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Symmetric waves in materials with internal state variables (*) 

I. SULICIU (BUCHAREST) 

CoNDITIONS for the existence of symmetric waves are given. A non-linear Cattaneo's heat con­
duction constitutive equation is found and heat flux becomes an internal state variable. It is 
proved under certain conditions that there are two real symmetric and coupled acceleration 
waves propagating with finite speeds. The shock waves of small amplitude propagate with 
a velocity close to the adiabatic sound speed. 

Podano warunki istnienia fal symetrycznych. Wyprowadzono nieliniowe r6wnanie przewod­
nictwa ciepla Cattaneo. Strumien ciepla wyst~puje jako wewn~trzna zmienna stanu. Udowod­
niono przy niekt6rych warunkach, i:e istniej(\ dwie rzeczywiste symetryczne i sprz~zone fale 
przyspieszenia, rozprzestrzeniaj(\ce si~ ze skonczonymi pr~dkosciami. Fale uderzeniowe o ma­
lej amplitudzie rozprzestrzeniaj(\ si~ z pr~dkosci(\ blisk(\ adiabatycznej pr~dkosci diwi~ku. 

,Ua10TCH ycnoBHH cy~ecraoBaaHH CHMMeTpHtmhiX aoJIH. BhiBe):{eHo aenHHeiiaoe ypaaHeHHe 

TennonpoBO):{I{OCTH KaTTaHeo. TioToK Tenna BhiCTynaeT KaK BI{YTpeHHHH nepeMeaaaH cocro­

HI{HH • .IJ:oi<a3ai{O, npH HeKOTOpbiX yCJIOBHHX, 'lTO cy~eCTBYJOT ):{BC ,I:{CHCTBHTCJibHhiC CHMMeTpHl.l­

ahie H COllpH>KCHHbie BOJII{bl YCKOpei{HH, pacnpaCTpaHHIO~HCCH C KOHel.IHbiMH CI<OpOCTHMH. 

Y ,l:{apl{bie BOJII{hl MaJIOH aMnJIHTy):{hl pacnpOCTpaaHIDTCH CO CI<OpOCT:&IO 6JIH3KOH a,I:{Ha6aTH-
l.ICCKOH CI<OpOCTH 3BYJ<a. . 

1. Introduction 

THE ONE-DIMENSIONAL theory is considered. The framework concerning internal state 
variables is that of CoLEMAN and GuRTIN [1]. The present work may be considered as 
a further development of KosiNSKI and PERZYNA's paper [2) in which some additional 
assumptions are made. These assumptions are inspired by CATTANEO's work [10, 11] on 
hyperbolic heat conduction constitutive assumption (used instead of Fourier parabolic 
heat conduction constitutive assumption). See also VERNOTTE [16, 17], KAUSKI [12], 
CHESTER [27], BAUMEISTER and HAMILL [18), MEIXNER [28], TAITEL [29) for the linear 
hyperbolic heat conduction constitutive equation; LYKOV [19], LORD and ScHULMAN [20], 
POPOV [21), ACHENBACH [22), KALISKI [23), TOKUOKA [26], for coupled linear thermo­
elasticity with a total hyperbolic system of equations. For the non-linear constitutive 
equations see SULICIU (13], GURTIN and PIPKIN (14], CHEN [24), Kosn~SKI and PERZYNA 
[2], McCARTHY [32]. BOGY and NAGHDI (33] found that the acceleration waves are not 
generally symmetric with respect to the direction of propagation, though they become 
symmetric when the corresponding constitutive equations are linearized (see also 
CHEN [25]). 

It is proved, under the constitutive assumptions (3.1), (3.2), (3.11) and (3.12), that the 
acceleration waves are symmetric and, if the conditions of Proposition 4.1 and (5.4)-(5.6) 

(*)The paper has been presented at the EUROMECH 53 COLLOQUIUM on "THERMO­
PLASTICITY", Jablonna, September 16-19, 1974. 
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842 I. Suucm 

are satisfied, the accelerations waves are real in the neighbourhood of a totally relaxed 
state. The obtained acceleration waves are coupled i.e. they carry jump discontinuities of 
both mathematical and thermal quantitLs. It is also proved that heat flux does not jump 
across the shock waves. 

When only thermal waves are considered, the second law of thermodynamics together 
with (5.5) imply here that the acceleration wave velocities are real (and symmetric), while 
in the framework of I. MuLER [15] these velocities might only be real, i.e. the second law 
does not imply that acceleration waves are necessarily real. 

2. Preliminaries 

A material point X of a one-dimensional body fJI is characterized here, by two groups 
of four functions: F, S, N, Q and F, S, N, Q. These functions have the following meaning: 
if at a timet, the one-dimensional strain e = (8x/8X)-1 (where x = x(X, t) gives the motion 
of the point X E fJI), the absolute temperature () and its gradient g = ao I ax and the internal 
state variables ip, (i, rj and q are known, then the free energy 1p, the one-dimensional stress 
u, the entropy 'YJ and the heat flux q are determined by 

(2.1) 

1p = F( e, (), g; a, rj, 1jJ, q) , 

u = S(e, 0, g; a, ij, :;p, q), 

'Y) = N(e, (), g; a, rj, ip, (j), 

q = Q(e, (), g; a, rj, ip, q), 

while the time derivatives of the corresponding internal state variables are determined by 

(2.2) 

~ = F( e , () , g; (t, rj, 1jJ, q) , 

~ = S(e, (), g; G, rj, ip, q), 

"ij = N(e, o, g; a, rj, ;;p, q), 

q = Q(e, (), g; d, Yj, ?p, q). 

The set of numbers s = ( e, (), g; u, 'YJ, 1p, q) will be called a thermodynamic state. 
A family of real valued functions s(t) = (< t), l(t), g(t); u(t), 'Y)(t), 1p(t), q(t)) defined of 
an interval [th tf], will be called a thermodynamic process at a material point X e rJI, if 
se R 1 [tb tf] and if it satisfies the second law of thermodynamics 

(2.3) . 1 . o· 1 o 
-1p+ -(JB-'Y) ---. qg ~ ' 

(Jo (Jo 0 

where eo is the mass density in the reference configuration. We say that a real valued func­
tion/ E R 1 [ti, tf] if f is a regulated function on [t;, tf] and has one-sided derivatives which 
are regulated functions on [ti, tf] (see for instance DIEUDONNE, Sec. 7.6, [5], Suucru [6, 7]). 

The functions of class R 1 naturally appear in the studies on wave propagations. 
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SYMMETRIC WAVES IN MATERIALS WITH INTERNAL STATE VARIABLE 843 

If, for the Eq. (2.2), the initial conditions 

(2.4) 

and the functions E, 0, g E R 1 [t i, t 1 ] are given, and F, S, N, Q are good enough functions 
(for instance Lipschitzian functions with respect to s* = (a, rj, tjJ, q) ), then the initial 
value problem (2.2) and (2.4) has a continuous and unique solution a(t), rj(t), ip (t), q(t) 
fortE [tb w), where wE (ti, t1] is a determined number; moreover, for a fixed t E [ti, w), 

this solution is continuous with respect to s( r), 0( r), g( r), rE [ti, t), in the topology 
of uniform convergence. (For additional properties and discussions on this matter, see 
Suucm [6, 7]). 

From now on we assume that F, S, N, Q are at least smooth functions and F, S, N, Q 

are at least continuous functions, with the property that any initial value problem for (2.2), 
with given functions E, 0, g E R1 [ti, t1 ], has a unique solution. 

The restriction imposed on the functions F, S, N, Q and F, S, N, Q by the inequality 
(2.3), obtained by COLEMAN and GURTIN [1], are 

(2.5) 

(2.6) 

aF 
N=--

8() ' 
aF = 0 ag , 

aF- aF- aF -- aF- 1 
-a-S+ -a_N+ -a-F+-a-Q+-o Qg ~ o. 

0' 1} 1p q (}o 

Next, we wish to define the notion of instantaneous response. 
Let c, 0, g E R1 [ti, tJl and 0';, 1Ji, "Pi' qi be given. For t0 E [1;, w), we denote 

Eo= c(to-0), ... , qo = Q(eo Oo,go; iio, "iio, fJo, qo). 

Then, due to the continuity of the solution ii(t), ip(t), ?j(t), q(t) with respect tot, fort E[t;, w), 
we have 

1p(t0 +0) = F(s(t0 +0), O(to+O), g(to+O), iio.., "iio, Vio, qo) 

and we get similar results for O'(t0 +0), 1J{t0 +0), q(t0 +0). 
We call the instantaneous response functions with respect to the given histories 

e( i), 0( T), g( i), for T E (ti, to) and the given initial conditions sf = (O'i, 1Ji, 1pi, qi), the 
following well defined functions 

(2.7) 

where s~ = (<to, "iio, lpo, qo). 

1p = VJI(s, 0) = F(s, 0; s~), 

0' = O'r(c, 0) = S(s, 0; s~), 

1} = 1JI(e, 0) = N(B, 0; s~), 

q = q1(c,O,g) = Q(s,O,g;s~), 

From (2.5) it is obvious that 

(2.8) 
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844 I. Suucm 

3. Acceleration waves 

Since it is known that the family of all possible acceleration waves is a subfamily of 
all characteristics of a quasi-linear hyperbolic system of partial differential equations, we 
shall compute here the characteristics of the corresponding hyperbolic system. 

We put down now the following additional constitutive assumptions: 

(3.1) Q, S, F, N do not depend on g and Q is linear in g, i.e. 

(3.2) Q-(s, 0; g; ii, rj, "ip, q) = -Op(s, 0; ii, rj, ip, q) :~ +OA.(s, 0; a, rj, "ip, q). 

The complete system of partial differential equations governing the one-dimensional 
thermomechanical motion of the body f!l, can be written as 

(3.3) 

(3.4) !!_-~=0 ot ox ' 

(3.5) 
os oO os oO Od 

e0 0Near+e0 0N8Tt+Qe oX+ [Qo-eo(Fq-+ONq-)Op] oX +Qa oX 

ofi o"ip oq - - -
+Qfi oX +Q~ ox +Qq- oX +eo(F;;+ONa)S+eo(Ffi+ONTi)N 

+eo(F'Ji+ON'Ji)F+eo(Fq-+ONq-)OJ. = 0, 

(3.6) o?p F- ( o----) Tt = s, ; a, 'fJ, VJ, q , 

(3.7) Od -( 0 - - - -) Tt=Ss, ;a,'YJ,VJ,q, 

(3.8) ofi N-( o - - - -) Tt= s, ;a,'fJ,VJ,q, 

(3.9) oq o c o - - - -) oo o ~c o - - - -) Tt+ fle, ;d,'YJ,'ljJ,q OX= AS, ;d,'YJ,'l/),q, 

Where V = OX/ ot is the particle velocity. 
The characteristic equation for this system will be 

e~0Noc4 -e0 [Qo-e0 0 p(Fq-+0Nq-)]c3
- eoO[S,No -Ne So+ pQq-]c2 

(3.10) + { Se[Qo-e0 0p(Fq-+0Nq-)] +e0 02N 11 pSq-- So Qe} c+OpSe Qq--OpSq-Qe = 0, 

dX 
c =dt. 

This characteristic equation coincides with the Eq. (3.12) of KosrN:sKI and PERZYNA 
[2] under the hypotheses considered here. 
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SYMMETRIC WAVES IN MATERIALS WITH INTERNAL STATE VARIABLES 845 

Of course, a necessary and sufficient condition to obtain symmetric roots from the 
Eq. (3.1 0) is to vanish the coefficients of c and c3

• But, for the obtained relations, between 
the functions F, N, S, Q and p,, it is not easy to find a physical meaning. 

If we set 

(3.11) Sii = 0, Fii+8Nii = 0 

then the symmetry requirement implies 

(3.12) Q0 = 0, Qe = 0 

and vice versa. 
Conditions (3.11) involve 

(3.13) F( s, 0; 0', rj, 1ft, ij) = F1 ( c, 0; a, rj, l[J) + 0 Fz (a, rj, ljJ, q). 
Under the conditions (3.11) to (3.12) the characteristic equation (3.10) becomes 

(3.14) e5 Noc4 -(!0 (Sr.No+(!o N; + p,Qfi)c2 + p,Sr. Qii =0. 

From (3.1) and (3.12) we obtain 

(3.15) q = Q(O', rj, l[J, q), 

i.e. q becomes itself an internal state variable. 

4. Further consequences of the second law of thermodynamics 

4.1 

First we wish to examine some of the second law consequences in the context of the 
symmetry assumption. 

The hypotheses (3.1), (3.2) and the form (3.13) of the free energy function Fused in 
the inequality (2.6) lead to the following conclusions 

(4.1) 

and 

(4.2) 

Since Q and F2 depend only on the internal state variables, the function p, must be of 
the form 

(4.3) ( (j
. _ _ _ _) _ P,(a, fi, Vi, cj) 

fl c' ' (J' 'YJ' 1p' q - (j3 - . 

We may choose 

(4.4) q = Q(O'' rj' tp' ij) = ij' 
which implies that the function jj, and 8F2 / 8ij must be related by 

(4.5) q = (!ofi(O', rj, "ip, ij) a:; (0', rj, l[J, q). 
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846 I. Suucru 

4.2 

Another important requirement of the constitutive assumptions (2.1) and (2.2) is that 
the symmetric roots of the Eq. (3.14) must be real. This requirement together with the 
second law of thermodynamics will make the above constitutive equations more precise. 
But the determination of the set of all functions, which will satisfy both conditions, is 
a very difficult problem to solve. 

Since we wish to get a better insight concerning the above requirements, we shall 
restrict, in that which follows, our generality. To restrict our generality, more than was 
done by the symmetry requirement, we introduce the notion of a totally relaxed state. 

We say that a state si = (8;, 0;, gi = 0; (];, 'YJ;, 1p;, qi) is totally relaxed if 

(4.6) 

F(si) = F(si, Ot; O'i, 1}i, ljj;, q,) = 0, 

S(st) = se 8;, O;; 0';, 1];, 1fJ;, qi) = o, 
N(s,) = N(8i, 0;; O'i, rji, "ijj;, {j;) = 0, 

A(s;) = A(8;, 0;; 0';, rj;, lp;, q;)•= 0, 

where we have chosen 0'; =(];,etc. We observe that if at t = t; we are at a total~~ ~l~ed 
state we remain there for all t > t;, since it was supposed that the functions F, S, N, t-t 
and A are defined in such a way that any initial value problem for the Eqs. (3.6)-(3.9) 
has a unique solution. 

We can prove the following: 
PROPOSITION 4.1. If the symmetry requirement is satisfied [i.e. if (3.11) and (3.12) hold] 

and if: a) p, and A are of class C2 with respect to q and p, =1= 0, oAjoq =I= 0; b) F, N, S do not 

depend on q and c) si = (8i, 0;, g; = 0; (];, 'YJ;, 'lfJ;, qi) is a totally ·relaxed state, then: 

(4.7) 

(4.8) 

q; = 0, 

P,(si) Aq-(si) ~ 0. 

P r o o f. Consider the process generated by 

(4.9) 8(t) = 8;, O(t) = 0;, g(t) = g = const, t ~ tt 

and which starts at t = ti with 

(4.10) 

where si = (e;, Oi, g = 0; (]i, 'YJ;, 1p;, qi) is a fixed totally relaxed state. Then according to 
conditions b) and c) the initial value of problem (3.6)-(3.9) and (4.10) has a unique solution 

ljj(t) = 'lfJ;, O'(t) = (];, .:nCt) = 'YJ;, 

(4.11) q(t) = q(t, g) = q(t, 8;, 0;, g; (];, 'YJ;, 'ljJ;, q;), t ~ t;, 

q(t, 0) = qi. 

The solution (4.11), the condition c) and (4.5) used in (4.2) lead to the following 
inequality 

(4.12) 
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'we observe that 

(4.13) A{t, 0) = 0 for any t ~ ti, 

i.e. for any fixed t, A as a function of g has a maximum at g = 0. 
Thus we have 

oA 

1

. _ [f-t(si)(.lq-(si)qi+A(si))-.l(si)qi;itq-(si)] ;: (t,O) 
(4.14) ------=::-:--:~--- ---- = 0. 

og g=O - (,u(si) ) 2 

Since 
a­

Y(t)= 
8
;cr,g) 

847 

is the solution of the initial value problem (see for instance Hartman, Chap. V, § 3 [9]) 

dY ( o,u o.l) dt +Oi g oq - oq Y+Oi,u = 0, 

it follows by condition a) of the proposition that 

(4.15) 
oq 

ag-(t, 0) ::f. 0, t > ti. 

Now we choose a fixed t > ti in (4.14) and we find that (4.7) holds. (4.8) follows from 
o2 Ajog2 

::::;; 0 at g = 0 in the same way. Q.E.D. 
Under the conditions of Propositions 4.1 the second law implies that at a relaxed state 

the heat flux must vanish. The meaning of the relation (4.8) will be discussed later on. 
Consider now the state 

So = (eo, Oo, go = 0; ao, 'YJo, tpo, qo = 0) 

which is totally relaxed. Suppose that there exists a neighbourhood U0 of the point 
(e0 , 00 ) in the (e, 0)-plane, such that the solution of the system (3.6)-(3.9) with the 
initial conditions 

(4.16) 

and 

(4.17) E(t) = e = const, O(t) = 0 = const, t ~ ti 

has a finite and unique limit when t --+ oo, i.e. 

limtjJ(t) = VJR(E, 0), . limO'(t) = O'R(E, 0), 

(4.18) 
f-+00 1-+00 

1-+00 1-+00 

where s~ = ( a0 , 'YJo, tp0 , q0 = 0) is fixed. Of course, in this case t f is supposed to be in­
finite. 

From (4.18) and the continuity ofF, S, Nand .l, we obtain lim$(t) = 0, ... , limq(t) = 0, 

i.e. 

(4.19) 

1-+00 1-+00 

F(e, 0, O'R(e, 0), 1JR(E, 0), VJR(E, 0), qR(E, 0) = 0, 

A(e, 0, O'R(E, 0), rjR(E, 0), VJR(E, 0), qR(e, 0)) = 0. 
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848 I. SULICIU 

for any (s, 0) E U0 • This means that any states= (s, g = 0; aR(s, 0), 'YJR(s, 0), "PR(s, 0), 
qR(s, 0)), (c, 0) E Uo (whereaR(c, 0) = S{c, 0; aR(s, 0), "iiR(s, 0), 1pR(s, 0)), etc.) is a totally 
relaxed state. It is obvious that 

(4.20) "PR(s0 , 00 ) = "Po, etc. 

Concerning (4.6)4 and the function qR(s, 0), we observe that if the material is isotropic 
(with respect to the full orthogonal group, which in the one-dimensional case reduces to 
the elements 1, - 1 ), then 

(4.21) A.( c' 0; (1' 1j' 1p' 0) = 0 

for any s = (s, 0, g = 0, a, rj, 1p, q = 0), which means that q(t) = 0 and qR(s, 0) = 0. 
Next, we consider isotropic materials only. 

From the inequality ( 4.2) we obtain 

a"P aF - aF- aF -
7ft= aa S+ arj N + a1p F ~0 

which leads to 

(4.22) 1p1{s, 0, s~) ~ 1p(t) ~ "PR(s, 0), 

where 1p(t) = F(s, 0, <1(t), rj(t), 1p(t)). 
The relations ( 4.22) tell us that the function 

(4.23) 

has a minimum at s = s0 , 0 = 00 • Thus, we can write 

d'ljJJ O * d1p R 
l1o = eo-::l-(co' 0' So) = eo~-(co' Oo) = (]R(co' Oo), us . us 

(4.24) 

and 

(4.25) 

(4.26) 

(4.27) 

dl11 * d(]R 2 , 
[ ]

2 

- arr(co, Oo, So)- -ae(co, Oo) c:;-- 0, 

( 4.24) to ( 4.27) are valid for any totally relaxed state 

So =(so, Oo, go = 0; l1o, 'YJo, 'lj)o, qo = 0). 

Such relations of the form (4.24) and (4.25)-(4.27) are known in the literature. For 
relations of the form (4.24) see CoLEMAN and GURTIN [1] and for relations of the form 
(4.25)-(4.2) see COLEMAN [3] and COLEMAN and GURTIN [4]. 
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5. On the real acceleration waves assumption 

We return now to the problem of the existence of real waves in a material for which 
the symmetry assumption is verified. In this case, taking into account (2.5), (3.13) and 
(4.4), the constitutive assumptions (2.1) can be written as 

(5.1) 

V1 = F(e, 0; a, 1], ;;p, q) = F1(e, 0; a, 1], 1p)+OF2(a, 1], ;;p, q), 

_ _ _ oF1 ( 
0 

_ _ _) 
a = S(e, 0; a, rJ, 1p) = (!o----aE e, ; a, 'YJ, 1p , 

'YJ =N(e,O; a,rj,ip,q) =-
0~1 (e,O;ii,rj,1p)-F2(a,rj,1p,q), 

q = q. 

The internal state variables verify the Eqs. (3.6)-(3.9), where p. has the form (4.3) and Ji is 
related to F2 by (4.5). 

The roots of the Eqs. (3.14) can be written as 

(5.2) 
S~~.No+(!o N'f + fl- V (S~~. No+ (!o N'f + 1-')2 -41-'Se No 

2e0 No 

(5.3) 

where (5.1)4 was used. 
Suppose that for an isotropic body there exists a relaxed state s0 and a neighbourhood 

of it, where the limits (4.18) exist and where the conditions of Proposition 4.1 are satisfied. 
Suppose we know about the relaxed state that 

021pR(eo, 00) _....:....::..:...:.........:...;.__:::.::_>0 
fJe2 

(5.4) 

and 

(5.5) 
a;. 
oq (so)< 0. 

If we know about the instantaneous response that 

(5.6) 

then the second law of thermodynamics implies [see formulas (4.25) and (4.8)] 

(5.7) 

and 

(5.8) 

oS(s0 ) > O 
oe 

p.(so) > 0, 

i.e. the acceleration waves are real (ci > 0, ci1 > 0). If we know (5.4) and (5.5) and we 
assume real acceleration waves, then the second law implies (5.6) 

11 Arch. Mech. Stos. :nr 5-6175 
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The inequality (5.5) is a justified requirement,- since in· the linear case .k = :,..-xq, 
" = const > 0. 

In ·what follows we shall assume 

(5.9) A(t:, 0; u, rj, ip~ q) = -u{t:, 0; u, rj, ip, q)q. 

The Eq. (3.9) can be written as 

(5.10) 
_!_ _ "fi(a, rj, 1p, 'if) ao 0 < o· ____ )_ 
q - - ()2 ax - " e, , (j, 'YJ' tp, q q, 

where (4.3) was used. 
Under the symmetry assumption the balance and compatibility equations (3.3)- (3.5) 

become 

av ot: ao aa orj oip 
eo Tt- Se ax- So ax -sii ax --,sii ax -sifi ax = o, 

(5.11) ~-av=O 
at ax ' 

ae ao oq - --
(!o ONe& +eoONoat + oX + eo(Fa+ONa) S+eo(Frj+ONii)N 

+ eo(Fifi+ ON~)F = 0. 

The system of the Eqs. (3.6)-{3.8), (5.10) and (5.11)- where F, S, N are of the 
form (5.1) and ji is determined by (4.5)- under the real acceleration waves assumption 
is a complete quasi-linear hyperbolic system of equations. 

Now, if in the Eq. (5.10) we take 1-' ~ oo and suppose that uf 1-' has a positive and finite 
limit, i.e. 

(5.12) lim~=_!_ 
IJ-+00 1-' k ' 

then 

(5.13) 2 Se 2 
CI ~-=Cm, 

(!o 

(5.14) c~1 ~ oo, 

and 

(5.15) q = -k ;~. 
Therefore, we find the expected classical results. 

The quantity 

(5.16) 2 Se N; c =---
a (!o No 

is sometimes called the adiabatic sound speed. This sound speed is obtained from the system 
of the Eqs. (3.6)-(3.8), (5.10) and (5.11) by putting q = 0 in the Eq. (5.11h and disregarding 
the Eq. (5.10). But, if we put q = 0 in the Eq. (5.10), we find aejoX = 0. The remaining 
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system does not, generally, lead to iJOfoX = 0. Thus, such a procedure might be applied 
to very special cases only. 

If the body fJI is subjected to a temperature field only, i.e. if we put v = 0 and e = 0 in 
(3.6)-(3.8), (5.10) and (5.11), we find a finite velocity of the heat propagation waves 

(5.17) c~ =-1-l­
eoNo 

with the constrain ou I oX = 0. 
If the body fJI is subjected to a motion only, i.e. if O(X, t) = const, then one can look 

for a solution of the system (3.6)-(3.8) and (5.11)1 , 2 • The Eqs. (5.10) and (5.11)3 remain 
as constrains. We find a velocity of propagation as that given by (5.13). 

The quantities Se, N0 , Nr. = - S0 /f}o, k, r = 1/0" have the following physical meaning: 
Se is the instantaneous tangent modulus, Ne is the instantaneous coupling modulus, N0 is 
the instantaneous specific heat, k is the thermal conductivity and r is called by some authors 
the relaxation time. 

To end this section, we observe that 

(5.18) 

for any finite p, and 

(5.19) 

6. Shock waves 

6.1. General remarks 

When at a point P = (X, t), a shock discontinuity direction is crossed, the jump condi­
tions can be written as (see CHEN and GuRTIN [30]) 

(6.1) 

(6.2) 

(6.3) 

(6.4) 

eoc[v]+ [u] = 0, 

[v]+c[e] = 0, 

1 
eocfe] = 2c[u] [e]+cu[e]+[q], 

eoc[7Jl;. [: J. 
where [ u] = u a- ub, etc., c( # oo) is the slope of the discontinuity direction and 

(6.5) e = E(e, 0; 0', rj, ip, q) = F(e, 0; 0', rj, 1p, q)-ON(e, 0; 0', rj, ip, q) = VJ+OrJ. 

The jump conditions (6.1)-(6.4) are obtained when v, e, ... , q are regulated functions 
and verify the system (3.6)- (3.7), (5.10) and (5.11) in the weak sense (see SuLICIU [6, 7]). 

11* 
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Since q is an internal parameter [see formula (3.15)] and it is continuous with respect 
tot for any fixed X (see Sec. 2), then by Proposition 2.5 from Suucru [7], 

(6.7) [q] = 0 for any direction c #= 0. 

For a fixed state sb = (eb, Ob, gb) = (oOjoX)b; ab, 'YJb, 'f/Jb, qb), the formulae (6.4) and 
(6.7) show that e,u Oa are related by 

(6.8) 

where s: = (O'b, Tjb, ipb, qb) and the index fl is omitted. By formal differentiation of (6.8) 
with respect to E, we find 

(6.9) ( 
oN 1 os ) oe 1 os 1 oN 

eo8----[e] - = --[e]--[SJ-eo8-. 
o() 2 oO oe 2 oe 2 oe 

When (e, 0) -+ (eb, Ob), 
0

0~ exists and is given by 

(6.10) oej _ Ne/ 
Te (e,,O,) - - No Is, 

(6.10) tells us that there exists a neighbourhood of (eb, Ob) in the (e, 0)-plane where the re­
lation (6.8) between 8 and e can be given explicit, i.e. 

(6.11) 

moreover, the shocks of small amplitude propagate with a velocity close to the adiabatic 
sound speed (5.16), i.e. 

(6.12) 

6.2. The Riemann problem in the linearized theory 

It is supposed that there exists a neighbourhood of the relaxed state s0 = (e = 0, 
8 = 00,g = 0; a= 0, 'YJ = 0, 1p = 0, q = 0), where 

s = 0, F = 0, N = 0, 

ji = lio = const, x = x0 = const, 

(6.13) 
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with 

()- Oo 
(6.14) I si ~ 1, T = o;;-, ITI ~ 1, lql ~ 1. 

Then, the system (3.6)-(3.8), (5.10) and (5.11) becomes a linear system of partial 
differential equations (compare with AcHENBACK [22]). 

The Riemann problem for this system requires to find the solution of the initial value 
problem 

s(X, 0) = 0, v =(X, 0) T(X, 0) = 0 for X> 0, 

e(X, 0) = e0 , v(X, 0) = v0 , T(X, 0) = T0 for X< 0. 
(6.15) 

From the mechanical point of view this is the problem of the impact of two elastic bars. 
We discuss here the discontinuities at the point (0, 0) from the X, t-plane for t > 0, 

only. We have four acceleration waves, two shock waves and a steady shock discontinuity 
at X = 0 (see Fig. 1). These discontinuities are propagating in an order determined by 

FIG. 6. Configuration of discontinuity directions: simple line-acceleration waves, double line-shock 
discontinuities. 

(5.18). Shock waves are propagating with the adiabatic sound velocity given by (6.12). 
The steady shock discontinuity is characterized by continuity of stress and particle velocity. 
Condition (6.7) gives here [rJ] = 0, i.e., 

(6.16) 2a02 [T)+a11 [e] = 0 for c "I= 0 

which is nothing el~e but condition (6.8). All the quantities at (0, 0) after the shocks passed 
can be written as 

e1 = Ea(X = 0+, t = 0) = a0 /2e0 c?,-vof2ca, 

e2 = E0 (X = 0-, t = 0) = E0 -v0 j2c0 -a0 /2e0 c'd, 

( a 11 ( Vo Oo 'Y)o ) T1 = TaX= 0+, t = 0) = -
2

- -
2 

+ -
2 2 , 

ao2 Ca Ca 

au ( Vo Oo 'Y)o) T2 = Ta(X = 0-, t = 0) = T0 + -- - - --2- , 
2ao2 2ca 2ca 

(6.17) 1J1 = naCX = 0+, t = o) = o, 

http://rcin.org.pl



854 

(6.17) 
[cont.] 

'YJ2 = 'Y} 4(X=0-,t =0) =7Jo, 

Vo (]o 
v =va(X=O±,t =0) =----, 

2 2e0 ca 

q = qa(X = 0±, t = 0) = 0, 

-1 
'Y}o = --

0
-(2a2o T+a 11 e). 

eo 0 

I. SULICIU 

Of course, one can compute the jump of derivatives across acceleration waves and study 
the way the quantities decay along shock waves, but the purpose of this example was only 
to point out the differences between this way of putting the problem and the way in which 
it Was done by ACHENBACH (22) and POPOV [21). 

In this framework we look for solutions which are regulated functions (i.e. which are 
functions defined at any point in the domain of interest). According to this point of view 
and to the fact that q is an internal state variable, we arrived at the conclusion (6.7) which 
implies (6.14). The above cited authors look for solutions which are distributions and 
a heat conduction constitutive equation is considered together with balance and compati­
bility equations, but not as a constitutive law for an internal state variable. They find 
a jump of heat flux proportional to the jump of temperature across the shock waves. 
The slopes found for shock waves are c11 (s0 ) and c1(s0 ) while the shock wave of slope 
cn(s0 ) does not appear at all. 

However, the condition (6. 7) is an often used hypothesis in wave propagation theory, 
and it was not weakened by experimental results (see e.g. [30, 31]). 

7. Conclusions and remarks 

We remark that the "hidden parameters" (er, rj, ip, q) introduced here, play a similar 
role as the history parameter r introduced by Suucm [7], Suucm, MALVERN and CRIS­
TESCU [8], i.e. they can describe, for instance, how a state, reached instantaneously, moves 
to a relaxed one. 

The hypotheses made for the existence of symmetric waves, push heat flux q between 
internal state variables. Thus q does not jump ~hen a shock wave propagates through the 
material. The slope of the shock wave in the X, t plane, is the same as in the case when 
a Fourier heat conduction constitutive equation is considered. 

Concerning the acceleration waves, it is proved, under certain assumptions (see Pro­
position 4.1) on the evolution equations (3.6) to (3.9), that the usual informations on the 
relaxed states [see (5.4) and (5.5)] and on the instantaneous response [see (5.6)] imply 
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that the symmetric waves are real. These acceleration waves are coupled i.e. they carry 
jump discontinuities of both mechanical and thermal quantities. On the other hand, the 
hypothesis of real symmetric acceleration waves together with the informations (5.4) and 
(5.5) on the relaxed state imply (5.6). 

When an elastic (linear) bar is impacted at one end, the first propagating wave is an 
acceleration one followed by a shock propagating with the adiabatic sound speed, and 
a second acceleration wave. This picture is different from the picture obtained by AcHEN­

BACH [22]. 
We note that the symmetry conditions (3.11) and (3.12) can easily be written for the 

more general case treated by Kosn~SKI and PERZYNA [2] and, in their notations, are 

The discussion concerning the reality of acceleration waves is more difficult in this case. 
The conclusions, that the heat flux does not jump and that the shock waves of small 
amplitude propagate with a velocity close to the adiabatic sound speed still hold. 
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