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514.

ON THE PROBLEM OF THE IN-AND-CIRCUMSCRIBED
TRIANGLE.

[From the Philosophical Tranmsactions of the Royal Society of London, vol. cLXL (for the
year 1871), pp. 869—412. Received December 30, 1870,—Read February 9, 1871.]

THE problem of the In-and-Circumscribed Triangle is a particular case of that of
the In-and-Circumscribed Polygon: the last-mentioned problem may be thus stated—to
find a polygon such that the angles are situate in and the sides touch a given curve
or curves. And we may in the first instance inquire as to the number of such
polygons. In the case where the curves containing the angles and touched by the
sides respectively are all of them distinct curves, the number of polygons is obtained
very easily and has a simple expression: it is equal to twice the product of the
orders of the curves containing the several angles respectively into the product of the
classes of the curves touched by the several sides respectively; or, say, it is equal to
twice the product of the orders of the angle-curves into the product of the classes of
the side-curves. But when several of the curves become one and the same curve,
and in particular when the angles are all of them situate in and the sides all touch
one and the same curve, it is a much more difficult problem to find the number of
polygons. The solution of this problem when the polygon is a triangle, and for all
the different relations of identity between the different curves, is the object of the
present memoir, which is accordingly entitled “On the Problem of the In-and-Circum-
scribed Triangle;” the methods and principles, however, are applicable to the case of
a polygon of any number of sides, the method chiefly made use of being that furnished
by the theory of correspondence, as will be explained. The results (for the triangle)
are given in the following Table; for the explanation of which I remark that the
triangle is taken to be aBcDeF; viz. a, ¢, e are the angles, B, D, F the sides; that
is, B, D, F are the sides ac, ce, ea respectively, and @, ¢, e are the angles #B, BD, DF
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514] ON THE PROBLEM OF THE IN-AND-CIRCUMSCRIBED TRIANGLE. 213

respectively. And I use the same letters a, ¢, ¢, B, D, F to denote the curves con-
taining the angles and touched by the sides respectively; viz. the angle a is situate
in the curve @, the side B touches the curve B, and so for the other angles and
sides respectively. An equation such as a=c¢ or a= B denotes that the curves a, ¢ or,
as the case may be, the curves a, B are one and the same curve: it is in general
convenient to use a new letter for denoting these identical curves; viz. I write, for
instance, e =¢=a or a= B=u, to denote that the curves @, ¢ or, as the case may be,
the curves a, B are one and the same curve «; the new letters thus introduced are
%, y, % there being in regard to them no distinction of small letters and capitals.
The expression “no identities” denotes that the curves are all distinct. But I use
also the letters a, ¢, ¢, b, d, f, #, ¥, 2, and A, C, E, B, D, F, X, Y, Z quantitatively,
to denote the orders and classes of the curves a, ¢, ¢, B, D, F, x, y, z respectively;
thus, in the Table, for the case 1 “no identities” the number of triangles is given
as =2aceBDF, which agrees with the before-mentioned result for the polygon: for the
case 2 the several separate identities a=¢, a=e¢, c=¢ are of course equivalent to each
other; and selecting one of them, a=c ==, the number of triangles is given as
=2z (¢ —1)eBDF. There is a convenience in thus writing down the several forms
a=c, a=¢ c=e¢ of the identity or identities which constitute the 52 distinct cases
of the Table; and I have accordingly done so throughout the Table, the expression
for the number of triangles being however in each case given under one form only.
It only remains to mention that for the curve @ the Greek letter £ denotes what
may be termed the “stativity” of the curve, viz. this is =number of cusps + 3 times
the class, or, what is the same thing, = number of inflections + 8 times the order;
the curve being determined by its order #, class X, and &; and similarly for # and &

Observe that, in the column “Specification,” each line is to be read separately from
the others, and, where the word “or” occurs, the two parts of the line are to be read
separately ; thus case 5, the six forms are a=B, a=F, c=D, ¢c=B, ¢e=F, e=D: the
letter # (or, ac the case may be, @, y, or «, y, z) accompanies the first of the given
forms; in the present instance =B =, and it is to this first form that the number
of triangles, here 2 (X« — X — #) ceDF, applies.

I remark that what is primarily determined is the number of positions of a
particular angle of the triangle, and that in some cases, on account of the symmetry
of the figure, the number of ftriangles is a submultiple of this number; viz. the
number of positions of the angle is to be divided by 2 or 6; this is expressly shown,
by means of a separate column, in the Table.

www.rcin.org.pl



[514

ON THE PROBLEM OF THE IN-AND-CIRCUMSCRIBED TRIANGLE.

214

m —N”G” ¥l
Q”Q“ 2
&QUANINVAmlﬁvﬁﬂ &”M”c” v w
aom {o + (g - X) (1 - X) X6} I e=J=q=¢ | L
Jag{x +(g—=) (1 - ) =g} I x=9s=0=v| g
a1
9 a=-=2 ¢« A= 9
g=9 ¢ g
Aq» (@—X -%X) & W —D-30 ‘z=g =19 g
m m.” 2
d=72
AgPTXG = — Vil o
€ qd=4
=4
song (1 - X) X & s=g=q | ¢
€ D= 2
2= 0
Aage (1-x)ag z=o=»| §
I £
AT T8 I solyyuept oN | [
A
eoﬂwa se[dusLy jo ‘oN T80, «mwﬁwnm . uwm.wwﬂ

www.rcin.org.pl



215

ON THE PROBLEM OF THE IN-AND-CIRCUMSCRIBED TRIANGLE.

514]

w(f-g1-ig)(1-X) X5

dq (B—x—-£6x1)(1—=)xg

i1 (1-X) X%

AgIE (1 —=)ag

gr@-x-2x)(1-X)%

Ag?(@—x —zx)(1-2)¢g

gm(z-=) (¢-X) X%

(9¢)

0¢

Ava I9A0 PALLIB))

9 VIR 29=g EEE
g =g =0 a=g

o0=q ‘g=4 0 ‘h=o=q ‘@w=g=4 | 61
9 a=2 o=v ¢ g =2 9=D
g=9 ‘D=9 ¢ aq=» D=9

=0 9=0 Jo . f=g=p ‘w=3=0| 3]
g g =7 7 e €
L =7 (=g

%HAN”B P el
e g =2 2=m
A=90 D=9

A= ‘m=—53—0 Z1
9 v=qg=g “ V=g=g
o=g=4 “ o=g=4a

= =@ 0 w=v=g=q | 11
9 qg=v=2 LU g=v=2
g=9=09 £ A =P=9

g =9=D I0 ®=F=0=0 01
¢ o=q=g
D=g=4

it o g L

www.rcin.org.pl



[514

ON THE PROBLEM OF THE IN-AND-CIRCUMSCRIBED TRIANGLE.

216

{z1x %2y —(2+hi+2) 71X +(7 + X +X)2hag+ % a=2 g=2 g=0
(i +az +2R) 7 g X —(AX + X7 + ZX) #hx - 7L X*hx} g v=g=0 hi=qg=o w=g=0v| ¢z
ZX X#hwg 1 t=g=5 h=,=0 T=q=v | gz
57
€ a@=3 5 A=Y
W o d=p
av{xfig + g5 +(Ai+x) A X — (X + X) fiwe — 1 XA} g R=g=5 w=g=0| 15
9 g=° g=v “ a=9 g=o
=0 ‘g=9""* =7 Ti=0
go{axe +feg + (f+2) 1x - (X + X) fiw - 1 xliw} g =92 ‘g=0 10 h=yg=0 @=q=2| 07
g F=9 q=2
Q.”S g=2
avixhcg By —e o—g=—01 &I
9 4~ g = g =? g=2
F=n.Sq=09 % G —2 i
a°(f—x —hx) xog I=9 ‘q=v 10 f=g=0 ®x=qg=9 | 81
m.. Q”r&. o0
g=aq@ v=»
¢ ar(1-21)x (1-=) g R=g=g ‘@w=0=0| LI
9 A= ‘o=m ¢ a=9g 2=p
a=4 @=9 g=4d D=2
gv(1-2)4 (1-%) ¢ g=q ‘=9 10 ‘h=g=q @w=0=0| 91
(9¢) | (81) | 00 3ysuoag
£
@ou%wa se[8usLyy Jo ‘oN S[BIOT, .«m%H..%m worwoyady .«wm”mow

“(ponunquoo) a1av],

www.rcin.org.pl



217

ON THE PROBLEM OF THE IN-AND-CIRCUMSCRIBED TRIANGLE.

514]

g(1-AE(-=)(e—X) X3

2(1-1)x (3—Xx) (¢ —=) g

v (1—£) iz + (g -x)(1-X) X5}

(]

@ (1-1) 21x +(@==) (1 - =) 2g}

(Zz-2-72)(1-2) 1 (1—=) g

722(1-1)x(1-%)xg

('35 es®D 03 930uj00j ® ur
OPBW SBA UOI}091109 oY} Inq {7 13+ #/ig peyurad Lqreuisug]

{aze +2fig+ (2 + h) 71 — (7 +X) oh — 7 12h} yag

(96)

o |

(z1)

I9A0 POLLIBY

M” D=D Q.“%”O
8=29 F= =D

@HQ”S »&”KN“Q.”Q OM
€ ad=d i =P=.9
mug Q.”N”U

\mH..\NHAN ASHM.HOHS 6%
€ =D T =d=g
=0 A A0=q

A=2=0 .8“»@“@”@ ¥4
€ a=4 5=i0=1
g=aq 9 =H="D

=g e—0=9—1W 17
9 0 = —ToRes G g =12
o Bl S A L Gl S sl SRR L

q=92g=g 9=pi0z=g=0 ‘h=qg=g @“=9=v| 9g
€ q =2 a=9g =2
a=o ga=4d D=9

2=g =2 u\m”&"Q ‘X=0=m Gg
e g=2 J=D =10
=" aqa=2 =0

T eyt wkgavi iy

28

www.rcin.org.pl

C. \VIIL,



[514

ON THE PROBLEM OF THE IN-AND-CIRCUMSCRIBED TRIANGLE.

218

‘Fg 088D ‘130d OPBW SBM UOIJOIII0D OY,

r=2=q=g payund L[euiduQ

9 g=o ‘y=9=9 A=D g=9=29
gA=2 ‘gq=v=9 “ aqa=2 ==
A{Axg+heg+(h+a) 1 x —(1+X)fiw— 1 xhwh(1-2) & =9 ‘g=o=0-ag R=g=3 w=qg=9=0| Ig
9 D=G=u =2 A= g=73
p=g=q ‘d=9 “ v=g=q d=2
o1fi(x-2—x2) (1-X)¢ o=g=g ‘q=v 0 @=2=g4=g ‘h=q=v| og
9 g=92=v amnw ¢ Ad=9=D g=2
mﬂsﬂwaﬁ.ﬂe: gq=v=2 d=2
RN\HSHA.N|8|‘NHvAﬂ|SVN o= 9=9: .Q”G I0 agﬂm“vno .EHQ.”S ce
9 d=q=g =1p ¢ r=g=4 I=P
o=g=4 ‘D=2 ¢ v=g=q D=9
dU-FAEx -»—x2)(1-X)¢ V=g =@ ‘o =ot0 (Yr=pTg'=g f=ai=o| 3¢
9 g=v=2 KNH&N % g=9="2 a=d
o =p=9 =g ¥ g=0=2 =@
2(1-0)ax(x-*-x7)(1-2)z a=9%=0 J=g 0 ®=q=0=v ‘h=jy=g | g¢
9 et EEE” o 1 i Sl o=g o= ey
o= =q=g “ D=4 A T e i
2(1-£-1%) (G- (¢-X) Xe o=q D=g=4 10 h=o=q G=v=g=4| 5¢
9 a=9 ‘g=os=p “ J=9 g=2=0
g=9 g=0v=9 ¢ a=>2 q=P=29
g (A —Ff-10)(c-x)(¢-2) g g=0 ‘g=0=0 10 fi=g=v @=g=0=0| I¢
Awmv (21) | 1010 1ySnoag
£
ot i oo 0L, 150 onwogIoeds 4

(ponuyguoo) aIAV],

www.rcin.org.pl



219

ON THE PROBLEM OF THE IN-AND-CIRCUMSCRIBED TRIANGLE.

514]

(12D)| () | aea0 porump
m RN."S"Q Q.”m.”uv
q=2=9 g=4d =7
(e-=Ari-1)e-Xx)Xx(6—238 h=g=o=v @=g=q=2| ¥¥
G-2)(1-2)ax+ B o o iy e
1 =J=q=g ‘x=0=0=v | ¢¥
(g—)(1-=)2h+(g-1)(1-2) L (5—2)(1-%)xg
Gl
¢ a=g=v»=2
g=4=2=9
Fov—2y—F + (281 + &9 —) X + (¥ + %9 — 25) : X'} il ¢ o Z ot W2 4
9 A=g=9=0 ¢ a=4g=2=n»
a=A=1=2 €5 g=g=m=2
gr(x -2-x2) (6~ X) (€~ )¢ Pl e aemtien nos St g
m 0= 43
»= 113
w{36—-X9T—eX 06+ X7—(I—XGI +:X01—:X3)%+s} wx=2=g=q=4 | 0%
¢ 0 Lt g
Q“ “
A {3¢ — 291 — @06 +¢% —(1 ~2E1 +201 —#%E) X + X} x=g=0=0=p| 6¢
_ 09 —
9 S g-v=g=g " o= =ge=

{1 x5+ Arg+(A+2) 1 x— (1 + X)Fe— 1 xfx}(1-X)5

o=g .SHEHQ «
D= P o= N0 f—a— g ==

8¢

2

28

www.rcin.org.pl



[514

ON THE PROBLEM OF THE IN-AND-CIRCUMSCRIBED TRIANGLE.

220

www.rcin.org.pl

(g7 +X% — %9 -) 3+ €
XP) + XL~ XoL ¥
(8 —X9T1—+sX0L+:X01~) =+
(11 —X8% +:X¥1—iX5 . )2+ A=q=g=2=n
A—“ + vn& I=q=g=v=2
G ojut » T AT — 0= DIk 10G
eI
9 g=g=2=v0 ‘gq=9 * @9 T=o
“NNN+§N+\%&ALH+N‘V| A=q=v=2 nm.”uu 13 g=4gJ=v=2 =2
AXx (f+o)- gxhw} (- x) (e —*) g =7 =% P=v G =g=q=0=3 fi=g=v | By
m A=9 Q.“%”S”%
a=» i i
& | ARF—wp—omp + (P81 + 29 —) X +(¥ + ¥9 — %) X} hi=g=0 *=g=q=o=v | gy
S @Hw”o“& a=g
{36 — 291205 + @7 — q=9=0=v g=4
z (1-231 +201 —¢%8) X + X} (1 - 1) X z=g=o=0=v ‘h=y=q | L¥
¢ I=g=q0=¢ D=2
{36 — X9T —:X 0% +:X¥7— v=Jsa~q 2=2
3 (1 - X3l +:X0I —:X3) & +2}(1—£) £ x=o=g=q=g ‘f=0=v| 9¥
01
9 g =0=0 RQHMHQ ““ H=o=9 W =G0
{axg+ g+ (1 +x)fix— qg=v=2 ‘g=g=0 “ g=v=02 Tr=s
(f+o)xx —Ffegx} (1-£)(1-X)& g=2=92 g=q=v 0 A=y=0=0 @=g=q=0 | ¢}
(121)| (#) | 100 yysnoxg
£
@wﬁma so[fuery jo ‘oN s[RI, w%%m wonyeogwedg %wmwﬁ

‘(panurguoo) aIavy,




221

ON THE PROBLEM OF THE IN-AND-CIRCUMSCRIBED TRIANGLE.

514]

Aoowlgmmﬁ i

{(ggr+agl - ) x+} 3t

PAm = )X

TGLT + 215G + ¥ — 42 +
(BLT +2F0L + 2057 — 5G 3 ¥+
(185 + 2057 = 57591 + @81 ~ )eX +
(9% —2gg +781 — ¢ )eX +
G &= )+ X

(ep +ay—x9 )3+
TFY + 9L — ¢g] +
(8 —@9I1—¢®0L+01~) X +
» (IT—28C +@&F1 -G )X +
(Bt )eX
oyt

€0¢

x=g=q==2=2=0 ¢S
8=0=0=,=(
QHQNSHQ.”%.

w=2-o=v=g=y4| 1¢

www.rcin.org.pl



222 ON THE PROBLEM OF THE IN-AND-CIRCUMSCRIBED TRIANGLE. [514

The foregoing results are chiefly obtained by means of the theory of correspondence ;
viz. if instead of the triangle aBeDeF we consider the unclosed ftrilateral aBcDeFyg,
where the points ¢ and g are situate on one and the same curve, say the curve
a=g, then the points ¢« and g have a certain correspondence, say a (yx, x) corre-
spondence with each other; and when @, g are a “united point” of the correspondence,
the trilateral in question becomes an in-and-circumscribed triangle aBcDeF'; that is,
the number of triangles is equal to that of the united points of the correspondence,
subject however (in many of the cases) to a reduction on account of special solutions.
It may be remarked that by the theory of correspondence the number of the united
points is, in several of the cases, but not in all of them, =x+y. But in some
instances I employ a functional method, by assuming that the identical curves are each
of them the aggregate of the two curves @, &’': we here obtain for the number ¢z
of the triangles belonging to the curve # a functional equation ¢ (z+2')— ¢z — ¢pa’'=
given function; viz. the expression on the right-hand side depends on the solution of
the preceding cases, wherein the number of identities between the several curves is
less than in the case under consideration; and taking it to be known, the functional
equation gives ¢z = particular solution + linear function of (z, X, £). The particular
solution is always easily obtainable, and the constants of the linear function can be
determined by means of particular forms of the curve .

Article Nos. 1 to 6. The Principle of Correspondence as applied to the present Problem.

1. Consider the unclosed trilateral aBcDeFg, where the points ¢ and g are on
one and the same curve, a=g. Starting from an arbitrary point ¢ on the curve g,
we have aBc any one of the tangents from a to the curve B, touching this curve,
say at the point B, and intersecting the curve ¢ in a point ¢; viz. ¢ is any one of
the intersections of aBc with the curve c¢; we have then similarly ¢cDe any one of

Fig. 1.

a
/ \
¢ D e

the tangents from ¢ to the curve D, touching it, say at D, and intersecting the curve e
in a point e; viz. the point e is any one of the intersections in question; and then
in like manner we have eFy any one of the tangents from e to the curve F, touching
it, say at F, and intersecting the curve g (=a) in a point g; viz. ¢ is any one of
the intersections in question. Suppose that to a given position of @ there correspond
x positions of g; it is easy to find the value of y; viz. if (as above tacitly supposed)
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the curves a, B, ¢, D, e, F are all of them distinct curves, then the number of the
tangents aBc is = B; there are on each of them ¢ points ¢; through each of these
we have D tangents cDe; on each of these e points e; through each of these F
tangents cFg; and on each of these a points g; that is, y =BcDeFa. But if some
of the curves become one and the same curve—if, for instance, @ = B=c¢,—the line
aBc is here a tangent from a point @ on the curve, we exclude the tangent at the
point @, and the number of the remaining tangents is =(4 —2); each tangent meets
the curve in the point @ counting once, the point B counting twice, and in (a—3)
other points; that is, the number of the points ¢ is =(4 —2)(¢— 3), and so in other
cases; the calculation is always immediate, and the only difference is that, instead of
a factor @ or A, we have such factor in its original form or diminished by 1, 2,
or 3, as the case may be. Similarly starting from g, considered as a given point on
the curve g (=a), we find x’ the number of the corresponding points @; thus in the
case where the curves are all distinct curves, we have x' =FeDcBa (=%x); and so in
other cases we find the value of 5. The points (e, g) have thus a (x, x’) corre-
spondence, where the values of y, x' are found as above.

2. There will be occasion to consider the case where in the triangle aBcDeF (or
say the triangle aBcDeFa) the point @ is not subjected to any condition whatever,
but is a free point. There is in this case a “locus of @,” which is at once con-
structed as follows: viz. starting with an arbitrary tangent aBc of the curve B,
touching it at B and intersecting the curve ¢ in a point ¢; through ¢ we draw to
the curve D the tangent cDe, touching it at D and intersecting the curve e in a
point e; and finally from e to the curve F the tangent eFa, touching it at F and
intersecting the original arbitrary tangent aBc in a point @, which is a point on the
locus in question. We can, it is clear, at once determine Low many points of the
locus lie on an arbitrary tangent of the curve B (or of the curve F).

3. The general form of the equation of correspondence is
pla—a—a)+qb—B=F)+...=kA();

viz. if on a curve for which twice the deficiency is =A we have a point P corre-
sponding to certain other points P’, ’,... in such wise that P, P’ have an (a, o)
correspondence, P, Q" a (B, B') correspondence, &c.; and if (a) be the number of the
united points (P, P’), (b) the number of the united points (P, (), &c.; and if more-
over for a given position of P on the curve the points P’, @, ... are obtained as the
intersections of the curve with a curve ® (depending on the point P) which meets
the curve & times at P, p times at each of the points P’, ¢ times at each of the

1 To avoid confusion with the notation of the present memoir, I abstain in the text from the use of D
as denoting the deficiency, and there is a convenience in the use of a single symbol for twice the deficiency;
but writing for the moment D to denote the deficiency, I remark, in passing, that perhaps the true theoretical
form of the equation is

E(O0-D-D)+p(a-a-a)+q(db-B-p)+..=0;

viz. the point P is here considered as having with itself a (D, D) correspondence, the number of the united
points therein being =0.
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points @, &c.; then the relation between the several quantities is as stated above:
see my “Second Memoir on the Curves which satisfy given conditions,” Philosophical
Transactions, vol. 159 (1868), pp. 145—172, [407]. I omit for the present purpose the
term “Supp.,” treating it as included in the other terms,

4. In the present case we consider, as already mentioned, the unclosed trilateral
aBcDeFg, where the angles a, g are on one and the same curve a (=g) (the curve
in the general theorem); and the curve ® is the system of lines eFg which by their
intersection with the curve a determine the points g. Considering these as the points
(P, P’) of the general theorem we have p=1: I change the notation, and instead of
a—a—a write g—y—x"; viz. I take (g) for the number of the united points (a, g),
and suppose that the points (e, g) have a (x, x/) correspondence. The most simple
case 18 when the curve a is distinet from each of the curves e, F; here all the
intersections of the line-system eFg with the curve a are points g, that is we have
only the correspondence (a, g); and since the line-system eFg does not pass through
the point a, we have simply

B-Xx-X=0

5. But suppose that the curves a, ¢, F are one and the same curve, say that
a=e¢=F; understanding by the point F the point of contact of a line eFg with the
curve @, then the intersections of the line-system eFg with the curve a are the points
g each once, the points F each twice, and the points e each as many times as there
are lines eFg through the point e, say each M times. (In the present case, where the
curves e, F' are identical, we have M=F -2 or F—3 according as the curve D is
or is not distinct from the curve F; in the cases afterwards referred to, the values
may be F or F—1; that is, we have always M=F, F—1, F—2, F—3, as the case
may be.) We have to consider the several correspondences (a, g), (a, F), (a, e); k is
as before =0; and the form of the theorem is

G-x—x)+2(f-¢—¢)+M(e—c—¢)=0,
where the symbols denote as follows, viz.

(a, g) have a (x, x) correspondence, and No. of united points =g,

(a’ F) » (¢) ¢’) 1) » » = f:
(a! € ) EH (€ ? E’ ) s, 1] » o er
so that the determination of g here depends upon that of f— ¢ —¢" and e—e—¢"

6. The curve ¢ might however have been identical with only one of the curves
e, F; viz. if a=F, but e is a distinct curve, then the equation will contain the term
2(f— ¢ —¢’), but not the term M(e—e—¢); and so if a=e but F is a distinct
curve, then the equation will not contain 2 (f—¢ — ¢’), but will contain M (e —e—¢):
it is to be noticed that in this last case we have M=F or M =F -1, according as
the curve D is not, or is, one and the same curve with F. The determination of (g)
here depends upon that of f—¢—¢" or e—e—¢, as the case may be. These sub-
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sidiary values f—¢—¢' and e—e—¢ are obtained by means of a more simple
application of the principle of correspondence, as will appear in the sequel(?), but for
the moment I do not pursue the question.

Article Nos. 7 to 14. Locus of a free angle (a).

7. 1 consider the case where « is a distinct curve =£e, + F, and where, as was
seen, the equation is simply

graein =0
I suppose further that @ is distinct from all the other curves, or say, simpliciter, that
a is a distinct curve. The values of , x’ will here each of them contain the factor a,
say we have y=aw, x¥'=aw’; and therefore the equation gives g=a (o +o’). It 1s
obvious that , o' are the values assumed by x, x’ respectively in the particular case

where the curve a is an arbitrary line (¢=1); and o+«  is the number of the
united points on this line.

8. Suppose now that in the triangle aBcDeFa the point a is a free point, we
have, as above-mentioned, a locus of a, and the united points on the arbitrary line
are the intersections of the line with this locus; that is, the locus meets the arbitrary
line in » + @’ points; or, what is the same thing, the order of the locus is = w+ "

9. I stop for a moment to remark that in the particular case where the curve
B is a point (B=1), then in the construction of the locus of a the arbitrary tangent
aBc is an arbitrary line through B, and the construction gives on this line o positions
of the point a. But drawing from B a tangent to the curve F, and thus constructing
in order the points F, e, D, ¢, @, the construction shows that B is an o’-tuple point
on the locus; and (by what precedes) an arbitrary line through B meets the locus in
o other points; that is, in the particular case where the curve B is a point, the
order of the locus of @ is = w + o', which agrees with the foregoing result.

10. The construction for the locus of @ may be presented in the following form:
viz. drawing to the curve D a tangent cDe, meeting the curves ¢, e in the points
¢, e respectively; then if from any point ¢ we draw to the curve B a tangent cBa,
and from any point e to the curve F a tangent eFa, the tangents cBa, eFa intersect
in a point on the required locus. Hence if in any particular case (that is for any
particular position of the tangent cDe) the lines cBa, eFa become one and the same
line, the point @ will be an. indeterminate point on this line; that is, the line in
question will be part of the locus of a.

11. The case cannot in general arise so long as the curves B, F are distinct
from each other; but when these are one and the same curve, say when B=F, it
will arise, and that in two distinet ways. To show how this is, suppose, to fix the
ideas, that the curves ¢, D, e are distinct from each other and from the curve B=F.
Then the first mode is that shown in the annexed “first-mode figure,” viz.' we have

1 See post, Nos. 24 et seq.
C. VIIL 29
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here a tangent at D passing through a point ce of the intersection of the curves
¢, ¢, and from this point a tangent drawn to the curve B=F, For the position in
question of the tangent of D, the points ¢, e coincide with each other, and we have
thus the coincident tangents cBa and eFa to the identical curves B=F. It is further

Fig. 2. First-mode figure.

BE

=1

to be remarked that the number of the points of intersection is =ce; from each of
these there are B tangents to the curve B=F (in all ce. B tangents), and each of
these counts once in respect of each of the D tangents to the curve D, that is, it
counts D times. We have thus, as part of the locus of a, ce.B lines each D times,
or, say, first-mode reduction =ce. B. D.

12. The second mode is that shown in the annexed “second-mode figure.” The
tangent from D is here a common tangent of the curves D, and B=F. This meets
the curve ¢ in ¢ points, and the curve e in e points; and attending to any pair of
points ¢, e, these give the tangents cBa, eFa, coinciding with the common tangent in

Fig. 8. Second-mode fignre.

BF
RPNV A R

question, and forming part of the locus of a. The number of the common tangents
is =BD; but each of these counts once in respect of each combination of the points
¢, ¢, that is in all ce times. And we have thus as part of the locus BD lines each
c.e times, or, say, second-mode reduction =BD.c.e. This is (as it happens) the
same number as for the first mode; but to distinguish the different origins I have
written as above ce. B.D and BD.c.e respectively.

13. It is important to remark that each of the two modes arises whatever
relations of identity subsist between the curves ¢, e, D, and B=F, but with consider-
able modification of form. Thus if the curves ¢, ¢ are identical (¢ =e) but distinct
from D, then in the first-mode figure ce may be a node or a cusp of the curve c=e,
or it may be a point of contact of a common tangent of the curves D, and c=e.
As regards the node, remark that if we consider a tangent of D meeting the curve
¢=e¢ in the neighbourhood of the node, then of the two points of intersection each
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in succession may be taken for the point ¢, and the other of them will be the
point e; so that the node counts twice. It requires more consideration to perceive,
but it will be readily accepted that the cusp counts three times. Hence if for the
curve c=e¢ the number of nodes be =38 and that of cusps =&, the value of the
first-mode reduction is = (28 + 3« + C) BD, or, what is the same thing, it is =(¢®—c) BD.

As regards the second-mode figure, the only difference is that ¢, e will be here
any pair of intersections (each pair twice) of the tangent with the curve c=e; the
value is thus =(c*—c) BD.

It would be by no means uninteresting to enumerate the different cases, and indeed
there might be a propriety in doing so here; but I have (instead of this) considered
the several cases, when and as they arise in connexion with any of the cases of the
in-and-circumscribed triangle.

14. Observe that the general result is, that in the case B=F of the identity
of the curves B and F, but not otherwise, the locus of a includes as part of itself
a system of lines; or, say, that it is made up of these lines, and of a residuai curve
of the order o+’ — Red., which is the proper locus.

Article Nos. 15 to 17. Application of the foregoing Theory as to the locus of ().

15. Reverting now to the case where the angle @ is not a free angle but is
situate on a given curve a, then if the curve o is distinct from the curves e, F,
the number of positions of a is, as was seen, g=x + . But the points in question
are the intersections of the curve a with the locus of @ considered as a free angle;
and hence in the case B=F, but not otherwise, they are made up of the intersections
of the curve a with the system of lines, and of its intersections with the proper
locus of @. But the intersections with the system of lines are improper solutions of
the problem (or, to use a locution which may be convenient, they are “heterotypic”
solutions): the true solutions are the intersections with the proper locus of @; and
the number of these is not x+x, =a(w+ '), but it is =a (0 + o’ — Red.); say it is
=x+x —Red,, where the symbol “Red.” is now used to signify e times the number
of lines, or reduction in the expression ® + o —Red. of the order of the proper
locus of a.

16. It is however to be noticed that if the curve a, being as is assumed distinct
from the curves e, and F=B, is identical with one or both of the remaining curves
¢, D, the foregoing expression x+ x'— Red. may include positions which are not true
solutions of the problem, viz. the curve a may pass through special points on the
proper locus of a, giving intersections which are a new kind of heterotypic solutions().

1 More generally, if the curve a be a curve identical with any of the other curves, then if treating in
the first instance the angle a as free we find in any manner the locus of a, the required positions of the
angle a are the intersections of this locus and of the curve a; but these intersections will in general
include intersections which give heterotypic solutions.” The determination of these is a matter of some
delicacy, and I have in general treated the problems in such manner that the question does not arise; but
as an example see post, Case 43.

29—2
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17. But this cannot happen if the curve a is distinct also from the curves ¢, D;
or, say, simply when @ is a distinct curve. The conclusion is, that in the case where
a is a distinct curve we have

g=x+x —Red,

where the term “Red.” vanishes except in the case of the identity B=F of the
curves B, F; and that when this identity subsists it is =a times the reduction in
the order of the locus of @ considered as a free angle; viz. this consists of a first-
mode and a second-mode reduction as above explained.

Article Nos. 18 to 21. Remarks in regard to the Solutions for the 52 Cases.

18. Before going further I remark that the principle of correspondence applies to
corresponding and united tangents in like manuner as to corresponding and united
points, and that all the investigations in regard to the in-and-circumscribed triangle
might thus be presented in the reciprocal form, where, instead of points and lines,
we have lines and points respectively. But there is no occasion to employ any such
reciprocal process; the result to which it would lead is the reciprocal of a result
given by the original process, and as such it can always be obtained by reciprocation
of the original result, without any performance of the reciprocal process.

19. It is hardly necessary to remark that although reciprocal results would, by
the employment of the two processes respectively, be obtained in a precisely similar
manner, yet that this is not so when only one of the reciprocal processes is made
use of; so that, using one process only, it may be and in general is easier and more
convenient to obtain directly one than the other of two reciprocal results; for instance,
to consider the case B= D =F rather than a=c=e, or wice versd; and that it is
sufficient to do this, and having obtained the one result, directly to deduce from it
the other by reciprocity; but that it may nevertheless be interesting to obtain each
of the two results directly.

20. It is moreover obvious that although the several forms of the same case, for
instance Case 2, a=¢, a=¢, or c=e¢, are absolutely equivalent to each other, yet that,
when as above we select a vertex @, and seek for the number of the united points
(a, g), the process of obtaining the result will be altogether different according to the
different form which we employ. For instance, in the case just referred to, if the
form is taken to be a=c¢ or c=e, then the equation g=y+ ' is applicable to it;
but not so if the form is taken to be a=e It would be by no means uninteresting
in every case to consider the several forms successively and get out the result from
each of them; I shall not, however, do this, but only consider two or more forms of
the same case when for comparison, illustration, verification, or otherwise it appears
proper so to do. The translation of a result, for instance, of a form a=e¢ or c=e
into that for the form a=c=a« is so easy and obvious, that it is not even necessary
formally to make it.
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21. I do not at present further consider the general theory, but proceed to con-
sider in order the 52 cases, interpolating in regard to the general theory such further
discussion or explanation as may appear necessary. In the several instances in which
the equation g=+ + " is applicable, it is sufficient to write down the values of ¥, x/,
the mode of obtaining these being already explained.

The 52 Cases for the in-and-circumscribed triangles.
Case 1. No identities.
x = BcDeFa, x' = FeDcBa (=),
g = 2aceBDF.
Case 2. a=c=u.
X =B (¢ —1)DeFz, x =FeDzB(x—1)(=x),
g =2z (z—1)eBDF.

Second process, for form a=e=xz. The equation of correspondence is heres
E— X=X Se—d-ag)=t;

but the points e being given as all the intersections of the curve a(=e) by the line-
system cDe which does not pass through @, we have e —e—¢'=0; so that g=x +x’;

and then
x = BcDzF (2 —1), ' =F (z—1) DcBz,

giving the former result(®).
Case 3. D =F=uaReciprocation from 2; or else, second process, -
x=DBcXe(X —1)a, ' =Xe(X —1)cBa,
g =2X (X —1) Bace.
Third process: form F=B=xz We have here g=x+x — Red.
x =XcDeXa, ' =XeDcXa(=Yx),
x + X = 2X2Dace ;

and the reductions are those of the first and second mode, as explained ante, Nos.
11, 12, viz. each of these is = XDace, and together they are =2XDace; whence the
foregoing result.
Case 4. a=D=u.
X = BcXeFz, ' =FeXBzx(=y),
g = 2XxceBF.

1 Of course, the result is obtained in the form belonging to the new form of specification, viz. here it
is =2z (z-1)cBDF; and so in other instances; but it is unnecessary to refer to this change.
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Observe this is what the result for Case 1 becomes on writing therein =D =g,
viz. the opposite curves @, D may become one and the same curve without any
alteration in the form of the result.

Case 5. a=B=u.
x=(X —2)cDeFx, '=FeDcX (x—2),
where
X-2)z+ X (2—-2)=2(X2—X —2);
therefore
g=2(Xz - X — z)ceDF.

Case 6. a=c=e=wa: perhaps most easily by reciprocation of Case 7; or

Second process, functionally by taking the curve a=c=¢e to be the aggregate curve
z+a, The triangle aBcDeF is here in succession each of the eight triangles:

z Ba DaF | o4 BoadDoL'F
i e Tl
o of e, &y g,
xfn“'g » & 5 i x,,a:',,:c’,,

where the two top triangles give ¢ and ¢« respectively; the remaining triangles all
belong to Case 2, and those of the first column give each 2 (a® —x)z'BDF, and those
of the second column each 2(2?—a')2BDF., We have thus

¢ (2 + &) — px — $pa’ = (6 (4’ + xa/*) — 1222/} BDF.
Hence obtaining a particular solution and adding the constants, we have
¢z = (24° — 62* + ax + BX +vE) BDF,

it is easy to see that a, B, y are independent of the curves B, D, F; and taking
each of these to be a point, and the curve a=c=e to be a conic, then it is known
that ¢z=2; we have therefore 2 =16 — 24 + 20+ 28 + 6, that is a + 8+ 3y =5.

The case where the curve a =c=e¢ is a line gives 0 =2 — 6+ a + 3, that is a+ 3y=4;
but it is not easy to find another condition; assuming however y=0, we have a=4,
B =1, and thence

¢@ = (22° — 6a% + 42 + X) BDF,
or say
g={2z(z—1)(¢—2)+ X} BDF:

this is a good easy example of the functional process, the use of which begins to
exhibit itself; and I have therefore given it, notwithstanding the difficulty as to the
complete determination of the constants.
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Third process. The equation of correspondence is
BER SN P (e ey =0,
but for the correspondence (a, ¢) we have
e—e—€+D(c—y—¢)=0,

and for the correspondence (a, ¢) we have

c—y—o =BA, .
whence
g=x+x+BDF.A;
and then
x=B@-1)D(xz—-1)F(z—=1), ¥=F(@@-1)D(z-1)B(z-1)(=x);
that is -
x+x =BDF.2(z—1).
Moreover

A=X—-22+2+4«

(if « be the number of cusps of the curve @ =c=e¢), and the resulting value is

g=12(@-1P+X—2z+2+«} BDF;
that is
={2z(z—1)(z- 2)+ X + «} BDF,

where, however, the term x«BDF is to be rejected. I cannot quite explain this; I
should rather have expected a rejection = 2¢BDF, introducing the term — « For
consider a tangent from the curve D from a cusp of the curve a=c=e: there are
D such tangents; each gives in the neighbourhood of the cusp two points, say ¢, e;
and from these we draw B tangents cBa to the curve B, and F tangents eFa to the
curve F; we have thus in respect of the given tangent of D, BF positions of a, or
in all BDF positions of @ which will ultimately coincide with the cusp; that is, BDF
infinitesimal triangles of which the angles a, ¢, ¢ coincide together at the cusp; and
for all the cusps together «BDF such triangles: this would be what is wanted; the
difficulty is that as (of the two intersections at the cusp) each in succession might
be taken for ¢, and the other of them for e, it would seem that the foregoing number
«BDF should be multiplied by 2.

Case 7. B=D=F=az Here g=yx+x — Red. and
x=Xe(X-1e(X-1)a, ¥=Xe(X-1)c(X-1)a(=x);
that is,
x+x =2X (X —1) ace.

The reductions of the two modes are as above, with only the variation that in the
present case D is the same curve with the two curves B=F. That of the first mode is
= X(X —1)ace, and that of the second mode is (27 + 3:¢) ace, which is ={X(X—1)—a}ace;
together they are ={2X (X — 1) — 2} ace, or subtracting, we have

g=2X (X -1)(X - 2) + «} ace.
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Case 8.0y —c =Bty
X =(X —2)(x—3) DeFz, ' = FeDz(X —2)(z—3)(=x),
g=2z(z—3) (X —2) eDF.
Case 9. D=F=¢=a. By reciprocation of 8.
No. =2X (X — 3) (z — 2) acB.
Case 10. a=c=D=ux.
x=B@-1)(X —2)eFz, x =FeX (z—2)B(z-1),
g=2(x—1)(Xo—X —z)eBF.
Case 11. D=F=a=x By reciprocation of 10.
No. =2(X—-1) (X2 — X — z) ceB.
Second process : form a=B =D =x.
X=X -2)c(X-1)eFz, y' =FeXc(X -1)(z—2),
giving the former result.
Case 12. c=e=2x, a=D=y.
x=BzY (z—1)Fy, x =FzY(z—1)By(=x),
g =2z(z— 1)y YBF.
Case 13. F=B=x, a=D=y. By reciprocation of 12.
No. =2X (X —1) Yyce.
Case 14. c=e=x, a=B=y.
x=Y—-2)aD(x—-1)Fy, x =FaD(xz-1)Y (y-2),
g=2z(x—-1)(Yy—-Y —y) DF.
Case 15. FF=B=u, D=e¢=y. By reciprocation of 14.
No. =2X(X-1)(Yy— Y —y)ac.
Case 16. c=e=o, D=F=y.
x=DBzY(x—1)(Y—-1)a, ¥ =Yz(Y—=1)(z—1)Ba(=1x),
g=22(x—-1)Y (Y -1)aB.
Case 17. o=¢=2a, B=Fuiy
x=D@-1)Ya(Y-1)o, x¥'=Ya(Y—-1)aD(z—-1)(=x%),
g=2z(z—1)Y (Y -1)aD.

But we have here aD as an axis of symmetry, so that each triangle is counted
twice, or the number of distinct triangles is =4g.
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Case 18.

Case 19.

Case 20.

Case 21.

Case 22.

Case 23.

Case 24.

Case 25.

But we

g —"D=rte=B =

x=Y(y —2)XeFz, x' =FeXy(Y—-2)z(=x),
g=22X Yy — Y —y)ekl.

c=l—ute—"B—u

x = YaDyXa, x'=XyDzYa(=Yy),

g =2zyXYaD.

iD= ie="F=w:

x=Bz (X -2)y(Y—-2)a, x¥'=Y(y—2)X(z—2)Ba,

g={ey(X-2)(Y-2)+ XY (¢—2) (y—2)} aB
=2{wyXY —ay(X+Y)- XY (z+y)+ 22y +2XY} aB.

c=B=uz, e=F=y.

x=X@—-2)Dy(Y=-2)a, x'=Y(y—2)Dz(X —2)a,

g= XY -2)y@-2)+Y (X -2)z(y—2)}aD
=2{ayXY —ay(X+7Y)—-XY (2 +y)+2zY + 2yX} aD.

a=D=2 c=F=y, e=B=u2

X = ZyXZYw, X' = YszZq- (= X)’
g =22yzXYZ.

=B nNe =Sl =y e ==
x=X-2)y(Y-2)2(Z-s, x¥=Z(:-2)7(y—2) X(a—2)
g=ayz(X-2)(Y-2)(Z—-2)+ XYZ (z—2)(y — 2) (z— 2)
=2{wy2XYZ —ayz (YZ + ZX + XY)— XYZ (yz + 22 + xy)
+22yz (X + Y+ 2Z) +2XYZ (2 +y+ 2)— dayz — 4 X YZ}.
a=D=ag, c=B=y e=F=2
x=Y({y—-2)X2(Z-2)a, ¥=2(-2)Xy(Y-2)a,
g=aX{Y(Z-2)2(y—-2)+Z (Y —-2)y (2—2)}
= 20X (yz2YZ —yz (Y + Z)— YZ (y + 2) + 2yZ + 22Y}.

w=c=ma D= T =wde =B

x=Z@-1)Yz2(Y-1)a, x'=Yz2(Y-1)2Z(x-1)(=y),
g=22(@—-1)Y (Y -1)2Z

have here eB as an axis of symmetry, so that each triangle is counted

twice, or the number of distinct triangles is =}g.

C. VIII.

30
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Case 26. a=c=a; B=D=y, e=F=z.
x=Y@-1)(Y-1)2(Z-2)a, x¥=2Z(-2)Ye(Y-1)(z-1),
g=2(@-1)Y(Y-1){z2(Z—-2)+Z(z—-2)}
=20(@—-1)Y (Y -1)(2Z —2—-2).
Case 27. a=c=¢=a, B=F=y. By reciprocation of 28.
No.={2z(z—1)(z—2)+ X} Y (Y -1) D,
where each triangle is counted twice, so that the number is really one half of this.
Case 28. B=D=F=zc=e=y.

Here
g=x+%x —Red

x=XyEX-D@-1)&X-1a, ¥=Xy@X-1)(y-1)(&X-1)a(=x)
x+x =ay(y—1).2X (X -1}

The reductions are those of the first and second mode as explained above, with
the variation that the curves ¢ and e are here identical, ¢c=¢, and that the curve D

is identical with the curves B=F.

First-mode reduction is

a(C+28+3k)B(B-1)
(where 6, « refer to the curve c¢=e), wkich is

=ac(c—1)B(B~1);
that is, the reduction is =ay(y—1)X (X —1).

Second-mode reduction is
a(21+3)c(c—1)

(where 7, ¢ refer to the curve B=D=F), which is
=a{B(B-1)=bjc(c—1);
that is, the reduction is =ay(y—1) {X (X —1)—a}.

Hence the two together are =ay(y—1){2X (X —1)—«}; and subtracting from
x+x we have ~

g=ay(y—1). 2X (X -1)(X -2)+a};

but on account of the symmetry each triangle is reckoned twice, and the number of
triangles is = 4g.

Case 29. a=c=B=ua, D=F=y.
x=(X -2)(@—3) Ye(¥=1)a, x =Te(¥~1)a(X—2)(X-3)(=x)
g=2c(z-3)(X-2)Y(Y-1)e
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Second process. Taking the form
C=D=e¢e=a, B=F=y;

here
No.=x +x'— Red,
x=Yz (X -2)(x—3) Ya, =¢,
and
x+x =2Y*2(x-3) (X -2)a.
There is a first-mode reduction, :
aY {27+ 28 (X — 4) + 3« (X - 3)},
viz. this is
aY{ X*—X+8z-3¢f
+ (X —4)(2*—2z+8X —3§)
+ (X -3)( - 9X +3§)},
which is

=a¥ (X (2*— 2z - 6) — 4a* + 122} ;

and a second-mode reduction
=aYX (z—2)(z— 3).
Hence the two together are
=aY {X (20* — 6x) — 42° + 122}
=2Yz(z—3) (X - 2)q,

whence the result is
=2(Y*—Y)z(z—3)(X -2)a,

which agrees with that obtained above.
On account of the symmetry we must divide by 2.
Case 30. e=D=F=ua, a=c=y. By reciprocation of 29.
No. =2X (X-3)(z—2)y(y—1)B.
On account of the symmetry we must divide by 2.
Case 81. c=e=D=a, a=B=y.
x=(Y-2)z(X-2)(@-3)Fy, x'=Fe(X-2)(@—-3)Y(y-2),

g=2@-3) (X -2)F{(Y-2)y+ Y (y—-2)} -
=22(x—-3)(X-2)(yY—y—-Y)F.

Case 32. F=B=a=2, D=e=y. By reciprocation of 3l.
No.=2X(X-3)(—-2)(yY —y—-Y)ec.

WWW.TIC N .0Or l.J ‘M I
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Case 33. B=F=y, a=e=D=ua By reciprocation of 34.
No.=2(@-1)(@2X —2—-X) Y (Y -1)c.
Case 34. ¢=¢=y, B=D=a=g.
X=X -2)y X - -1 Fe, ¥=FyX@y-1)X-1)(z-2),
g=y(y-DEX-D{X-2)2+ XX -2)} F
=2X-1)(@X—-2—X)y(y-1)F.
Case 85. a=D=y, c=¢=B=u.
X=X @-2)Y(z—-1)Fy, y=FzY(z—1)(X-2)y,
g=yY(@2-1){X(z-2)+(X—-2)a} F
=2(@—-1)(2X —z—X)yYF.
Case 36. a=D=y, B=F=e¢=a By reciprocation of 35.
No.=2(X-1)Xz—2z—-X)yYe.
Case 37. a=e¢=D=ua, c=B=y. By reciprocation of 38.
No.=2(z—1){ayXY —ay (X +Y)— XY (w+y)+2zy+ 2X Y} F.
Case 38, B=D=la—ul=—ec=u.
X=X -2cX-1)y(¥-2)a x=Y(FH-2)Xc(X-1)(z-2),
g=X-Tcfay(X-2)(Y-2)+ XV (- 2)(y - 2)}
=2(X-1){ayXY —2y(X+Y)- XY (2+y)+2xy+2XY}ec.
Case 3. a=c=e=B=u.

Functional process; the curve is assumed to be the aggregate of two curves, say
a=c=e=B=z+2. Forming the enumeration

Case
X z DzF & X'a’ De’'F 39
Xz .. &e. 10
e X'z .2 6
d X'z . x. : i 14
s X a0, ; 10
dXa.w. : 12
e X' . x. . 14
? X'z . x . . 8

(where the second column is derived from the first by a mere interchange of the
accented and unaccented letters), I annex to each line the number of the case to
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which it belongs; thus #/XzDsF is B=c=e=ua, which is Case 10, and so in the
other instances. Observing that cases 10 and 14 occur each twice, we have thus

¢ (& + ') — pz — ¢p2’ = DF multiplied into

4@-1)Xe—X—z)a’ + .. (10)x2
+2@E-1)@-+X] X'+ .. (6)
+dz(z—-1)(Xo - X' —2) + .. (14)x2
+2(z—1)dX’ + .. (12
+2W@-8)X-27  + .. (8)

where the (..)s refer to the like functions with the two sets of letters interchanged.
Developing and collecting, this is
¢ (z + ') — pa — pa’ = DF multiplied into
2XX’
+ 2X (3a%' + Baa” + o — 1022’ — 52 + 62')
+ 2X' (a® + 3%’ + Bza’ — ba? — 1024’ + 6a)
— 12 (2’ + 2a™®) + 4022/,

and thence
= DF multiplied into
Xs
+ X (22°— 102 + 122) — LX
— 4at 4 202 —lz—\E,

where the constants L, I, A have to be determined. Now for a cubic curve the
number of triangles vanishes; that is, we have ¢z =0 in each of the three cases,

z=3, X=6, £=18,
w X=4, E=12
» X=38, E=10,
and we thus obtain the three equations
0=108 — 6L — 31— 18,
0= 88—4L—3l—12x,
0= 81—3L—3l—10n,
giving L=1, [=16, A=3. Whence, finally,
pr={X*+ X (22° — 102° + 122 — 1) — 42 + 202* — 162 — 3§} DF.
Second process, by correspondence. We have
g=x—-xX+F(e—e—¢€)=0,
e—e—e€+D(c—y—9)=0,
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and thence
g=x—xX=DF(c—y—v)
Moreover
X =(X=2)(@-3)D@-1)Fa—1),
X=F@z-1)D(@@-1)(X-2)(z-1), =y,
x+x =DF(X—-2)2(z-3)(z—1),
and

c—oy—g =27+ (X —8)x—2(X —2) (2 3),

as is easily obtained, but see also post, No. 29; hence
g =DF multiplied into
(X-2).2(2-8)(z-1y
+(X-2).—2(z-3)
+ 274+ (X —3) x;

but I reject the term DF.(X —3)« as in fact giving a heterotypic solution; I do
not go into the explanation of this. And then substituting for 27 its value, we have

g = DF multiplied into
(X -2).2z2(z—1)(z—2)
+ X*— X + 8z« — 3E,
where the second factor is

=X+ X (22° — 102 + 122 — 1) — 42° + 202* — 16z — 3¢,
which is the foregoing result.

Case 40. B=D=F=¢=ua By reciprocation of 39.
No.={2*+2(2X°— 10X*+ 12X —1)—4X°+ 20X* — 16X — 3§} ac.

Oade 4l o=g=1lI=F=p,
x =Bz(X —-2)(z —3)(X -8)q,
x¥=X (¢ —2)(X -3)(z —8) Ba,
g§= (@-3)(X-3)aB{z(X-2)+ X (z-2)},
=2 (z—3)(X —3)(2X —2— X)ah.

Case 42. a=c=D=F=u.

Functional Process; the curve is supposed to be the aggregate of two curves, say
a=c=D=F=z+4a.

www.rcin.org.pl



514] ON THE PROBLEM OF THE IN-AND-CIRCUMSCRIBED TRIANGLE. 239

The enumeration is

Case
z Be X eX #BaX'eX’, (42)
AW 4. 4 &e. (11)
w 2o X=X (11)
o X oK a7)
I . g (10)
. g ! (19)
@ ot X (21)
g .7 XX (10)
whence
¢ (2 +a’) — pa — ¢’ = eB multiplied into
4(X-1)(Xe—-X-2)a +.. (11)x2
+22 (-1 X' (X" -1) )
+4d(z—-1)(Xo—z—2)X’ “F (10) x 2
+ 2z X' X’ +.. (19

+ 200’ XX - 2(z+ ) XX —2(X + X)az' + 4 (X' + X'z) + .. (21)

where the (..)s refer to the like functions with the two sets of letters interchanged.
Developing and collecting, we have
¢ (z + a') — pa — pa’ = eB multiplied into
X2 (4ad’ + 24— 67)
+ XX (4a® + 82 + 4" — 122 — 124/ + 8)
4+ X (22 + 42’ — 62)
+X (—12z2'— 62" + 182')
+X' (- 6a®—12z2"+18z)

- Saza,
and consequently

Pz = eB multiplied into
: X?(22° — 62+ 4)
+X (—6a*+ 182+ L)
+ 4o® + I +E,

where the constants L, I, A have to be determined. The number of triangles vanishes
when the curve is a line or a conic, that is ¢z=0 for 2=1, X =0, £=0, and for
x=X=2, £=6; we thus have

0= 441,

0=404 2L+ 2] + 6\
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Moreover, the data being sibireciprocal, the result must be so likewise; we must
therefore have L=1. We thus obtain L=1=XA=—4; so that finally

pr={X?(22° — 6z +4) + X (— 62 + 18z — 4) + 4a® — 4o — 4] eB.
Second process, by correspondence: form a=c=D=F=ax We have
e xt 2l nd k=9

also from the special consideration that the points D), F are given as the intersections
of the curve z, by the first polar of the point e, which first polar does not pass
through a, we have

(f-¢p—¢)+e(d-8—-8)=0,

and by the consideration that ¢, D are given as intersections, ¢ a double intersection,
of the curve with the first polar of the point ¢, which first polar does not pass
through a,

d=8—8+2(c—y—v)=0,
whence

B o= dfm—d8 (0—fpiy]
and

c—y—o =BA,
so that this is

g—x—x =—4BeA

=—4Be(—2X —-2z+2+§).

Also
x =B@—1)(X-2)e(X—1)(z-2),
X=(X-2eX-1)(2-2)Bz-1), =y,
so that
g = Be multiplied into
2(X-1)(X-2)(z-1)(z—2) - 4(—2X - 22+ 2+ §),
viz. this is

Be (X* (203 — 62 + 4) + X (— 62° + 18z — 4) + 4a® — 4 — 44},

Third process: form c=e=F=B=ua.
g =x+x —Red,
x =X@-2)D(z-1)(X-2)a,
X=X@-2)D(z-1)(X-2)a, =y,
x+x=aD.2X (X-2)(z—1)(z—2).
The first-mode reduction is here

aD[(X—2) X +(X — 4) 28 + (X — 3) 3¢ + «] ;
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where the last term @Dk arises from the tangents cBa and eFa, each coinciding with
a cuspidal tangent, as shown in the figure.

Fig. 4.

The second-mode reduction is
=aD.X (z—2)(z—3)
so that the two reductions together are

=aD{(X-2) X+ (X -4)20+ (X =3)3c +«c+ X (z—2)(z - 3)}
viz. this is

=aD{(X-2) X +(X -4)(20+3k) +4x+ X (v - 2) (- 3)} ;.

or substituting for 26 +3« and « the values 22—z — X and —3X + £ respectively, and
reducing, it is

aD (X (24* — 6z — 4) — 4a® + 4a + 4E].
Hence subtracting from x +x/, written in the form

aD {X?(22* — 6z + 4) + X (— 4a* + 122 — 8)},
the result is

=aD {X?*(22* — 62+ 4) + X (— 62° + 18z — &) + 42— 4o — 4E}.
On account of the symmetry we must divide by 2.
Case 48. a=c=e¢=2, B=D=F=y.

Suppose for a moment that the angle a is a free point; the locus of @ is a curve
the order of which is obtained from Case 28, by writing c=e=2, B=D=F=y; the
locus in question meets a curve order a in {2V (¥ —1)(Y—2)+y}a (2 —1)a points;
wherefore the order of the locus is

=2Y(Y-1)(Y-2)+y}z (z—1),
and this locus meets the curve a =c=e=a in a number of points
=YY -1)(Y-2)+y}a*(z—1),

viz. this is the number of positions of the angle a; but several of these belong to
special forms of the triangle aBcDeF, giving heterotypic solutions, which are to be
rejected ; the required number is thus

2V (Y-1) (Y -2)+y}a* (z —1) — Red.
C. VIIIL 31
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The reduction is due first and secondly to triangles wherein the angle a coincides
with an angle ¢ or ¢, and thirdly to triangles wherein the angles @, ¢, ¢ all coincide.

1°. Take for the side cDe a double tangent of the curve B= D= F, this meets
the curve @ =c=e in z points, and selecting any one of them for ¢ and any other for ¢,

Fig. 5.

L4 D
/ \ / ac e
we have from the last-mentioned point ¥ — 2 tangents to the curve B=D=F; and
in respect of each of these a position of @ coincident with ¢. The reduction on this
account is 2tz (z—1)(Y —2); but since we may in the figure interchange ¢ and e,

B and F, we have the same number belonging to the coincidence of the angles a, e,
or together the reduction is =47z (z—1)(¥Y —2).

Fig. 6.

DF
e

2 :
But instead of a double tangent we may have cDe a stationary tangent; we have

thus reductions 3.z (z—1)(¥Y—2) and 3cz(z—1)(¥Y —2), together 6ez(z—1)(Y —2);
and for the double and stationary tangents together we have

ac

@r+6)z(z—1)(Y-2),
—2(Y (P-1)-y}a(@—1)(¥—2)

that is
=22(-1)Y(Y-1)(Y-2)-2z(z—-1)y(¥Y-2).

2°. The side cDe may be taken to be a tangent to the curve B=D=F at any
one of its intersections with the curve @ =c¢=e. Taking then the point e at the
intersection in question, and the point ¢ at any other of the intersections of the
tangent with the curve a=c=e, and from ¢ drawing any other tangent to the curve
B=D=F, there is in respect of each of these tangents a position of @ at c¢; and
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the reduction on this account is =ay (2 —1)(¥ —1). But interchanging in the figure
the letters c, e, B, F, there is an equal reduction belonging to the coincidence of a, e;

and the whole reduction in this manmer is =2z(z—1)y (¥ —1).

Fig. 7.

\/ew/ 7

3°. If the side cDe intersects the curve a=c=e in two coincident points, then
taking these in either order for the points ¢, ¢, and from the two points respectively
drawing two other tangents to the curve D=B=F, we have a triangle wherein the
angles @, ¢, e all coincide. The side cDe may be a proper tangent to the carve
a=c=e, or it may pass through a node or a cusp of this curve, viz. it is either a
common tangent of the curves B=D=F and a=c=e (as in the figure, except that for
greater distinctness the points ¢ and e are there drawn nearly instead of actually
coincident), or it may be a tangent to the curve B=D=F from a node or a cusp of
the curve a=c=-¢; we have thus the numbers

Common tangent XY (Y-1)(Y-2),
Tangent from node 28V (Y —-1)(Y - 2),
Tangent from cusp Y (Y-1)(Y—-2);

a

but (as we are counting intersections with the curve a=c=e) the second of these, as
being at a node of this curve, is to be taken 2 times: and the third, as being at a
cusp, 3 times; and the three together are thus
X +45+6c )Y (Y -1)(Y—-2)
={22(z-1)-X} Y (Y -1)(Y-2).

The reductions 1°, 2°, 3° altogether are
22(x—1) Y (Y =1)(Y-2)
—2z(z—-1)y(Y -2)
+2z(z—1)y(¥Y —1)
+22(x—-1) Y (Y-1)(Y-2)
- XY (Y=-1)(Y-2),
—4a(z-1)Y (Y -1)(Y-2)

+2z(z—1)y
XYY -1)(Y-2);

which is

31—2
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and subtracting from the before-mentioned number
222 (z—1) Y (¥ -1)(Y -2)
+a*(z-1)y,
the required number of positions of the angle a is
=2z(z—-1)(z—-2) Y (Y-1)(¥Y-2)
+ye(z—1)(e—-2)y+ XY (Y -1)(¥V-2)
The number of triangles is on accourt of the symmetry equal to one-sixth of this
number.
Case 4¢. e=D=F=z, a=c=B=y.
x=(Y-2)(y-3)X (z-2)(X-3)y,
X=X(@-2)(X-3)y(Y-2)(y-3)(=x)
g =2@-2X X -3)(Y-2)y(y-3):
there is a division by 2 on account of the symmetry.
Case 45. a=D=B=ax,c=e=F=y.
X =X-2)y@X -1y - -2z
X=Y@y-X(@y-1)&X-1)(z-2),
g=E-DE-Dey X -2)(Y-2)+ XV (2-2)(y—-2}
=2X-1)(y—-1){XYay—XY (z+y)—ay(X + Y)+ 22y + 2XY}.
Case 46. a=c=y, B=D=F=e¢=a By reciprocation of 47,
No. =y (y—1){«* + 2 (2X*- 10X2+ 12X — 1) — 4X*+ 20X* - 16X — 3£} :
there is a division by 2 on account of the symmetry.
Case 47. D=F=y, a=c=e=B=a

The functional process is exactly the same as for No. 39 (¢ =c=e=B=gz), with
only Y (¥ —1) written instead of DF: hence

No.= ¥ (¥ —1) {X*+ X (2¢°— 102* + 122 — 1) — 4¢° + 2022 — 162 — 3¢} :
there is a division by 2 on account of the symmetry.
Case 48. a=c=D=F=2 e=B=y.

The functional process, writing a=c=D=F =g+ a/, would be precisely the same
as for Case 42, with only the factor yY written instead of eB; and we have thus
the like result, viz.

No. = {X*(22* — 6z + 4) + X (— 62°+ 182 — 4) + 4a* — 4o — 4§) y ¥,

which on account of the symmetry must be divided by 2.
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Case 49. a=B=y,c=e=D=F=ux.
x = (Y= 2)a(X-2)@-3) (X -3y,
X=X (@—2)(X-3)@-3) ¥ (y—2),
g =(@—3)(X —3) oy (X—2) (Y- 2)+ XV (2 —2) (y - )}
=2@2—-3)(X-3){zyXY —(z+y) XY - (X + V)ay + 20y + 2XY}.
Case 50. c=¢=B=D=F=ua.

Functional process; by taking the curve c=e=B=D=F as the aggregate of two
curves, say =« +&. The cases are

Case

aXzXxX aX'o'X'a' X' 50

XX &e. 41

KXok . L 40

X 2 X s ’ 32

SN X ; 42

XXz . 5 33

XaXe . : 38

XX . : 32

WX X o : 40

Xz Xa. . 36

XX 2l : 28

R al : 33

A : 38

‘o X'a, ; 36

XX, ] 29

X X'adX ; 41

and we thus have
¢ (z + o) — pz — ¢’ = @ multiplied into

= 4(@@-3)X-3)(@X-2-X)X'+.. 2 (41)
+ 2&' [2? + 2 (2X°—10X? + 12X — 1) —4X%+ 20X*— 16X — 3€] + .. 2(40)
+4X (X -3)(z—2) (X' - X' —2) + .. 2(32)
+ [X2(222— 62+ 4)+ X (—62°+ 182 — 4) + 4a* — 4w — 4E] X' + .. (42)
+4@-1)(2X —2z—X)(X?-X") + .. 2(33)
+ 4 (X -1)[XX'2t —XX' (2 + 2)— 25’ (X + X')+ 2X X'+ 2z2'] + .. 2(38)
+ 42X (X' - 1) (X2 - X' —2') + . 2(36)
+ (2 —2) (2X"®— 6X"?+4X + o) + .. (28)

+ 22 (z—3) (X —2)(X”- X)) T T
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where as before the (. .)s refer to the like functions with the two sets of letters
interchanged. Developing and collecting, this is
¢ (z+a)— o — pa’ = a multiplied into
3% + Bza’®

+a?. 6X°X'+6XX"+2X"
— 28X X’ - 14X"
+ 28X’

+ oz’ 4X2+12X2X" + 12X X" + 4X"
—28X2- 56X X" — 28X"
+ 56X + 56X’
— 22

+a”.2X2+ 6X°X' + 6X X"
—14X® - 28X X’
+ 28X

+z.—30X2X" - 30XX"?-10X"
+ 140X X" + 70X
- 116X" - 6§

+a . —10X%-30XX" - 30X X"
+ 70X2 + 140X X’
— 116X — 6¢
+ 36X°X" + 36X X"
- 152X X’
—4(XE+XD);

whence
¢z = a multiplied into

a* ( + 1)
+a?( 2X*°—14X2+ 28X —11)
+z (— 10X* + 70X* — 116X + 1)
+ 12X® - 76X® +LX
+E&(— 6z-4X + ),
where the constants I, L, A have to be determined. We should have ¢pz=0 for a

cubic curve; viz. 2=3: X =6, £=18; X=4, {=12; or X =3, £=10. Writing first
z=3, the equation is

8X? —96X —72 - £(18+4+4X)+3l+ XL+ Ex=0,
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giving in the three cases respectively

3l + 6L + 18\ = 1116,
3l 4+ 4L + 121 = 736,
3l+3L+10A= 588;
and we have then ! =—8, L=64, A =42, so that the required number is
= + 1)
+a2( 2X* - 14X24 28X —11)
+ (— 10X+ 70X - 116X — 8)
-+ 12X3-76X2+ 64X
+E(— 6z—4X + 42 ).

As a verification, observe that for a conic, z=X =2, £=6, this is =0.
Second process, by correspondence: form c=e=B=D=F=u.

We have
g =X+x'— Red,,

x=X(@—-2)(X~-3)(@—8)(X-3)a,
X=X (@-2)(X-3)(@-3)(X-3)a =y,
x +x =a into

2(@—2)(z—3) X (X —3).

Fig. 8.

There is a first-mode reduction, which is

—a(25(X —4)(X —5)+ 3% (X - 3) (X —4) + « (X - 3) +27(X - 3)},

in.org.p
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where the term a .27 (X — 3) arises, as shown in the figure, and a second-mode reduction,
which is
=a {27 (x—4)(@—5)+3i(x—3)(x —4)};

and the two together are =a into

X-4H)X-5)(*—2+8X —3§)
+ (X —3) (X —4)( 9X + 3§)
+ (X—-3)< —-3X + E)
+ X* — X + 8z -3¢
+(z—4)(2-5)(X*—X + 8z — 38)
+(z—=3)(z—4)( — 24 38);
that is, = @ into
— g

+a*. 2X*— 10X +11

+az.—10X*+26X +8

+ 4X° 4 44X

+E(6z + LX — 42);

and subtracting this from the foregoing value of y + x/, which is = @ into

2( 2X*-12X*+ 18X)

+ 2 (— 10X2 + 60X — 90X)

4 51 N18Xs N2 XA 4808 X,

the result 1s as before.

There is a division by 2 on account of the symmetry.

Case 51. a=c=e=B=D=ua By reciprocation of 50,
No. is = X3( + 1)
+X2( 20— l4a*+ 28z—11)
+ X (—102° + 702 — 1162 — 8)
+ 122* — 762° + 64
+E(— 6X — 4z + 42).

There is a division by 2 on account of the symmetry.
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Case 52. a=c=e¢=B=D=F=q¢.

Functional process, by taking the curve to be the aggregate of two curves, say
=xz+4'. The enumeration of the cases is conveniently made in a somewhat different
manner from that heretofore employed, viz. we may write

z or & | a or x Case times
] ]
all none (52) 1
a reéidue (50) 3
B i (51) 3
a, ¢ 5 (46) 3
B, D g (47) 3
&) A (48) 3
@, b % (49) 6
@, clyne BHD;" R (43) 1
a, B, F chlen D (44) 3
a, B, D ¢, e; I8 (45) 6
32;

and the functional equation then is

¢ (z+2) — pa— ¢’
B @ ( o T (50) x 3

@( 2X'—14X*+ 28X —11) :

z (—10X*+ 70X — 116X — 8)

+12Xt — 76X+ 64X

+E(—6z—4X +42)

X2( 22% — 142 + 282 —11)
X (— 102 + 702% — 1162 — 8)
+ 1227 — 762* + 64w
+ E(— 6X — 4 +42)

a® } ol (46) x 3
+2(2X°—10X2+12X - 1) |
— 4X°+20X2-16X ~3§}

C. VIIL 39
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+3(X"2-X")( X* +.. 47 x3
+X (22° — 102* + 122 — 1)
— 408+ 2022 — 16 — 3
+ 32’ X’ X2( 222 — 6w+4~)} +.. (48) x 3
+ X (— 622+ 18z — 4)
+ 4o — 4«.70—45[
+12(@" —3) (X' - 3) {2’ XX — 22’ (X + X') — XX ' (@ + ')+ 222 + 2X X'} +.. (49)x6
+ {22 (2 —1)(&-2) X(X - 1)(X —-2)+ a2’ (' — 1)@ - 2)+ XX (X -1)(X-2)} +.. (43)
+6(—2) X (X' —8)(X—2)(z—3) +.. (44)x3
+12(X'=1)(z—1) (@’ XX —aa/ (X + X')— XX (2 + &) + 222’ + 2X X'} +.. (45)x6

where as before the (..)s refer to the like functions with the two sets of letters
interchanged. Developing and collecting, this is found to be

= 4X3X’ + 6X2X"2 4+ 4X X"

+ X3 622 + 6z + 24
— 36za’ — 182"
+ 522

+ (XX’ + XX7) 62° + 18a%" + 18xa™ + 62"

— 54a® — 10822’ — 54’
+ 1562 + 1562
— 138

+ X" 228 + 62°2" + 6za”
— 182? — 3624
+ 52z

+ &c. &e.

I abstain from writing down the remaining terms, as they can at once be obtained
backwards from the value of ¢z; they were in fact found directly, and the integration
of the functional equation then gives

bz = X4( : + 1)
+ X0 29— 182+ 520— 46)
+ X2( —182° + 162a* — 4202 + 221)
+X ( 520 — 4202% + 704z +1 )
+ ot — 462° + 22122 + Iz
+ & Xz( - 9
+X ( - 122+ 185)
—92°+ 1352+ A
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514] ON THE PROBLEM OF THE IN-AND-CIRCUMSCRIBED TRIANGLE. 251

where the constants I, A have to be determined; I have in the first instance written
I (X + )+ A\E instead of LX + lz+ A, thus introducing two constants only, since it is
clear from the symmetry in regard to #, X that we must have /=1L We must have
¢x =0, when the curve is a conic or cubic. Writing #=2, we have

¢o=X¢+2X°— 115X° + 144X + 532 + £(— 9X* + 111X + 234) + (2 + X) + Er,
and then for the conic, X =2, £=6.
Writing =3, we have
dw =X*+ 2X° — 67TX*— 264X + 828 + £(— 9X* + 99X + 324) + 1(3 + X)+ )&,

and then for the three cases of the cubic X =6, £=18; X =4, £=12; and X=3, £=10.
We have thus the four equations

. 20124+ 41+ 6A =0,

9252 + 91+ 18\ =0,

5796 + 71 + 12x = 0,

4968 + 61 + 10x = 0,

all satisfied by I=+ 172, A =— 600. Hence finally

bz = X4 ( i 1)
+ X3 ( 22*— 182+ 52z — 46)
+ X*( —182°+ 1622° — 4202 + 221)
+X ( 524 — 4202° + 704z + 172)

+ ot — 46a° + 221a° + 1722

+ £ X2( - 9

+X ( — 122+ 135)

—92* + 135z — 600

but on account of the symmetry the number of triangles is = one-sixth of this expression.

Article Nos. 22 to 36. The Cuase 52, as belonging to a different series of Problems.

22. In the foregoing Case 52, where all the curves are one and the same curve,
we have the unclosed trilateral aBcDeFy, and we seek for the number of the united
points (a, g). But we may consider this as belonging to a series of questions, viz. we
may seek for the number of the united points (a, B), (a, c), (a, D), (a, €), (a, F), (the
last four of these giving by reciprocity the numbers of the united points (B, D), (B, e),
(B, F), (B, g)), and finally the number of the united points (a, g). It is very instructive
to consider this series of questions, and the more so that in those which precede
(a, F) there are only special solutions having reference to the singular points and
tangents of the curve, and that the solutions thus explain themselves.

32—2
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252 ON THE PROBLEM OF THE IN-AND-CIRCUMSCRIBED TRIANGLE. [514

23. Thus the first case is that of the united points (@, B), viz. we have here a
point @ on the curve, and from it we draw to the curve a tangent aB touching it
at B; the points ¢ and B are to coincide together. Observe that from a point in
general a of the curve we have X —2 tangents (X the class as heretofore), viz. we
disregard altogether the tangent af the point, counting as 2 of the X tangents from
a point not on the curve, and attend exclusively to the X —2 tangents from the point.
Now if the point @ is an inflection, or if it is a cusp, there are only X —3 tangents,
or, to speak more accurately, one of the X —2 tangents has come to coincide with
the tangent a¢ the point; such tangent is a tangent of three-pointic intersection, viz.
we have the point @ and the point B (counting, as a point of contact, twice) all three
coinciding ; that is, we have a position of the united point (@, B); and the number
of these united points is =+ «.

24. It is important to notice that neither a point of contact of a double tangent,
nor a double point, is a united point. In the case of the point of contact of a double
tangent, one of the tangents from the point coincides with the double tangent; but
the point B is here the other point of contact of this tangent, so that the points
a, B are not coincident. In the case of a double point, regarding the assumed
position of a at the double point as belonging to one of the two branches, then of
the X — 2 tangents there are two, each coinciding with the tangent to the other
branch; hence, attending to either of these, the point B belongs to the other branch,
and thus, though e and B are each of them at the double point, the two do not
constitute a united point. (In illustration remark that for a unicursal curve, the
position of a answers to a value =2, and that of B to a value =pu of the parameter 6,
viz. N, p are the two values of & at the double point; contrariwise in the foregoing
case of a cusp, where there is a single value A =pu. Hence the whole number of the
united points (@, B) is =:¢+«, and this is in fact the value given, as will presently
appear, by the theory of correspondence.)

I recall that I use A, =2D, to denote twice the deficiency of the curve, viz. that
we have A=X—-22+4+2+«k, =—20—-2X+2+ &

25. The several cases are

United points.
(a, B) b -8 -8 =24,

(@, c) c —y —v +2(b-B-8)=(X-2)4,

(B, D) C — v — % by reciprocity,

(@,D) d-8-&+2(—n—7)+E&X-3)(b-B-8)=0,
(a,e) e —e —€ +2(d-8 -8 )+ (X -3)(c—y—¢')=0,
(B, F) e, — € — €’ by reciprocity,

(a, F) f —¢p—¢ +2(ep—€e—€)+(X—-3)(d-8—-8)=0,
@,9)  g-%-X A2E —b—¢)+X—3)(e ~¢ —¢)=0,
(B, H) go— Xo—Xo by reciprocity,

and so on.
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26. The mode of obtaining these equations appears ante, Nos. 5 and 6, but for
greater clearness I will explain it in regard to a pair of the equations, say those for
(a, €), (a, D). Regarding @ as given, we draw from a the tangents aBe, touching at
B and besides intersecting at ¢ (viz. the number of tangents is =X —2, and the
number of the points ¢ is =(X —2)(z—3)); from each of the positions of ¢ we draw
to the curve the (X —3) tangents cDe touching at D and intersecting at e; the
whole number of these tangents is = (X —2)(z—3) (X —3); and this is also the number
of the points D, but the number of the points e is =(X —2)(z—3)(X—3)(z~-3).
Now this system of the (X —2)(«—3)(X —3) tangents is the curve ® of the general
theory (ante, Nos. 3, 4), viz. the curve ® (which does not pass through a) intersects
the given curve in the three classes of points ¢, D, e, the number of intersections at
a point e¢ being =1, at a point D being =2, and at a point ¢ being =X -3 And
we have thus the equation

e—e—€¢+2(d—-8-8)+(X-8)(c—y—9)=0,

where e, d, ¢ are the numbers of united points and (e, €), (8, &), (y, ) the corre-
spondences in the three cases respectively.

27. Observe that we cannot, starting from @, obtain in this manner the equation
for the number of the united points (@, D); for we introduce per force the points e,
and thus obtain the foregoing equation for (@, ¢). But starting from D, the tangent
at this point besides intersects the curve in (2 — 2) points, each of which is a position
of ¢; and from each of these drawing a tangent cBa to the curve, we have the
curve @ consisting of these (#—2)(X —3) tangents, not passing through D, but inter-
secting the given curve in the three classes of points ¢, B, a, viz. the number of
intersections at each point ¢ is =X —3, at each point B it is =2, and at each point
a it is =1; and we have thus the equation

d-8-8+2(C—%—9)+(X=3)(b-B-8)=0,

where the numbers (d, 8, &), (¢, 7o, ), (b, B, B) refer to the correspondences (D, a),
(D, B), and (D, ¢) (or what is the same thing (@, B)) respectively,

28. Correspondence (a, B).

We have
B:X—2, BJ=$“‘2,

b=z+X—-44+2A
=—38z —3X + 2§,

and thence

which is the solution: the value obtained above was b=:+%, and we in fact have

identically 7 S 8X 42
t+rk=—3x—" .

It was in this manner that I originally applied the principle of correspondence to
investigating the number of inflections of a curve, regarding, however, the term « as
a special solution; it is better to put the cusp and inflection on the same footing
as above.
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29. Correspondence (a, ¢).
Since b—B— B =2A, we have here
c—y—o =(X-6)A,
and
y=v=(X-2)(z—3),
whence
c=2X-2)(z—3)+(X —-6)(—20—2X +2+§)

=—2X*+8X 4+ 8z+ (X —6) &;

this is in fact =2t + (X — 8) «, viz. we have
2r=X*— X + 8z — 3¢
X=-3)r=(X-3)(—-3X+§£=-3X+9X+(X-3)¢§
and therefore
27+ (X — 3)k = as above,
viz. the united points (a, ¢) are the 27 points of contact of the double tangents, and
the « cusps each (X —3) times in respect of the (X —3) tangents from it to the

curve. This is the way in which I originally applied the principle to finding the
number of double tangents of a curve.

30. Correspondence (B, D). By reciprocation

Co— Yo — 0 = (z — 6) A,
Co=—22*+8z+8X +(x—6)E&
= 28 +(z—3).

31. It may be remarked, as regards the cases which follow, that although the
result in terms of (8, «, ¢, 7) when once known can be explained and verified easily
enough, there is great risk of oversight if we endeavour to find it in the first
instance ; while on the other hand the transformation from the form in terms of
(z, X, £), as given by the principle of correspondence, to the required form in terms
of (8, k, ¢, T) is by no means easy. I in fact first obtained the expression in (z, X, &),
and then, knowing in some measure the form of the other expression, was able to
find it by the actual transformation of the expression in (z, X, &).

32. Correspondence (@, D).
From the values of ¢,—y,—v, and b—B8—B" we have

d-8—-8=-(2X+2¢x-18)A,
and then
=X -2)(2-3)(X=-3), &=@-2)(X -3)(z-3),
whence

d=(@-3)(X-3)(X +2—4)
+(—2X —22+18)(-2X - 22+ 2+ §)
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which is
T z+ 1)
+X (&= 22-19)
4E z® — 192

+E(— 2X — 22+ 18),
And then, by means of the equations
(@ —4)27=(z —4)(X*— X +8z —3§),
(X —4)20=(X —4)(a* —2 +8X — 3§),
(@ =3 =(a.~8)(, S8 ~. + P
X -3k =(X-3)( -3X + £

we verify that
d=(@—4)27+(X —4)20+(z—=3) 1t + (X — 3) «.

33. Correspondence (a, e).
From the values of d—8—9&, ¢ —y—1v we have

e—e—e=(—X>+13X + 4z — 54) A,

and then
e=¢=(X-2)(2—3)(X —9)(e—3);
that is
e=2(xf3)“(X—2)(X—3)
+(—X*+ 13X + 42— 54)(— 2X — 22+ 2+ §),
which 1s
= X3 2)
+X2( 222—10z —10)
+ X (- 102® + 262 + 44)
+ 42 + 442
+& (—X*+ 13X + 4z — 54),
and then

(z—4)(z—5)2r=(z—4)(z—5) (X*>— X + 8z — 3§),
(X-4)(X-5)+2—-38}20={(X—4) (X =5)+2 -3} (a*— 2+ 8X —-3§),
{3(z—8)(z—4)+z—3}: =(z—-3)(Bz—11)(—3z +§),

2(X-8)(X~-4)xk=2(X-3)X-4)(-3X+§);
and summing these values and comparing,
c=@—-4)(z—-5)2r+2(X -3)(X —4)«
+[(X -4 (X -5)+2—3]20+[3(z—3)(z—4) +2—3].

The united points (a, €) are in fact, 1°, each of the x—4 intersections of a double
tangent with the curve, in respect of the two contacts and of the remaining -5
intersections; 2°, each double point in respect of the two branches and of the pairs
of tangents from it to the curve; 3°, each of the x— 3 intersections of each of the
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tangents at a double point with the curve; 4°, each of the #—3 intersections of a
tangent at an inflection (stationary tangent) with the curve, in respect of the (z— 4)
remaining intersections; 5° each inflection in respect of the x—3 intersections of the

Fig. 9.

tangent with the curve; and 6° each cusp in respect of the pairs of tangents from
it to the curve. Thus (2°), the double point in respect of the branch which contains ¢,
and of the two tangents from it to the curve, is a position of the united point
(a, e), as appearing in the figure.

34. Correspondence (B, F). By reciprocation of (a, €)
e, —€—€ =(—a*+ 13z + 4X — 54) A,
e=(X—-4)(X=5)25+2(z-3)(z—4):
+[(z—4)(z-5)+ X -38]27+[8(X -3) (X —4) + (X -3)] «.

35. Correspondence (a, F). By means of the values of e¢,—-e—¢ and d—8— &,

we have
f—¢p—¢' =02X°+2X2z + 22° — 32X — 32z + 162) A,

and then
$ =(X—2)(a—3)(X - 3) (e -3) (X - 3)
¢ =(@—2) (X —3) (@—3)(X - 3) (e—3)
whence
f =(X+2-4)(z2—3)*(X -3y
+ (2X° + 2X2z + 22° — 32X — 322+ 162) (—2X — 22+ 2 + &)
which 1is

= X3( #— 6o+ 5)
+ X2( 2*-162+ 6lz— 22)
+ X (- 6a* + 6122 — 120z — 91)

+ 5a* — 2242 — 9l
& B W 2)
Aol %z — 32)

iy 2z° — 32z + 132
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This result includes proper solutions of the problem of finding the number of
the triangles aBcDeF, which are such that the side ea touches the curve at a; and
also heterotypic solutions having reference to the singular points of the curve; but
I have not determined the number of solutions of each kind.

36. Correspondence (@, g): from the values of f—¢— ¢ and e—e—¢, we have

g—x—x =(X*—20X>—8Xxz —40°+ 125X + 44a — 486) A,

and then
x=X=(&X-2)(z-3)(X-3)(z—3)(X -35)(z-3),
wherefore
g=2(X-2)(X-3p(@x—3)y
+(X*—20X2—-8X2+125X + 442 — 486) (— 2X — 22+ 2 + §),
viz. this is

g= X * T8
+X( 22— 18+ 52— 12)
+ X2 (— 162° + 1442® — 876a + 142)
+X ( 424° — 3624+ 780z + 88)

— 362° + 2362° + 88z

Wl 1))
+ X2 ( o 20)&
+X ( - 8z+125)

+44w—486.)

Comparing with the expression of ¢z, Case 52, we have

g—¢r=X¢( - 8)
+ X3 ( +34)
+ X3( 208 — 1822 + 442 —79)

+X ( —102®+ 584+ 76z — 84)
— 244 102° 4+ 152° — 84

ok B 1)
+ X2 ( = 1)
I T 4z — 10)

+92% — 91z + 114,

which difference must be the number of heterotypic solutions having relation to the
singularities of the curve; but I have not further considered this.

C. VIIIL 33





