506.

ON THE MECHANICAL DESCRIPTION OF A CUBIC CURVE.

[From the Proceedings of the London Mathematical Society, vol. Iv. (1871-1873), pp. 175-178. Read November 14, 1872.]

If the coordinates x, y of a point on a curve are rational functions of $\sin \phi, \cos \phi$, $\sqrt{1-k^{2} \sin ^{2} \phi}$, the curve has the deficiency 1 , and conversely in any curve of deficiency 1 the coordinates x, y can be thus expressed in terms of the parameter ϕ. Hence writing $\sin \theta=k \sin \phi$, the coordinates will be rational functions of $\sin \phi, \cos \phi, \cos \theta$, or say of $\sin \phi, \cos \phi, \sin \theta, \cos \theta$; and for the mechanical representation of the relation $k \sin \phi=\sin \theta$, we require only a $\operatorname{rod} O A$ rotating about the fixed point O, and connected with it by a pin at A, a $\operatorname{rod} A B$, the other extremity of which, B, moves in a fixed line $O x$. The curve most readily obtained by such an arrangement is that described by a point C rigidly connected with the $\operatorname{rod} A B$; this is however a quartic curve (with two dps., since its deficiency is $=1$). I first considered the cubic curve

$$
x y-1=\sqrt{\left(1-x^{2}\right)\left(1-k^{2} x^{2}\right)}
$$

or say

$$
x y-1=-\sqrt{\left(1-x^{2}\right)\left(1-k^{2} x^{2}\right)}
$$

writing herein $x=\sin \phi$, and as before $k \sin \phi=\sin \theta$, we have then $y \sin \phi=1-\cos \theta \cos \phi$; which values may be written

$$
\begin{aligned}
& x=\sin \phi \\
& y=\frac{1-\cos (\theta+\phi)}{\sin \phi}-\sin \theta
\end{aligned}
$$

I found, however, that this was not the cubic curve most easily constructed; and I ultimately devised a mechanical arrangement consisting of

1. Rod $O H$, and connected with it by a pin at H, $\operatorname{rod} H I\left({ }^{1}\right)$.
[^0]2 Square $A C D$, and connected with it by a pin at D, rod $D G$.
3. Square $E C F$; the two squares being connected by a pin at C.
4. Rod $I J$.

The rod $O H$ rotates about a pin at O; taking $H A=H I$, there is a pin at A connecting a fixed point of this rod with the extremity A of the square $A C D$: the fixed point B of this square moves along the line σx. There is a pin at I connecting the extremities of the rods $H I, I J$; and this slides along the leg $A C$ of the square $A C D$, the rod $I J$ being always at right angles thereto: finally the legs of the square $E C F$ are always parallel to $O x, O y$, and the $\operatorname{rod} D G$ at right angles to $E C$. I have omitted from the description the parallel-motion rods or other arrangements necessary for giving these fixed directions to the rod $I J$, the square $E C F$, and the rod $D G$. It will be seen that the angles $A O B, A B O$ are variable angles connected by an equation of the form above referred to; and that the lines $I J, C F$ determine by their intersection the point P; and the lines $C E, D G$ determine by their intersection the point Q; the curve about to be considered is that determined by the relative motion of P in regard to Q; or say the curve the coordinates of a point of which are

$$
x=Q C, \quad y=C P
$$

I write

$$
\begin{gathered}
\angle A O B=\theta, \quad \angle A B O=\phi \\
O A=a, \quad A B=b, \quad A C=c, \quad C D=d \\
A H=H I=\frac{1}{2} h
\end{gathered}
$$

We then have $a \sin \theta=b \sin \phi$; and moreover the length $A I$ being $=h \cos (\theta+\phi)$, and therefore $I C=c-h \cos (\theta+\phi)$, we have

$$
\begin{aligned}
& y=C P=\frac{c-h \cos (\theta+\phi)}{\sin \phi} \\
& x=Q C=d \sin \phi
\end{aligned}
$$

whence also

$$
x y=d\{c-h \cos (\theta+\phi)\}
$$

or we have

$$
x y=d\left\{c-h \sqrt{ }\left(1-\frac{x^{2}}{d^{2}}\right) \sqrt{ }\left(1-\frac{b^{2}}{a^{2}} \frac{x^{2}}{d^{2}}\right)+h \frac{b}{a} \frac{x^{2}}{d^{2}}\right\}
$$

that is

$$
x\left(y-\frac{b h}{a d} x\right)-c d=-d h \sqrt{ }\left(1-\frac{x^{2}}{d^{2}}\right) \sqrt{ }\left(1-\frac{b^{2}}{a^{2}} \frac{x^{2}}{d^{2}}\right):
$$

or rationalising and reducing, this is

$$
x^{2} y^{2}-\frac{2 b h}{a d} x^{3} y-2 c d x y+\left\{2 \frac{b}{a} c h+h^{2}\left(1+\frac{b^{2}}{a^{2}}\right)\right\} x^{2}+d^{2}\left(c^{2}-h^{2}\right)=0
$$

a quartic curve with two dps.
In the particular case $a=b$, the relation between θ, ϕ is simply $\theta=\phi$; the curve should become unicursal.

Writing in the equation $\frac{b}{a}=1$, the equation takes the form

$$
\left\{x\left(y-\frac{2 h}{d} x\right)-d(c-h)\right\}\{x y-d(c+h)\}=0
$$

the second factor is extraneous, and the curve is the hyperbola

$$
x\left(y-\frac{2 h}{d} x\right)-d(c-h)=0
$$

as at once appears from the foregoing irrational form of the equation.
In the particular case $h=c$, the equation contains the factor x, and omitting this it becomes

$$
x\left(y^{2}-\frac{2 b c}{a d} x^{2}\right)-2 c d y+c\left(1+\frac{b}{a}\right)^{2} x=0
$$

viz. we have here a cubic curve with three real asymptotes meeting in a point which is also the centre of the curve.

If simultaneously $a=b$ and $h=c$, then the equation is

$$
x\left(y-\frac{2 c}{d} x\right)(x y-2 c d)=0
$$

the actual locus being in this case the line $y-\frac{2 c}{d} x=0$.

Writing $h=c$, and for greater convenience $h=c=d=1$; also to fix the ideas supposing $b<a$, and writing $\frac{b}{a}=k,=\sin \lambda$, then we have

$$
\begin{aligned}
\sin \theta & =k \sin \phi \\
x & =\sin \phi \\
y & =\frac{1-\cos (\theta+\phi)}{\sin \phi}
\end{aligned}
$$

that is

$$
x y=1-\sqrt{1-x^{2}} \sqrt{1-k^{2} x^{2}}+k x^{2},
$$

giving the rationalised equation

$$
x\left(y^{2}-2 k x^{2}\right)-2 y+4 x=0 ;
$$

the angle ϕ may be anything whatever, but θ varies between the limits $\pm \lambda$, the simultaneous values of these angles and of the coordinates being

$$
\begin{array}{llll}
\phi=0 & \theta=0 & x=0 & y=0 \\
\phi=90^{\circ} & \theta=\lambda & x=1 & y=1+\sin \lambda \\
\phi=180^{\circ} & \theta=0 & x=0 & y= \pm \infty \\
\phi=270^{\circ} & \theta=-\lambda & x=-1 & y=-(1+\sin \lambda) \\
\phi=360^{\circ} & \theta=0 & x=0 & y=0 ;
\end{array}
$$

and it thus appears that the mechanism gives the continuous branch which belongs to the asymptote $x=0$ of the cubic curve; the other two branches belong to $x=\sin \phi, y=\frac{1+\cos (\theta+\phi)}{\sin \phi}$, which would require a slight alteration in the arrangement of the mechanism.

I remark that if $A H, H I$ had been unequal, then writing $\angle H I A=\chi$, this would be connected with $\theta+\phi$ by an equation of the form

$$
\sin (\theta+\phi)=m \sin \chi,
$$

and the coordinates x, y would be rational functions of the sines and cosines of θ, ϕ, χ; the deficiency is in this case >1.

[^0]: ${ }^{1}$ There was a mechanical convenience in this, but observe that producing $O H$ to meet $I P$ in I^{\prime}, the single straight rod $O H I^{\prime}$ might have been made use of.

