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Abstract 

In this paper we introduce the adjustment problem corresponding 
to the generic combinatorial optimization problem. It consists in find­
ing less costly perturbations of weights in the original problem, which 
guarantee that the opima! solution of the perturbed problem belong 
to tha specified subset of feasible solutions. 

We study the properties of the adjustment problem an its relations 
to the standard inverse problem in combinatorial optimization. 



1 Introduction 

Let E = { e1 , • •• , en} be an arbitrary finite set called the ground set. For any 
subset F ~ E, Ę(F) = (Ę1 (F), ... ,Ęn(F)f E llłn denotes the characteristic 
vector of F, i.e., Ę;(F) = Le; E Fl, i = l, ... , n, where for any sentence Q, 
LQl = 1 if and only if the logical value of Q is truth. 

Let w : Rn x 2E • R denote the real value function, which we will call 
the weight Junction. In this paper we assume, that for F ~ E 

w(c, F) =CT. Ę(F), (1) 

where c E Rn is a vector of so-called weights of elements of the ground set. 

For a family of subsets g ~ 28 and c E JR" !et 

µ(c, Q) = min{ w(c, F) : FE g}, 

with standard convention, that for arbitrary vector c E Rn, µ(c, g) = oo if 
g =0. 

Given the weight vector c E R and a family :F ~ 2E of so-called feasible 
subsets (feasible solutions) , the generic combinatorial optimization problem 
is defined as follows: 

Find F* E :F such that w(c, F*) = µ(c, :F). 

In tis paper we will use also a mare standard notation for the combina­
torial optimization problem: 

min w(c, F). 
FE:F 

(P) 

Sometimes it is required to find not only a single set F* satisfying the 
condition w(c, F*) = µ(c, :F), but the family of all such sets. Given :F ~ 2E 
and c E JR", we will denote this family by !1( c, :F) and we will call any of its 
element an optima/ solution of the problem (P). 

For :F ~ E and arbitrary family g ~ :F we will define the set S(g) of all 
weight vectors, for which any solution belonging to g is an optima! solution 
of the problem (P). Namely, 

S(g) = {c E !Rn: w(c,F) = µ(c,:F) for any FE g}. 

The set of vectors S(g) is called the optimality region with respect to the 
family g. 
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The optimality region with respect to the family of feasible solutions 
generalizes in a natura! way the notion of so called stability region with 
respect to a single solution j° E F (see e.g. [6, 8]) . It is well known (see 
[8]) that for any F 0 E F the stability region S( { F 0 }) is a polyhedral convex 
cone in JR.n. This implies that also an optimality region with respect to the 
family g forms a polyhedral convex cone in ]Rn which is simply an itersection 
of stability regions with respect to all solutions belonging to the family g. 

Most of discrete opimization problems can be stated in the above form 
or - at least - reformulated to problem (P). In this paper we will frequently 
use as an example the following combinatorial optimization problem: 

Example 
Consider the symmetric undirected graph G shown in Figure 1. Let E be the 
set of all edges of the graph G, i.e., E = { e1 , ... , e7 }, and !et T denote the 
set of all spanning trees in the graph G. From the theorem by Kirchhoff (see 
e.g. [5]) it is easy to calculate that ITI = 21. Figure 2 presents all spanning 
trees belonging to T 

Figure 1: Graph G = (V, E) from the Example. 

Assume naw that in the formulation of the combinatorial optimization 
problem (P) we take F = T and c = c0 = (4, 4, 1, 5, 3, 7, BjT. Thus we are 
faced with a well known (see e.g. [11]) minimum spanning tree problem on 
the graph G with lengts of edges given by the vector c0 • This problem has a 
single optima! solution F* = {e1, e3 , e5 ,e6 } so we have O(c0 ,F) = {F*} and 
w(c0 , F*) = 15. O 
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w(c 0 ,T4 ) • 19 w(c 0 ,T5 ) • 23 

w(c 0 ,T,) = 18 w(c 0 ,T8 ) = 15 w(c 0 ,T9 ) = 16 

w(c 0 ,~0 ) • 20 w(c 0 ,Tu) = 19 

w(c 0 ,"; 4 ) • 17 

w(c 0 ,T16 ) = 19 w(c 0 ,T17 ) = 20 w(c 0 ,T18 ) = 24 

w(c 0 ,T19 ) =16 w(c 0 ,T20 ) = 17 

Figure 2: All spanning trees in the graph G and its weights for c = c0 • 
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2 The adjustment problem 

Consider the combinatorial optimization problem (P) stated for :F ~ 2E and 
c" E JR.n 

min w(c0 , F) 
FE:F 

(2) 

Given an arbitrary subset of feasible solutions :F ~ :F, a set of vectors of 
weights C ~ JR.n, and a real value function f : JR. x JR. • IR, we define the 
adjustment problem related to the problem (2) in the following form: 

Find c* E C such that 

J(c*, c0 ) = min{J(c, c0 ) : c EC} 

and 
µ(c*, :F) = µ(c*, :F). 

We can shortly denote the adjustment problem as fellows: 

min f (c, c0 ) 
cEC 

µ(c, :F) = µ(c, :F). 
(3) 

Let a(:F) denote the optima! value of the problem (3); we will call this 
value the adjustment cost related to the subset :F. 

The adjustment problem may be interpretted in the following way: 

For a given combinatorial optimization problem (P) and an initial vector 
of weights c0 we want to find a new vector of weights c•, belonging to a 
specified set C, and such that some optima! solution of the modified this 
way problem (P), belongs to the set :F. Moreover, we want to minimize the 
adjustment cost equal to f ( c•, c0 ) . 

The set C in the formulation of the adjustment problem is called the 
restriction set and the function f is called the cost Junction. Freąuently, 

J(c,c0 ) = Ile- c0 II, 

where li· li denotes some norm in JR.n. Moreover, typically C = JR.n or C = lR.';.. 
The subset :F of the family of feasible solutions :Fis called required solutions 
set. 

One can iterpret the adjustment problem as an optimization problem 
consisting in finding the „cheapest" (measured by the value of cost function) 
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and admissible (i.e., belonging to the set C) perturbation of the original 
vector of weights, which guarantee that the solution of the original problem 
becomes a solution of the restricted problem with the feasible set F. 

Observe that when the restriction set C contains a vector of weights r!' 
in which all components are equal, then the adjustment problem (3) has 
a feasible solution ce. This follows simply from the fact that this case all 
feasible solutions of the problem (P) have the same weight. In particular, a 
solution of the adjustment problem always exists if C = ]Rn or C = JR~. 

Example ( continued) 
We will formulate an example of the adjustment problem related to the 

minimum spanning tree problem defined for the graph G shown in Figure 1. 
Let us take, as before, F = T and c = ć' = (4, 4, 1, 5, 3, 7, 8jT. Thus the 
initial combinatorial optimization problem (P) is stated as follows: 

minw(c0 ,F) 
FET 

(4) 

Assume now that we are interested in such a solution of the problem 
(4) which is not only a spanning tree, but also forms a path in the graph 
G. This means that we are looking for a solution which is a Hamiltonian 
path in G. Denote by 1i the set of all Hamiltonian paths in G. Obvious­
ly, 1i <;;; T . In our very small example it is easy to see from Figure 2, that 
1i = {Ta, Ts, Ts, T1, Tg, T10, Tu, T13, T14, T21} (spanning trees belonging to this 
subset are distinguished on Figure 2) . 

Our goal is to make the less costly adjustment of the initial weight vector 
c0 , which would guarantee, that the solution of the modified problem (4) is 
a Hamiltonian path in G. 

Assume that the cost of an adjustment is measured by the l1 norm in lR7 

and that C = lR7 • Thus we have the following adjustment problem related to 
the minimum spanning tree problem (4) : 
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min I: lc(e;) - c°(e;)I 
i==l 

µ(c, 1i) = µ(c, T) . 

We will show later that this problem has the following optima! solution: 

c· = (4, 4, 1, 5, 3, 8, af. 
7 

(5) 

We have J(c• , c0 ) = L lc(e;) - c0 (e;)I = 1. Thus the optima! value of the 
i=l 

adjustment problem is equal to l. Comparing the initial vector of weights 
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c0 and a solution c* of the problem (5) it is easy to see that it is enough 
to adjust the initial vector of weights c0 = ( 4, 4, 1, 5, 3, 7, Bf by increasing 
the weight c0 (e6 } by 1 in order to guarantee that the optima! solution of the 
modified minimum spanning tree problem becomes a Hamiltonian path in 
the graph G. 

• 
The adjustment problem is closely related to so-called inverse problem, 

which attract recently significant attention (see e.g. (1]-(6], (12]-(17]}. 

3 The inverse problem and the adjustment 
problem 

Given the combinatorial optimization problem {P} we will will define the 
inverse optimization problem (I) in the following generał form: 

For c0 E Rn, / : Rn x Rn • IR, P ~ :F and C E Rn , find 
c* E Rn such that 

c* E arg min/ (c, c0 ) 

c E S{P) nc. 
(I) 

As before, the function / in the statement of the problem (I) is called 
the cost Junction. The family of subsets P is called the reference solv.tions 
set and the vector c0 - the reference weight vector. The set C is called the 
restrictions region. 

The inverse optimization problem may be interpreted as follows: 

For an initial combinatorial optimization problem (P) we want to find a 
weight vector c•, belonging to the restrictions region C, for which any solution 
from the reference set P is optima! in the problem (P) and, moreover, the 
cost of changing weights vector from the reference value c0 to c•, measured 
by the cost function /, is minimum. 

Thus the only difference in statements of the inverse problem and the 
adjustment problem is that in the in verse problem we require thai all solutions 
belonging to reference solutions set became optima! after changes of weights, 
whereas in the adjustment problem we require that at least one solution from 
this set becomes the optima! one. 
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If the set P contains a single element, i.e., P = {F0 }, then the inverse 
problem is stated as follows: 

min /(c, c0 ) 

cES({F0})nC. 
(6) 

Assume naw that the initial data of the inverse problem are fixed, i.e., 
the initial vector of weights d', the function / as well as the set C are given. 

Let i(F0 ) denote the optima! value of the problem (6). We will call this 
value the inverse cost with respect to the feasible solution F 0 • The inverse 
cost is simply the minimum adjustment cost necessary to make the feasible 
solution F 0 an optima! solution of the problem (P). 

It is naw easy to see that the adjustment cost related to an arbitrary 
subset F is equal to the minimum of the inverse costs with respect to all 
solutions belonging to the set F, i.e., 

a(F) = min{i(F) : FE F}. 

This fact gives, in principle, the way of solving the adjustment problem 
through solving a sequence of the inverse problems for all elements of the set 
F. 

In such a 'brut force' solution one could incorporate simple bounds for 
the optima! value of the inverse problem. Such bounds can be deriver for 
various functions / . 

In the following we will consider the most typical formulation of the in­
verse problem. Namely we will assume that the adjustment cost is measured 
by /1 norm and that the restriction set C is taken as !Rn . Observe that this 
case for F E :F, 

i(F) 2: w(c0 , F) - µ(c0 , :F) 

and 
i(F) :::,; u(c0 ), 

where u(d') denotes l1 distance of the vector c0 from the line c(e;) = 
const, i = 1, ... , n. 
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4 Optimality conditions 

It is easy to see that both defined problems: the adjustment problem and 
the inverse problem, are closely related to the optimality condition for the 
initial combinatorial optimization problem. In fact, this is also the reason 
for difficulty of solving these problems, because such optimality conditions 
are rather seidom available in combinatorial optimization (see e.g. [8]). 

Assume for simplicity that C = ]Rn . Then the inverse problem (I) is stated 
as follows: 

c* E arg min /(c, c0 ) 

c E S(:F) . 
(7) 

The set S(:F) in the formulation of the above problem is an itersection 
of stability regions S( { F}) with respect to all solutions F E :F. 

For some combinatorial optimization problems (see [8]) we can provide a 
complete description of the cone S( { F}) and this leads to efficient algorithms 
for corresponding inverse optimization problems (see e.g. [1, 3, 12, 16]). 

However in generał, the only available optimality conditions are so-called 
trivia! optimality conditions (see [8]). One can hardly expext that these 
optimality conditions might lead to efficient algorithms for the inverse or 
adjustment problems, but they are usefull in understending some properties 
of the problems. 

We will state the optimality conditions with respect to some specified fea­
sible solution F 0 in the context of the simplest inverse optimization problem 
(6) assuming that C = ]Rn (see [8]). 

Let for F E F , I' = { i : e; E F0 \ F} and I" = { i : e; E F \ F0 }. Then 

S(F0 ) { C E lRn : C; = cf + bf - 8; (8) 

and _L(8;1'- 8;) - ,EW- 8;)::,; _Lcf- ,Ecf 
iEl1 iEI" iE/' iEl" 

for any FE F\ {F0 } } . 

Thus the inverse optimization problem may be, in principle, formulated 
as a (large) linear programming problem. We will illustrate this possibility 
on the following example . 
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Example (continued} 
Consider again the minimum spanning tree problem defined for graph 

G shown on Figure 1. Appendix contains a Mathematica programm which 
generates linear programming problem for calculating the inverse cost for any 
spanning tree belonging to the set T. 

All spanning trees in graf G are given explicitly in table T by the incidence 
vectors of corresponding subsets of edges. Vector c0 denotes an initial vector 
of weights. 

First the set of spanning trees is sorted according to the nondecreasing 
weights and a table S of sorted weights is produced. Then for any spanning 
tree the linear programming problem defined by matrix A and right-hand-side 
vector rhs, corresponding to inequalities (8) is solved. Last line calculates 
the inverse costs for all spanning trees, sorted according to nondecreasing 
weights. 

In the table shown in Figure 3 optima! solutions for all spanning trees 
are given. Each row of the table contains values of the perturbations 5t, i = 
1, ... , 7, 51, i = 1, . . . , 7, for weights of graph edges, which correspond to 
the minimum inverse costs. 

Below all inverse costs are given. Observe that the spanning trees are 
ordered according to the nonincreasing weights and that there is no corre­
sponding monotonicity in corresponding inverse costs. 

{O,l,l,l,2,2,2,2,3,3,3,4,4,4,8,5,5,9,11,12,12} 

• 
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Ts o o o o o o o o o o o o o o 
Ti o o o o 1 o o o o o o o o o 
T1 o o o o o 1 o o o o o o o o 
T16 1 o o o o o o o o o o o o o 
T2 o o o o 1 1 o o o o o o o o 
T6 o o o o 1 o o o o o 1 o o o 
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T4 o o o o 1 1 o o o o 1 o o o 
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Figure 3: Solutions of the inverse problems for all spanning trees from the 
Example. 
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5 Appendix 

T= {{l,l,l,0,0,1,0}, 
{l,l,1,0, 0,0,1}, 
{1,1,0,0,0,1,1}, 
{1,l,0,1,0,0,1}, 
{1,1,0,0,l,l,O}, 
{1,l,0,1,0,1,0}, 
{1,1,0,0,l,0,1}, 
{1,0,1,0,1,1,0}, 
{1,0,1,0, 1,0,1}, 
{1,0,1,0,0,1,1}, 
{l,0,0,1,1,1,0}, 
{1,0,0,1 ,1,0,1}, 
{1, o, o, 1, o, 1, 1}, 
{0,1,1,l,0,1,0}, 
{0,1, l,l,0,0,1}, 
{0, 1,0,1, l,l,O}, 
{0,1,0,1,l,O,l}, 
{0,1,0,1,0,1,1}, 
{0,0,1,1,1, l,O}, 
{0,0,1,1,1,0,1}, 
{O,O,l,l,0,1,1}} 

ć' = {4, 1,4,5,3, 7,8}; 

S = Sort(T, 
OrderedQ[{Inner(Times, #1, c], Inner(Times, #2, cl}]&]; 

b = Table[Table[w[[il] - w[[jl] , {j, 21}], {i, 21}]; 

A= Table(Table(Join((l - S[(i]])S[[jl] - S((i]](l - S[[j]]), 
-(1 - S((i]])S([j]] + S((il](l - S[[j]])], {j, 1, 21}], 

{i, 1,21}]; 

Inv = Table(constr = Delete(A[[i]], i]; 
rhs = Delete(b[(i]], i]; Linear Programming[ 

{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, constr, rhs], 

{i, 1, 21}]; 

lnverseCost = Apply[Plus, Inv,{1}] 
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