIN [1] and for relations of the form
(4.25)-(4.2) see CoLEMAN [3] and CoLEMAN and GURTIN [4].
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5. On the real acceleration waves assumption

We return now to the problem of the existence of real waves in a material for which
the symmetry assumption is verified. In this case, taking into account (2.5), (3.13) and
(4.4), the constitutive assumptions (2.1) can be written as

p =F(e,0;0,7,9,9) = Fi(e,0; 0,7, 9)+0F,(7, 7, , 9),

_ = OF, , . _ . _
(5.1) a —S(E,&,O’, n, W) "'90_68__(896: g, 7},'1’),

el o JdF - e -
n =N(,0;0,7,9,9 = _-aaé(s,ﬂ;a.n,w)—Fz(a,n,sp, q),

g=gq.
The internal state variables verify the Egs. (3.6)-(3.9), where u has the form (4.3) and p is

related to F, by (4.5).
The roots of the Egs. (3.14) can be written as

S.No+00 N2+ pu— Y/ (S, No+00 N2 +p)* —4uS, N,
200Ny 2
S.No+0oNZ+p+ V (S.No+ 0o NZ+ 1) — 4uS,N,

2 _
(5.3) €y = 200 Np P

(5.2) =

where (5.1), was used.

Suppose that for an isotropic body there exists a relaxed state s, and a neighbourhood
of it, where the limits (4.18) exist and where the conditions of Proposition 4.1 are satisfied.
Suppose we know about the relaxed state that

2
(5.4) B”RT(;’;”{@- >0
and
(5.5) g—g(so) <o0.

If we know about the instantaneous response that
oN
5.6 = .
(5.6 =5 (50) > 0;

then the second law of thermodynamics implies [see formulas (4.25) and (4.8)]

6.7 o) o
de

and

G.8) #(so) > 0,

i.e. the acceleration waves are real (¢f > 0, ¢ > 0). If we know (5.4) and (5.5) and we
assume real acceleration waves, then the second law implies (5.6)

11 Arch. Mech. Stos. nr 5-6/75
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The inequality (5.5) is a justified requirement,-since in' the linear case 1 = —uxg,
» = const > 0.
In what follows we shall assume

(5.9 ie,0;0,m,9.9) = —x(¢,0;0,7,9,9)q.
The Eq. (3.9) can be written as

L u(@,n,y,q9) 90 o
(5.10) q= - gz !L“W Ox(e,0;0,7,9, 9)q,

where (4.3) was used.
Under the symmetry assumption the balance and compatibility equations (3.3)-(3.5)

become

dv de a0 _do on Oy
005y ~Segx ~Soegy ~Se gy ~Sigx ~Sigy =0
de dv
de a0 6q
000N, —— = +000Ng—— T ar + 00(F5+0N;) S+00(F5+0N;) N

+ 00(Fy+ ON)F = 0.
The system of the Eqs. (3.6)-(3.8), (5.10) and (5.11) — where F, S, N are of the
form (5.1) and g is determined by (4.5) — under the real acceleration waves assumption
is a complete quasi-linear hyperbolic system of equations.
Now, if in the Eq. (5.10) we take u — o0 and suppose that »/u has a positive and finite
limit, i.e.

% 1
5.12 fin L
( ) et 'u‘ k
then
(5.13) Y.y

Qo
(5.19) ¢t > o,
and

_ a0

(5.15) qg= -—k.é.}?'

Therefore, we find the expected classical results.
The quantity

5.16 P
(5.16) c o N

is sometimes called the adiabatic sound speed. This sound speed is obtained from the system
of the Egs. (3.6)—(3.8), (5.10) and (5.11) by putting g = 0 in the Eq. (5.11); and disregarding
the Eq. (5.10). But, if we put g = 0 in the Eq. (5.10), we find 80/6X = 0. The remaining
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system does not, generally, lead to d6/dX = 0. Thus, such a procedure might be applied
to very special cases only.

If the body £ is subjected to a temperature field only, i.e. if weput # =0 and ¢ =0in
(3.6)—(3.8), (5.10) and (5.11), we find a finite velocity of the heat propagation waves

u
5.17 G =
(5.17) a7

with the constrain do/dX = 0.

If the body 4 is subjected to a motion only, i.e. if 6(X, #) = const, then one can look
for a solution of the system (3.6)—(3.8) and (5.11); ,. The Egs. (5.10) and (5.11); remain
as constrains. We find a velocity of propagation as that given by (5.13).

The quantities S,, Ny, N, = —Sp/00, k; T = 1/0x have the following physical meaning:
S, is the instantaneous tangent modulus, N, is the instantaneous coupling modulus, N, is
the instantaneous specific heat, k is the thermal conductivity and 7 is called by some authors
the relaxation time.

To end this section, we observe that

(5.18) <cei<et <l
for any finite u, and

1 T P
e = -2-[c§+c§— |/(c§+cf)3—4cfcﬁ],
(.19)
1 oo o e
2 = 5 [2+c2+ V(2 +cE)? —4ck cE].

6. Shock waves
6.1. General remarks

When at a point P = (X, 1), a shock discontinuity direction is crossed, the jump condi-
tions can be written as (see CHEN and GURTIN [30])

(6.1) eocle]+[o] =0,

(6.2) [v]+c[e] =0,

63) gocle] = 5 clo] [l +calel +Idl,
6.4) gocl] > [%]

where [o] = 0,— 0, etc., ¢(# o0) is the slope of the discontinuity direction and
(6.5) e=E(e,06;0,7,9,9) =F(s,0;5,7,9,9)—0N(,0;0,7,9,9) = yp+6n.

The jump conditions (6.1)-(6.4) are obtained when v, ¢, ..., g are regulated functions
and verify the system (3.6)—(3.7), (5.10) and (5.11) in the weak sense (see Suticiu [6, 7]).
e
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Since g is an internal parameter [see formula (3.15)] and it is continuous with respect
to ¢ for any fixed X (see Sec. 2), then by Proposition 2.5 from SuLiciu [7],

6.7 [q =0 for any direction ¢ # 0.
For a fixed state s, = (e, 05, £5) = (80/0X)s; 05, M5, Vs, 9s), the formulae (6.4) and
(6.7) show that ¢,, 8, are related by

1
(6.8) 00E(e, 0; s3)—E(sp)) = 7 S(e, 0; s3)—S(s5)) b —2p) + S(s0) (e —&5),
where s§ = (05, s, ¥», g») and the index a is omitted. By formal differentiation of (6.8)
with respect to &, we find

( N 1 8S oN
00

(6.9) 0 "2 []) e —?E[G]—'Z*[S]‘Quegg-

When (g, 6) — (&, 05), — 9 exists and is given by

o
de

— N‘
(e0,08) N, 0 [sp

(6.10)

(6.10) tells us that there exists a neighbourhood of (&, 6,) in the (¢, 6)-plane where the re-
lation (6.8) between 6 and ¢ can be given explicit, i.e.

(6.11) 0 =0(), 6,=0(s);

moreover, the shocks of small amplitude propagate with a velocity close to the adiabatic
sound speed (5.16), i.e.

N.(s5) So(sp)

(6.12) eoct = ] s, TR _ gz,

€]

6.2. The Riemann problem in the linearized theory

It is supposed that there exists a neighbourhood of the relaxed state s, = (¢ =0,
0=0,,g=0;0=0,7=0,9 =0, g =0), where

E — 0, F = 0, N = O,
B = po = const, x = %, = const,
1 "
(6.13) F=— aogr +ﬂ20€ +0113T+ qz)
Qo 2emuo

oF
S = Qo—é"—' = 20208+011T

1
N=— = =gt MoaT+an o),
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with

6—0,
6o ’
Then, the system (3.6)-(3.8), (5.10) and (5.11) becomes a linear system of partial
differential equations (compare with ACHENBACK [22]).
The Riemann problem for this system requires to find the solution of the initial value
problem

(6.14) lel <1, T = T <1, |q]<1.

&X,00=0, v=(X,0) T(X,00=0 for X>0,

&(X,0) = &, v(X,0) =9,, TX,00=T, for X<0.

From the mechanical point of view this is the problem of the impact of two elastic bars.
We discuss here the discontinuities at the point (0, 0) from the X, ¢-plane for ¢ > 0,

only. We have four acceleration waves, two shock waves and a steady shock discontinuity
at X = 0 (see Fig. 1). These discontinuities are propagating in an order determined by

(6.15)

t

(e2,T2)

=Y

F1G. 6. Configuration of discontinuity directions: simple line—acceleration waves, double line—shock
discontinuities.

(5.18). Shock waves are propagating with the adiabatic sound velocity given by (6.12).
The steady shock discontinuity is characterized by continuity of stress and particle velocity.
Condition (6.7) gives here [4] = 0, i.e.,

(6.16) 2a0,[T]+ay,[e] =0 for ¢ #0

which is nothing else but condition (6.8). All the quantities at (0, 0) after the shocks passed
can be written as

& = g,(X = 0+,1 = 0) = 0o/200 2 —Vo/2¢,,

&, = &(X = 0—,1 =0) = £,—v5/2¢,— 00/200¢2,

T,

a ) ]
T,X =0+, =0) = 2‘;01 (2;’ + 2";“—),
2 a a

- T 411 | Yo _307?0
T, =T, (X=0 ’I_O)_T°+2¢zoz(2c‘, ———-20% ),

6.17) M =0(X =0+,t=0) =0,
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(6°17) N2 = “qa(X =0—,1= 0) = MNo>»
[cont.]

v=gﬂ(X=0i’t=0)=%on_2;:0L‘ ’
Ota

g =¢q(X =0%,71=0) =0,

1
Y= ‘9—0(002 Ti+asoei+ay, & Th),

1
Y2 = E"(aoz T3+azes+ay &, Ty),
0

0y =0, =0 =2a08,+a;, Ty,
-1

0o = 2a3080+a11 To, 7o =—'6—(2¢120T+011€)-
Qo Uy

Of course, one can compute the jump of derivatives across acceleration waves and study
the way the quantities decay along shock waves, but the purpose of this example was only
to point out the differences between this way of putting the problem and the way in which
it was done by ACHENBACH [22] and Porov [21].

In this framework we look for solutions which are regulated functions (i.e. which are
functions defined at any point in the domain of interest). Accordifig to this point of view
and to the fact that g is an internal state variable, we arrived at the conclusion (6.7) which
implies (6.14). The above cited authors look for solutions which are distributions and
a heat conduction constitutive equation is considered together with balance and compati-
bility equations, but not as a constitutive law for an internal state variable. They find
a jump of heat flux proportional to the jump of temperature across the shock waves.
The slopes found for shock waves are ¢;,(s,) and c,(so) while the shock wave of slope
ca(So) does not appear at all.

However, the condition (6.7) is an often used hypothesis in wave propagation theory,
and it was not weakened by experimental results (see e.g. [30, 31]).

7. Conclusions and remarks

We remark that the “hidden parameters” (g, 77, ¥, ) introduced here, play a similar
role as the history parameter 7 introduced by Suriciu [7], SuLiciu, MALVERN and CRis-
TESCU [8], i.e. they can describe, for instance, how a state, reached instantaneously, moves
to a relaxed one.

The hypotheses made for the existence of symmetric waves, push heat flux g between
internal state variables. Thus ¢ does not jump when a shock wave propagates through the
material. The slope of the shock wave in the X, ¢ plane, is the same as in the case when
a Fourier heat conduction constitutive equation is considered.

Concerning the acceleration waves, it is proved, under certain assumptions (see Pro-
position 4.1) on the evolution equations (3.6) to (3.9), that the usual informations on the
relaxed states [see (5.4) and (5.5)] and on the instantaneous response [see (5.6)] imply



SYMMETRIC WAVES IN MATERIALS WITH INTERNAL STATE VARIABLES 855

that the symmetric waves are real. These acceleration waves are coupled i.e. they carry
jump discontinuities of both mechanical and thermal quantities. On the other hand, the
hypothesis of real symmetric acceleration waves together with the informations (5.4) and
(5.5) on the relaxed state imply (5.6).

When an elastic (linear) bar is impacted at one end, the first propagating wave is an
acceleration one followed by a shock propagating with the adiabatic sound speed, and
a second acceleration wave. This picture is different from the picture obtained by ACHEN-
BACH [22].

We note that the symmetry conditions (3.11) and (3.12) can easily be written for the
more general case treated by KosiNskl and PERZYNA [2] and, in their notations, are

(0 F+00,N)- A =0, 0T-A=0, Q=0 &0=0.

The discussion concerning the reality of acceleration waves is more difficult in this case.
The conclusions, that the heat flux does not jump and that the shock waves of small
amplitude propagate with a velocity close to the adiabatic sound speed still hold.
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