490.

ON A PROBLEM OF ELIMINATION.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. xi. (1871), pp. 99-101.]

I write

$$
\begin{array}{ll}
P=(\alpha, \ldots \gamma x, y, z)^{k}, & Q=\left(\alpha^{\prime}, \ldots \gamma x, y, z\right)^{k}, \\
U=(a, \ldots \gamma x, y, z)^{m}, & V=(b, \ldots \gamma x, y, z)^{n},
\end{array}
$$

and I seek for the form of the relation between the coefficients $(\alpha, \ldots),\left(\alpha^{\prime}, \ldots\right)$, $(a, \ldots),(b, \ldots)$, in order that there may exist in the pencil

$$
\lambda P+\mu Q=0
$$

a curve passing through two of the intersections of the curves $U=0, V=0$.
The ratio $\lambda: \mu$ may be determined so as that the curve $\lambda P+\mu Q=0$ shall pass through one of the intersections of the curves $U=0, V=0$; or, what is the same thing, so as that the three curves shall have a common point; the condition for this is

$$
\text { Reslt. }(\lambda P+\mu Q, U, V)=0
$$

a condition of the form

$$
\left(\lambda \alpha+\mu \alpha^{\prime}, \ldots\right)^{m n}(a, \ldots)^{k n}(b, \ldots)^{k m}=0
$$

or, what is the same thing,

$$
\left(\alpha, \ldots, \alpha^{\prime}, \ldots\right)^{m n}(a, \ldots)^{k n}(b, \ldots)^{k m}(\lambda, \mu)^{m n}=0
$$

which, for shortness, may be written

$$
(A, \ldots \gamma \lambda, \mu)^{m n}=0 \text {. }
$$

Suppose this equation has equal roots, then we have

$$
\text { Disct. Reslt. }(\lambda P+\mu Q, U, V)=0 \text {, }
$$

the discriminant being taken in regard to λ, μ. This is of the form

$$
(A, \ldots)^{2(m n-1)}=0 ;
$$

that is

$$
\left(\alpha, \ldots, \alpha^{\prime}, \ldots\right)^{2 m n(m n-1)}(a, \ldots)^{2 k n(m n-1)}(b, \ldots)^{2 k m(m n-1)}=0 .
$$

It is moreover clear that the nilfactum is a combinant of the functions P, Q; and the form of the equation is therefore

$$
\left(\left\|\begin{array}{cc}
\alpha, & \beta, \ldots \\
\alpha^{\prime}, & \beta^{\prime}, \ldots
\end{array}\right\|\right)^{m n(m n-1)}(a, \ldots)^{2 k n(m n-1)}(b, \ldots)^{2 k m(m n-1)}=0 .
$$

Now the equation in question will be satisfied, 1°. if the curves $U=0, V=0$ touch each other; let the condition for this be $\nabla=0.2^{\circ}$. If there exists a curve $\lambda P+\mu Q=0$ passing through two of the intersections of the curves $U=0, V=0$; let the condition be $\Omega=0$. There is reason to think that the equation contains the factor Ω^{2}, and that the form thereof is $\Omega^{2} \nabla=0$.

Assuming that this is so, and observing that ∇, the osculant or discriminant of the functions U, V, is of the form

$$
\nabla=(a, \ldots)^{n(n+2 m-3)}(b, \ldots)^{m(m+2 n-3)},
$$

we have

$$
\begin{aligned}
\Omega^{2}=\left(\left.\begin{array}{ll}
\alpha, & \beta, \ldots \\
\alpha^{\prime}, & \beta^{\prime},
\end{array} \right\rvert\,\right)^{m n(m n-1)}(a, \ldots)^{k n(n-1)(2 m-1)+(k-1) n(n+2 m-3)} \times \\
(b, \ldots)^{k m(m-1)(2 n-1)+(k-1) m(n+2 n-3)},
\end{aligned}
$$

and consequently

$$
\begin{aligned}
\Omega= & \left(\begin{array}{ll}
\alpha, & \beta, \ldots \\
\alpha^{\prime} & \beta^{\prime},
\end{array} \|\right)^{\frac{1 m n n}{(m n-1)}} \\
& (a, \ldots)^{\frac{1}{n n}(n-1) k(2 m-1)+\frac{1}{1}(k-1) n(n+2 m-3) \times} \\
& (b, \ldots)^{3^{m}(m-1) k(2 n-1)+\frac{1}{2}(k-1) m(m+2 n-3),}
\end{aligned}
$$

which is the solution of the proposed question. Suppose for instance $n=1$, then

$$
\Omega=\left(\begin{array}{ll}
\alpha, & \beta, \ldots \\
\alpha^{\prime}, & \beta^{\prime},
\end{array}\right)^{\frac{1}{2 m(m-1)}}(a, \ldots)^{k-1)(m-1)}(b, \ldots)^{\frac{1}{2}(m-1) k+\frac{1}{2}(k-1)(m-1)} .
$$

If moreover $k=1$, then

$$
\Omega=\left(\begin{array}{ll}
\alpha, & \beta, \ldots \\
\alpha^{\prime}, & \beta^{\prime},
\end{array} \|^{\frac{1 m}{m(m-1)}}(b, \ldots)^{\frac{1 m}{}(m-1)} ;\right.
$$

this is right, for writing $P=\alpha x+\beta y+\gamma^{z}, \quad Q=\alpha^{\prime} x+\beta^{\prime} y+\gamma^{\prime} z, \quad V=b x+b^{\prime} y+b^{\prime \prime} z$, then if two of the intersections of the curve $U=0$ with the line $V=0$ lie in a line with the point $P=0, Q=0$, then the point in question, that is the point ($\beta \gamma^{\prime}-\beta^{\prime} \gamma, \gamma \alpha^{\prime}-\gamma^{\prime} \alpha, \alpha \beta^{\prime}-\alpha^{\prime} \beta$), must lie in the line $V=0$; and the condition reduces itself to

$$
\left\{\left(\beta \gamma^{\prime}-\beta^{\prime} \gamma, \gamma \alpha^{\prime}-\gamma^{\prime} \alpha, \alpha \beta^{\prime}-\alpha^{\prime} \beta^{\prime} \gamma b, b^{\prime}, b^{\prime \prime}\right)\right\}^{\frac{2}{2}(m-1)}=0,
$$

where the index $\frac{1}{2} m(m-1)$ is accounted for as denoting the number of pairs of points out of the m intersections of the curve $U=0$ with the line $V=0$.

If in general $k=1$, then writing as before $P=\alpha x+\beta y+\gamma z, Q=\alpha^{\prime} x+\beta^{\prime} y+\gamma^{\prime} z$, we have

$$
\Omega=\left(\beta \gamma^{\prime}-\beta^{\prime} \gamma, \ldots\right)^{\frac{1}{2} m n(m n-1)}(a, \ldots)^{\frac{1}{2} n(n-1)(2 m-1)}(b, \ldots)^{\frac{1}{2} m(m-1)(2 n-1)},
$$

where $\Omega=0$ is the condition in order that the point $\left(\beta \gamma^{\prime}-\beta^{\prime} \gamma, \ldots\right)$ may lie in line $\hat{\alpha}$ with two of the intersections of the curves $U=0, V=0$. Or writing (X, Y, Z) for the coordinates of the given point, the condition is

$$
\Omega=(a, \ldots)^{\frac{3}{3} n(n-1)(2 m-1)}(b, \ldots)^{\frac{1}{2} m(m-1)(2 n-1)}(X, Y, Z)^{\frac{1}{2} m n(m n-1)}=0 .
$$

I have found that if

$$
\begin{aligned}
& U=(a, \ldots \gamma x, y, z)^{m}, \quad V=(b, \ldots \gamma x, y, z)^{n}, \\
& W=(c, \ldots \gamma x, y, z)^{p}, \quad T=(d, \ldots \gamma x, y, z)^{q},
\end{aligned}
$$

the condition in order that the point (X, Y, Z) may lie in line \hat{a} with one of the intersections of the curves $U=0, V=0$, and one of the intersections of the curves $W=0, T=0$, is

$$
\Omega=(a, \ldots)^{n p q}(b, \ldots)^{m p q}(c, \ldots)^{m n q}(d, \ldots)^{m n p}(X, Y, Z)^{m n p q}=0 .
$$

Supposing that the curves $W=0, T=0$ become identical with the curves $U=0$, $V=0$ respectively, this becomes

$$
\Omega=(a, \ldots)^{n^{2} \cdot 2 m}(b, \ldots)^{n^{2} \cdot 2 n}(X, Y, Z)^{m n \cdot m n}=0
$$

and the variation from the correct form given above is what might have been expected.

