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534.

A “SMITH’S PRIZE” PAPER(); SOLUTIONS.

[From the Ozford, Cambridge and Dublin Messenger of Mathematics, vol v. (1870),
pp. 182—203.]

1. Mention what form of given relation ¢ (a, b, ¢, ...)=0 between the roots of a
gwen equation will in general serve for the rational determination of the roots; explain
the case of failure; and state what information as to the roots is jfurnished by a given
relation not of the form in question.

In the given relation, ¢ (a, b, ¢,...) must be a wholly unsymmetrical function of
the roots; that is, a function altered by any permutation whatever of the roots; or,
what is the same thing, by any interchange whatever of two roots.

For this being so, if a, B, r,... be the values of the roots, then for some one
order, say a, 83, v, ..., of these values the given relation ¢ (a, b, ¢,...)=0 will be satisfied
by writing therein a=a, b=8, c=v, &c.; but it will in general be satisfied for this
order only, and not for any other order whatever (viz. it will not be satisfied by
writing a=p8, b=a, c=v, &c, or by any other such system). The given equation
determines that the roots are equal to a, 3, v, ... in some order or other, but the given
equation combined with the given relation ¢ (a, b, ¢,...)=0, determines that a is =a
and not equal to any other value, b=8 and not equal to any other value, &c.; and
it thus appears a priori, that the two together must rationally determine each of the
roots a@, b, ¢,...; the a posteriori verification, and actual rational determination of the
values of a, b, ¢, ... respectively, is a separate question which is not here considered.

The function ¢(a, b, c,...) may be of the proper form, and yet the particular
values @, B, v,... be such that the given relation ¢ (a, b, ¢,...)=0 is satisfied, not only
for the single arrangement a=a, b=, c=¢, &c., but for some other arrangement,

1 Set by me for the Master of Trinity, Feb. 3, 1870.
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a=38 b=y, ¢c=p,... or for more than one such other arrangement. (For instance, if
the given relation be a+2b+3c—32=0, and the roots are 3, 5, 7; the relation is
satisfied by a =5, b=3, ¢=7, and also by a=3, b=7, ¢=5.) Here the given equation
and relation do not completely determine each root, they only determine that a is =a
or =8 (or as the case may be = some other one value); and similarly that b is =8
or =g (or as the case may be = some other one value), and so for the other roots
¢, d,...; and it thus appears a prior?, that in such a case each root is determined,
not rationally, but by means of an equation, the order of which is equal to the
number of the values of such root; we have here the case of failure of the general
theorem. ‘

When the given relation ¢ (a, b, ¢,...)=0 is not of the required form; that is,
when ¢ (a, b, c,...) is a partially symmetrical function, there will be in general several

arrangements of a, 3, v,..., such that equating «, b, ¢,... to @, B, v,... according to
each of these arrangements, the given relation ¢ (a, b, ¢,...)=0 will be satisfied; and
it follows that each of the roots a, b, c,... is determined not rationally, but by means

of an equation of a certain order (not necessarily the same order for each of the
roots). Thus, if the relation be symmetrical as regards a pair of roots @ and b; then
if it be satisfied, suppose by a=a, b=8, c=¢,..., it will also be satisfied by a =3,
b=a, c=v,..., but not in general in any other manner; each of the roots a, b has
here either of the values «, B, and the two roots @, b in question will be given, not
rationally, but by means of the same quadratic equation. And observe, moreover, that
any other function 4 (a, b, c,...) of the same form as ¢, that is, symmetrical in regard
to the two roots a@, b, will for the two arrangements a=a, b=8, c=vy..., and a=4,
b=a, c=v,... acquire not two distinct values, but one and the same value, that is,
the value of yr(a, b, ¢,...) will be determined rationally; and so in general.

There is for the partially symmetrical function ¢ (a, b, ¢,...) a case of failure
similar to that which arises for the completely unsymmetrical function, viz. the particular
values a, B, ... may be such as to give more ways of satisfying the given relation
¢(a, b, c,...)=0, than there would be but for such particular values of a, B, v,...;
and there is then a corresponding elevation of the order of the equation for the
determination of the roots a, b, ¢, ... or some of them.

2. If the roots (a, B, v, 8) of the equation
(a1, cid ey (u 1Y =10
are no two of them equal ; and if there exist unequal magnitudes 0, ¢ such that
@+ay : @+8) : (O+n) : B+ =(p+a): (p+A): B+ : ($+3);
show that the cubinvariant ace— ad? —b'e — c¢*+ 2bed is =0; and find the values of 6, ¢.

We have
(eﬂ) x (ﬁ’i@) . (9_+1> s (0 + 8)‘.
d+a/  \p+B/  \p+v/ \$p+3/’
and we cannot have any two of the fourth roots, say Z—E—Z and ¢—-:_—B equal to each
other; for this would imply (6 — ¢)(a—pB)=0, that is, §=¢, or else a=p.

60—2
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+a
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p+a  d+B d+y ¢+8
{t=4/(—1) as usual},

y 6+a .
Hence assuming ;bi» =2\, we may write

-\, —\,

viz. this is one of three systems of equations; the other two may be obtained there-
from by writing v, 8, B and 8, B, y successively in place of B, v, 6. Hence assuming

M i
T +u’

the four values of w are a, B, v, 8, and the corresponding four values of v are A, —},
i\, —t\; and v, u are linearly related to each other; the anharmonic ratio of (a, B, v, 8)
is therefore equal to that of (1, —1, 4, —¢), viz. we have

(@—p)(B-8)_(1=d (=143 _(A-ip __,
@=8)(B=y) A+ (1-19)" ~(T+o ’

that is,
(a—y)(B=3)+(a—3)(B—v)=0,

or, what is the same thing,
2(aB+78) — (@+B)(v+8) =0,
viz. we have this relation, or else one of the like relations
2(ay+0B)—(a+7) (8 +8)=0,
2(ad +By)—(a+8)(B+v)=0,
that is, the product of the three functions 2 (aB+ ¥8)—(a+ B)(y+ 9)
18 =10

But the product in question is (save as to a numerical factor) the cubinvariant J of
the quartic function; or the equation in question is the required equation J=0.

More simply, the linear transformation v= _——, gives for v the equation ©»*—A4=0;

¢ +
which is (1, 0, 0, 0, —=\*Jw, 1)*=0; the cubinvariant hereof is =0, and therefore also

the cubinvariant of the original function (@, b, ¢, d, eQu, 1)

Reverting to the equations

0+a 0+p8 0+ _ 0+8 ;
=ik 4 i B4 e s il v PR Ry
é+a A, $+8 A, g =1\, $+d W,
(which, as we have seen, give 2(aB+y8)=(a+B)(y+38)), the same equations give
0+a 6+8B . O+q 60+
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b

that 1is,

200 + 2a3 — (6 + ¢) (a + B) =0,

209 +2y8 — (0 +¢) (v +8) =0,
or, what is the same thing,

20 : 2 : 0+p=—aB(y+38)+vd(a+p)
y+8 — a—-p
78 o aﬁ,

viz. we have thus the values of 6¢, 6+ ¢ (and thence of 6, ¢) corresponding to the
relation 2 (aB+ y8) = (a+B) (y+8) of the roots. And by cyclically permuting B, v, &

as before, we have the values of 60¢, 6+ ¢ corresponding to the other two forms
respectively of the relation between the roots.

3. If in a plane A, B, C, D are fized points and P a variable point, find the
linear relation

a. PAB+B3.PBC+vy.PCD+&.PDA =0
which connects the areas of the triangles PAB, dec.

Taking (z, y, 1), (#, %, 1), &c. for the coordinates of P, A, B, (, D respectively,
we have . '

PAB=) z, y, 1|, =012, suppose,

Zy, Yo 1

z, x, 1
PBC =023, &c.

(where the values of the several determinants fix the signs of the several triangles).
The identical equation then is

a.012+3.023 +v.034+5.041=0;

(that such an equation exists appears at once by the consideration that a, 8, , & can
be determined so that the coefficients of #, y, and the constant term shall severally
vanish); and in order actually to find the values we may make P coincide with the
points 4, B, C, D successively. We thus have

B.123+v.134=0,
v.234+8.241 =0,
§.341 +a.312=0,

a.412+8.423=0,
or, what is the same thing,
o 123+’Y .34!1 :Oy

234+ .412=0,
341 4« .123 =0,
a.412+8.234=0,

OF =25 D
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and these are at once seen to give
a: B :y:8=234.341 : —341.412 : 412.123 : —123.341,
so that the required identical relation is
012.234.341 —023.341.412 + 034.412.123 —041.123. 341 =0,

in which 012, 023, 034, 041 stand for the triangles PAB, PBC, PCD, PDA, and 234,
341, 412, 123 for the triangles BCD, CDA, DAB, ABC respectively.

4. Find at any point of a plane curve the angle between the normal and the line
drawn from the pownt to the centre of the chord parallel and indefinitely near to the
tangent at the point.

Ezamine whether a like question applies to a point on a surface and the indicatriz
section at such point.

Taking the origin at the point on the curve, the axis of # coinciding with the
tangent and that of y with the normal; the equation of the curve taken to terms

of the third order in # will by
y = ba? + ca?,

and if, considering # as a small quantity of the first order, and therefore y as a small
quantity of the second order, we regard y as given, and find the two values 2, .,
each of the order #/(y), which satisfy the equation, then, as will appear, z;+, is a

small quantity of the order 2% and consequently Bt % Wil have a finite value. And
if ¢ be the required angle, then obviously tan¢=“—w‘;—-—x—2).
3
We have as a first approximation baz®=vy, or sa b 2 , whence to a second
PP Y y b
¢ 3 : } " }
imati PRIIAL. PPN iR, S A% L0 i (T 2R
approximation bz* =y ok ®r (1 b#)’ whence « 5 <1 2b*)’ ity say
we have
3
gl gt
NT sxbil B
ey o B
i 2
and thence
Yot a) ==
whence
t s 48
80§ == ops>

which gives the value of the angle ¢; it would be easy to express b, ¢ in terms of
the differential coefficients
dmy» dx2y» dz"‘y-

www.rcin.org.pl
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It would at first sight appear that a like question might be asked as to a
surface ; viz. that it might be proposed to determine the angle between the normal
and a line drawn from the point to the centre of the indicatrix conic. But this is
not so; in fact, taking the origin at a point on the surface, the axes of z, y being
in the tangent plane, and the axis of z coinciding with the normal: then to the third
order we have

z=(4, B, CQ=, yP+(a, b, ¢, dJz, y)*;
but here, regarding z as a given constant, if we take account of the terms of the
third order, the section is not a conic but a cubic; and it has not in general any
centre; and if (as in the ordinary theory) we neglect the terms of the third order,
thus obtaining an indicatrix conmic, the centre of this conic lies on the normal, and
there is no angle corresponding to the angle ¢ of the plane problem.

The only case where there is such an angle is when the cubic terms (@, b, ¢, dz, y)°
contain as a factor the quadric terms (4, B, C¥z, y)* (one relation between the
coefficients A, B, C, a, b, ¢, d). For then we have

z=(4, B, CQz, y»(1+ 2z + 2my), viz.
z=(4, B, CQ=, y)?+ 2 (lez + myz),

approximately to the third order; and then regarding z as a given constant, this last
equation represents a conic having for the coordinates of its centre, say z=az, y= Rz,
and there is an angle ¢ =tan™4/(a®+ B3°); this is, in fact, what happens in the case
of a quadric surface, for the section by a plane parallel and indefinitely near to the
tangent plane is then a conic, the centre of which is not on the normal; and the
angle ¢ (in the case of a central surface) is in fact the inclination of the normal
to the radius from the centre.

I take the opportunity of adding a remark that the indicatrix is never a parabola,
but in the separating case between the ellipse and the hyperbola it is a pair of
parallel lines. The indicatrix, a parabola, is commonly obtained as follows: viz. taking
the axes as before, but starting from an equation U =0, the equation presents itself
in the form

Z= (A B GG H e s 2),

which, considering z as a given constant, represents a conic which, it is said, may be
a parabola. But observe that z is of the order (z, y)’, the terms 2Fyz+ Gzz, are
consequently of the order (z, y)°, but they are not all the terms of this order which
would be obtained by the expansion of z as a function of (z, y); there is consequently
no meaning in retaining them, and they ought to be rejected; similarly the term in
2* which is of the order (2, y)* ought to be rejected; the equation is thus reduced to

2= Aa*+ 2Hzy + By,

which, when AB— H*®=0, represents not a parabola but a pair of parallel lines. On
referring to Dupin’s Développements de Géoméirie, &c. (see p. 49) I find that he is
quite accurate; his expression is, “elle peut cependant étre une parabole; alors elle
se présente sous la forme de deux droites paralleles équidistantes de leur centre”: and
he afterwards examines in particular “ce cas remarquable.”

www.rcin.org.pl



480 A “SMITH'S PRIZE’ PAPER; SOLUTIONS. [534

5. Shew that a cubic surface has at most four conmical points; and a quartic
surface at most sizteen conical points.

If a cubic surface has two conical points, then the line joining these has with the
surface two intersections at each of the conical points, and therefore lies wholly in
the surface. Hence, for a cubic surface with three conical points 4, B, C, the lines
AB, BC, CA lie wholly in the surface, and these three lines form the complete section
of the surface by the plane ABC; it is clear that there cannot be in this plane a
fourth conical point: but there may be, not in this plane, a fourth conical point D.
Suppose that this is so, there cannot be a fifth conical point Z; for if there were,
the line DE would lie wholly in the surface, and would therefore meet the plane ABC
at some point in the section of the surface by this plane; that is, at some point in
one of the lines AB, AC, BC; say at a point in AB: but then the lines AB, DE
would intersect, or the four conical points 4, B, D, £ would lie in a plane. Hence
there cannot be any fifth conical point Z.

For a quartic surface; suppose this has & conical points, and let any one of these
be made the vertex of a cone circumscribing the surface; each generating line is a
tangent of the surface; and considering any section by a plane through the vertex,
and observing that from a double point of a quartic curve we may draw six tangents
to the curve, it appears that the order of the cone is =6. It is easy to see that
the lines from the vertex to the remaining (k¥ — 1) conical points are each of them a
double line of the cone, and that the cone has not any other double lines; the cone
is therefore a cone of the order 6, with (k—1) double lines. A proper cone of the
order 6 has at most 10 double lines, but the cone need not be a proper one; it
may, in fact, break up into 6 planes, and in this case the double lines are the
15 lines of intersections of the several pairs of planes. Hence k1 —1 is =15 at most:
or k£ is =16 at most.

6. Find the differential equation of the parallel surfaces of an ellipsoid.
2

2 2
Let (#, y, z) be the coordinates of a point on the ellipsoid %+g—2+%=1;

(X, Y, Z) the coordinates of a point on the normal at a distance =k from the first-
mentioned point. We have

X——x_Y—y_Z—-z

E y TR = p suppose;

a? bz c?
that is,

i £ i lid i P
X—w(1+‘?), Y-y(1+b2), Z—z<1+gz>,
and thence
g o2 (L LG
k "p2(a4+b4+cq> ®
Moreover
X 0»Yy ¢z




534] A “SMITH'S PRIZE’ PAPER; SOLUTIONS. 481

substituting these values in the equation of the ellipsoid, we have
A b*Y? c2Z?
S@rpr @ eyt @or
which determines p as a function of X, ¥, Z. The tangent plane of the ellipsoid at
the point (z, y, 2z) and of the parallel surface at the point (X, Y, Z), are parallel to

each other (or what is the same thing, the parallel surface cuts at right angles the
normal of the ellipsoid), we have therefore

—dX+ dY+ dZ 0,

b2
or substituting for #, y, z their values, this is
XdX . YdY o ZdZ
@+p V+p +p
where p denotes as above a function of (X, ¥, Z) given by the equation
arX: DS c*Z
o T 2 5 2 2+ 2 2 *
(@+p)y  (B+pf (¢+p)
We have thus the differential equation of the parallel surfaces. It may be remarked,
that the integral equation (involving %k as the constant of integration), is found by
the elimination of , y, z, p from the foregoing equations
B o G ol ¢
—a,2+p’ y_b2+P1 _O2+P,

gy 2=2(ﬁ29fz_2)
++ lkpa,,+ +5)

b b
or, what is the same thmg, by the elimination of p from the equations
k2 X2 V& 72

P @+pr B pr T @+
Lol ot X /4 i N g
T(@tpy Bpyr (et
d 3 )iy " PR
+p U+p E+p p
v iy + - it & s AR 0
@+pr T @rpyr @y T
or, since here the second equation is the derived equation of the first in regard to
the parameter p, the parallel surface is the envelope of the quadric surface
X2 - b b i Lt 0
a+p bV+p SE+p p

these may be replaced by

where p is the variable parameter. Or analytically, we find the equation by equating
to zero the discriminant in regard to p, of the quartic function

s X V& 7t
p(a2+p)(b2+P)(0‘+P)(1 s ”a2+p_b2+p_c”+p)'

C. VIIL 61
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7. Explain wherein consists the peculiarity of the following problem, and solve it
by geometrical considerations :—

Determine the least circle wnclosing three given points.

The peculiarity of the problem is that the variable parameters upon which the
circle depends, (say @, B the coordinates of the centre and % the radius), are not
subject to any equations, but only to the inequalities

k> (a — )+ (,B g :81)2:
k> (a - a) + (8 — B,
k2> (o —a;)* + (B — By)%

(o4, Br; @5, Ba; a3, By, the coordinates of the given points, and the sign > including =).
The problem therefore cannot be solved by the ordinary analytical method, but it is
easily solved geometrically as follows: Let A, B, C' be the three points; consider all
the circles inclosing the three points, viz. O a circle not passing through any of them ;
A a circle through the point 4, B a circle through the point B, AB a circle through
the points A and B, &c. Then for any circle O, if the centre be fixed and the
radius gradually diminish, the circle will at last pass through one of the points ABC;
that is, every circle O is greater than some circle 4, B, or C; and the circle O is
therefore not a minimum. Taking next a circle 4, we may imagine the centre to move
from its original position in a straight line towards the point A, the circle thus
gradually diminishing until it passes through one of the points B or C'; that is, every
circle A is greater than some circle AB or AC, and therefore no circle 4 is a minimum;
and in like manner no circle B or (' is a minimum. There remain the -circles
AB, AC, BC; if the triangle ABC is acute-angled, then in each series, the least circle
is the circle ABC circumscribed about the triangle; and this is then the minimum
circle inclosing the three points. But if the triangle is obtuse-angled, say at C, then
the least circle CA or CB is the circle ABC circamscribed about the triangle; but
this is not the least circle AB, viz. the circle AB, being diminished to ABC, may
be further diminished until it becomes the circle on the diameter AB; but below
this it cannot be diminished; and consequently the minimum circle inclosing the three
points is in this case the circle on the diameter 4B.

8. A particle describes an ellipse under the svmultaneous action of gwen central
Jforces, each wvarying as (distance)™, at the two foci respectively: find the differential
relation between the time and the eccentric anomaly.

Taking the equation of the ellipse to be —+ —1, and the absolute forces at

I
the two foci (aze, 0), (—ae, 0) to be w, u' respectively, the differential equations of
motion will be

dz_  x—ae _ (zc+ae)
de= Ha—exyp ¥ (ateaxp’
&y _ y N

e~ Pla—exyp " (a+exy

www.rcin.org.pl
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But if u be the eccentric anomaly, then
z=acosu, y=bsinu, =as(l—e)sinu,

and the equations become

<ol O du\? U COSU—e u  cosu+e
- —=—CO8U(—; | =—= -=
S e . (dt) @ (1—ecosu) a* (1+ecosu)
; du)\? i sin u w sin u
COSU———8NU(F|=—% o T
i dt? (dt) a® (1.—ecosu) a* (1+ecosu)’

and multiplying by —cosu, —sin u respectively, and adding, we have

<du)2 L ik w 1

dt)  a* (1—ecosuy ' a (1+ecosu)’

which is the required differential relation.

9. Show that the attraction of an indefinitely thin double-convex lens on a point at
the centre of ome of its faces is equal to that of the infinite plate included between the
tangent plane at the point and the parallel tangent plane of the other face of the lens.

The figure represents the upper half only of the lens, but in speaking of any
portion thereof, such as PRQ, we include the symmetrically situate portion of the
under-half of the lens. :

Ar

M,

P Q

Let a, =PQ, be the thickness of the lens, 2 NPQ =2\, which angle is ultimately
=7§r. Then it is at once seen that the attraction of the cone NPQ is =2ma(l —cosA):

and from this it follows that the attraction of the infinite plate is =2ma. The
attraction of the whole infinite plate except the cone NPQ is =2macos), which is
indefinitely small in regard to 2wa; and, a fortiori, the attraction of the portion MPR
of the lens is indefinitely small in regard to 2ma. We have then only to show that
the attraction of the solid NRQ is indefinitely small in regard to 2ma; for, this being
so, the attraction of the lens may be taken to be equal to that of the cone NPQ,
and will therefore ultimately be =2ma, the attraction of the infinite plate.

61—2

www.rcin.org.pl



484 A “SMITH'S PRIZE~ PAPER ; SOLUTIONS. [534

Let the position of an element of the solid in question be determined by r its
distance from P, 6 the inclination of » to the axis PQ, and ¢ the azimuth in regard
to any fixed plane through the axis; then dm=1*sin @drdfdp, and the attraction

in the direction PQ is = f sin @ cos O dr d0 d¢p, = 2m f (é’g - r) sin @ cos 6 df, the integral

in regard to ¢ having been taken from ¢=0 to ¢ =2, and that in regard to =

from r=7 (value at the face M@ of the lens) to r=£o (value at the tangent plane

@N). Taking the radius of the surface QM of the lens to be = 1, we have
(1—a+rcos 0)*+ r*sin®* 6 =1,

that is,
r’+ 2rcos 0 (1 —a)=2a— a?,
{r+ (1 —a)cos 0}*=(1 — a)*cos® 6 + 2a — a?,
or
r=—(1—a)cos 8+ /{(1—a)cos?d + 2a — a?},

which is the value of » to be substituted in the formula

1 . 4

2~7—rA=f(as1n 6 — r sin 0 cos ) d6,
and the integral is to be taken from =0 to 6 =\; viz. this is

f[a sin @ + (1 — a) sin 6 cos? @ —sin 0 cos 6 V/{(1 — a)* cos* O + 2a — a?}] 46,

=—acos 0 —1(1—a)cos®d+ } ) {(1 - a)cos? 0 + 2a — a?}};

3(1—-ay

so that taking this between the limits in question, we have

2’17;A=a(1—cos)\)+§(l—a)(1—cos3)\)+ )2[{( a)’cos’x+2a—a2}*—l]

3(1

or writing for greater convenience X—§ u, (u=2 PNQ), this is

-A—a(l—smp)+3}(1—a)(1—sm p,)+ 1— a)psin® p + 2a — a2}t — 1]

1 :
FA=a L

+ 3(11——_:55 [{(1 - a)*sin? p + 2a — aﬂ}i — (1 —a)sin® u]
=ﬁ(— 3a% + 2a®) — asin u
+ WI:J’ [{(1 = a)y*sin® u + 20 — a’}a - (1—a)*sin®ul;
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sin w is here an indefinitely small quantity of the order !, all the terms are therefore

at least of the order af, and are to be neglected in comparison with «; or neglecting
such terms we have A =0 (that is, the attraction of the solid NRQ is indefinitely
small in regard to a); and the theorem is thus proved.

10. Indicate in what manner the Lagrangian equations of motion

d dl dT dV

di d' dg T dE’

dc.
lead to the equations

A %%’+(O—B)qr=0, de.
Jor the motion of a solid body about a fized point.

The expression of the vis viwa function 7' is
T =1 (Ap*+ Bg*+ Cr?),

but this expression will not by itself lead to the equations of motion; we require to
know also the expressions of p, ¢, » in terms of certain coordinates A, wx, », which
determine the position of the body in regard to axes fixed in space, and of the
differential coefficients A, u’, »" of these coordinates in regard to the time; each of
the quantities p, g, » will be a linear function of N, u', v (p=aN + by +c¢, &c.),
containing in any manner whatever the coordinates A, u, ». This being so, the equations
of motion will be

d dT' dT . dar dp

G el i, dq dr

C. 5 Ex,: pgx,+Bqﬁ,+Crﬁ,,

dp dq dr
where d“ﬁ, d_k" d-h—,

only terms containing the differential coefficients of p, ¢, , are the terms

are each independent of N, u’, »'; hence, in the equation, the

P gt gi drlode

N Tl aN Tt Tdh T gk

of gz.%f:; and hence, assumirng that the equations of motion are the known equations
dp S o Sntl Gl IR i
A i +(C—=B)gr=0, it appears that the equation i v ﬁ_o will assume the form
dp (,dp - } dg (,,dq o } dr (dr o
W{Aa—ﬁ(o B)gr +ﬁ,{3%+(f1 C)rp +d—x,{0a7+(B—A)pg}—O,

there are of course two other equations only differing from this in that in place of
N, they contain ' and »' respectively; and since p, g, r regarded as functions of
N, w', v/ are independent functions, the determinant formed with the differential coefficients
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dp dq dr
dr'’ dN’ d\’
they should be) to the equations

&c. is not =0; and the three equations are therefore equivalent (as

A % +(C—=B)gr=0, &c.

What precedes is a complete answer to the question, but in regard to the actual
expressions of p, ¢, », it may be remarked, that these quantities may be expressed very
symmetrically in terms of the quantities

A, u, v=tanf@cosf, tan}fcosg, tan}6 cosh,

which determine the positions of the principal axes in regard to the axes fixed in
space, by means of the angles of position (cosf, cosg, cosh) of the resultant axis, and
the rotation @ about this axis; viz. writing x =1+ + u®+2% we then have

kp=2( N+ —w),

kg =2(—vN + p +N\),

kr =2( pN —a' 4+ V),
and the above result may be verified a posterior: without any difficulty. See Camb.
Math. Jour., vol. 111. (1843), [6], sp. 224, [Coll. Math. Papers, vol. 1. p. 33].

11. Find in the Hamiltonian form,

dn_dH dw__dH
- L T S
the equations for the motion of a particle acted on by a central force.

Taking as coordinates » the radius vector, v the longitude, y the latitude, the
equation of the vis viva function is

T=4%{r*+r(cos*y .v"” + y")},
P de o

ar’ = 14 =T suppose,

hence

gg;;rzcoszy.p':v Lt

BT o
dy/_ ”"Z/ _y » ’

and the expression of 7' in terms of », v, ¥, and of the new coordinates r, v, y is

2 2
T=1}(r2+ b +y>;

rcosty 12

whence writing

Hej(or e Y)Y,

ricosty | 1

www.rcin.org.pl
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the equations are
dH  dr 'dH dv dH _dy

TR T OE T W

df. .. dr. . dH dv. dH _ dy

T S i (R ey
We have

af . .4l ...¥ dH. 'y

dr =" dv T sy’ dy

t_i_l!___l( it 0 :)__dV dH_O dH _  vsiny
dr = 1% \cos’y A’ dv T dy T reosty’

and, substituting these values, the equations of motion present themselves as six equations
of the first order between », v, %, r, v, y, and ¢ in the form

& o e W o dr _dv_ _ dy
¥ __L,_l—_1<_ﬂ 2>_gl_V'o‘_vzsinzy-
rasy o eleesty G oy

12. An unclosed polygon of (m+1) wvertices is constructed as follows: wiz. the
abscisse  of the several wvertices are 0, 1, 2...m, and, corresponding to the abscissa k, the
ordinate s equal to the chance of (m+k) heads in 2m tosses of a coin; and m then
continually increases up to any wvery large value: what information in regard to the
successive polygons, and to the areas of amy portions thereof, is afforded by the general
results of the Theory of Probabilities ?

It is somewhat more convenient to take account also of the abscisse — 1, —2, ..., —m,
thereby obtaining a polygon of 2m+1 vertices, symmetrical in regard to the axis of .
In such a polygon, the sum of the 2m+ 1 ordinates is =1; the central ordinate is
the largest, and the ordinates continually diminish as % increases: moreover for any
large value of m the area of the whole polygon is very nearly, and may be regarded
as being, =1; and the area between the ordinates corresponding to the abscissee +£k,
—k as being equal to the probability of a number of heads between m+k m—£k, in
the 2m tosses of the coin. A general result of the Theory of Probabilities is that in
a great number of trials the several events tend to happen in the proportion of their
respective probabilities; viz. in the case of the 2m tosses there is a tendency to an
equal number of heads and tails. But observe that this does not mean that the
probability of m heads and m tails increases with the number 2m of the trials; or
even that, @ being any given number, the probability of a number of heads between
m+ a and m —a increases with the number 2m of trials; on the contrary, it diminishes;
what it does mean is that taking the limit of deviation to vary with m, say a number
of heads between m + am, m — am, the probability of such a number increases with m ;
viz. that taking a« a fraction however small, m can be taken so large that the
probability of a number of heads between m + am, m —am in the 2m trials, shall be as
nearly as we please =1.

www.rcin.org.pl
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The conclusion in regard to the areas of the polygons is that, taking % any given
value whatever, however large, the ratio (m being of course >%) which the area between
the ordinates to the abscissee m +%&, m—k bears to the area of the whole polygon
(or to unity) continually decreases as 2m increases, and ultimately vanishes; but con-
trarywise, taking a any given fraction whatever, however small, the ratio which the area
between the ordinates to the absciss® m + am, m —am bears to the area of the whole
polygon (or to unity) continually increases as 2m increases, and ultimately becomes =1.

13. Show that for the quadiic cones which pass through siz given points the locus
of the wvertices s a quartic surface having upon it twenty-five right lines; and, thence or
otherunse, that for the quadric cones passing through seven given points the locus of the
vertices 18 @ sextic curve.

Suppose U=0, V=0, W=0, S=0 are any particular four quadric surfaces passing
through the six points, say

(U=(a,...) (2, 'y, 2, w), V=( ..)(y 2 wp &c.);
then the equation of the general quadric surface through the six points will be
aU+ BV +yW +88=0,

and this surface will be a cone, having (z, y, 2z, w) for the coordinates of its vertex, if
only we have simultaneously

dU dV dW dsS

+’8dx SOE
aﬂf+ &ec. =)
dy
a%g+ &e. v =10,
adag+ &e. =0

Eliminating (a, B, ¢, 8) we have an equation V =0, where V is the Jacobian or
functional determinant (W—')g) formed with the differential coefficients of the
four functions (U, V, W, S): the locus of the vertex is thus a quartic surface.

Calling the six points 1, 2, 3, 4, 5, 6, then taking as vertex any point in the line
12, the lines from such point to the points 1 and 2 coincide with the line 12, and
we can through this line and the lines to the remaining points 3, 4, 5, 6 describe a
quadric cone; the quartic surface therefore passes through the line 12; and similarly
it passes through each of the fifteen lines 12, 13, ..., 56.

Again, taking the vertex anywhere in' the line of intersection of the planes 123
and 456, we have an improper quadric cone, viz. the plane-pair formed by these two
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planes; the line in question is therefore a line of the quartic surface; and similarly
the quartic surface contains each of the ten lines 123.456, 124.356,..., 156.234. We
have thus in all 25 lines on the quartic surface.

In the case of seven points 1, 2, 8, 4, 5, 6, 7, the locus is the curve of inter-
section of the quartic surfaces which correspond to the points 1, 2, 3, 4, 5, 6 and the
points 1, 2, 3, 4, 5, 7 respectively: these have in common the ten lines 12, 13, 14, 15,
23, 24, 25, 34, 35, 45 (which it is easy to see do not form part of the required locus),
and they have therefore, as a residual intersection, a curve of the order 16 —10, =6,
or sextic curve, which is the locus of the vertices of the cones which pass through
the seven given points.

14. Show thuat the envelope of « wvariable circle having its centre on a given conic
and cutting at right angles a gwen circle vs a bicircular quartic; which, when the given
conic and curcle have double contact, becomes a pair of circles; and, by means of the
last-mentioned particular case of the theorem, connect together the porisms arising out of
the two problems :

(1) given two conics, to find a polygon of n sides inscribed in the one and circuwm-
scribed about the other ;

(2) gwven two circles, to find a closed series of n circles each touchzng the two
gwen circles and the two adjacent circles of the series.

The equation of the given circle is taken to be
(@—a)y+(y—By=1"
and that of the conic af F =1. This being so, we have acosf, bsinf as the
coordinates of a point on the conic, which point may be taken to be the centre of
the variable circle, and introducing the condition that the two 01rcles cut at right
angles, the equation of the variable circle is
(x —acos )y + (y —bcos )= (a—acos )+ (B —bsin ) —
that is,
2+ y*— a® — B + o* — 2ax cos @ — 2by sin § = 0,
where 6 is the variable parameter; and the equation of the envelope therefore is
(.1)2+y2—-a2—~,32+fy?)2— 4a2x2_4b2 8 =

which is a quartic curve; and writing herein g, Z in place of z, y the equation would

be of the second order in regard to a*+3?° z and it thus appears that the curve has
double points at each of the points 2*+y*=0, z=0, viz. that the envelope is a
bicircular quartic.

If the fixed circle touches the conic, then by a consideration of the figure it at
once appears that the point of contact is a double point on the curve; and so if
there is a double contact, then each of the points of contact is a double point on
the curve. But in this case the curve is a bicircular quartic with jfour double points;
viz. it is a pair of circles.

C. VIIL 62
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The porism in regard to the two conics is, that in general it is not possible to
find any polygon of = sides satisfying the conditions; but that the conies may be
such that there exists an infinity of polygons; viz. any point whatever of the one
conic may then be taken as a vertex of the polygon, and then constructing the figure,

the (n + 1)™ vertex will coincide with the first vertex, and there will be a polygon of
n sides.

Now imagine that the conic touched by the sides is a circle having double contact
with the other conic. Describe any one of the polygons, and with each vertex as
centre describe the orthotomic circle, which will, it is clear, be a circle passing
through the points of contact with the fixed circle of the sides through the vertex.
We have thus a closed series of n circles, each touching the two adjacent circles of
the series. And by considering any other polygon, we have a like series of = circles:
and by what precedes the envelope of all the circles of the several series is a pair of
circles; that is, the circles of every series touch these two circles. We have consequently
two circles, such that there exists an infinity of closed series of = circles, each circle
touching the two fixed circles, and also the two adjacent circles of the series; which
is the porism arising out of the second problem.
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