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One-dimensional model of composite material
Z. WESOLOWSKI (WARSZAWA)

Two pArRALLEL different elastic rods interact with each other. The denisty of the interaction
force is assumed to be proportional to the difference of displacements. The dispersion curve
consists of the acoustical and optical branches. It is shown that for small times the disturbance
propagates either with speed ¢, or with speed ¢, where ¢, ¢, are the propagation speeds in the
first z;md tt}ze sc:(z:ond rod, respectively. For large times the disturbance propagates with new speed
¢, 2¢* = cy+c3.

Dwa rozne rownolegle prety oddzialywuja na siebie sila rozltozona w sposob ciagly. Gestosé
tej sity jest proporcjonalna do roznicy przemieszezen. Krzywa dyspersyjna ma galaz akustyczng
i galaz optyczng. Pokazano, Zze dla malych czasOw zaburzenie propaguje si¢ z predkoscia c;
lub ¢, gdzie ¢, ¢ sa odpowiednio predkosciami propagacji w pierwszym lub drugim precie.
Dla duZego czasu zaburzenie propaguje si¢ z predkoscia ¢, 2¢? = ¢} +c2.

JIBa pa3HbIX NMapassie/ibHbIX CTEPXHA BO3IEHCTBYIOT Ha cebsi CHIIOH pacnpe/iesieHHOH Hempe-
pbIBHLIM 00pasom. ITnoTHOCTE 3TOM CHIIBI NPONOPLHMOHAIBHA Pas3HHIbI nepemerienuit, uc-
TIEPCHOHHAA KPHBasAg MMEET aKyCTHYECKYIO U onTHuecKyro BeTBH. ITokasaHo, 4To )JiyIs MajibIxX
BPEMEH BO3MYILICHHE PACTIPOCTPAHAECTCA CO CKOPOCTBIO ¢ MM €z, TIE €1, C2 — ITO COOTBETCT-
BEHHO CKOPOCTH PacHpOCTPaHEHMs B IIEPBOM MJIM BO BTOPOM cTepyKHAX. Ilns Gonblioro Bpe-
MEHH BO3MYILEHHE PACIpPOCTPAHACTCH CO CKOPOCTBIO ¢, 2¢? = c¢2+c2.

THERE EXISTS large literature on statics of composite materials. However, there are few
resulis concerning the dynamics. The existing results for propagation of the discontin-
uity surface are misleading because they do not describe the real dynamics of the com-
posite material. When considering the discontinuity waves, very carcful examination of
the transport cquation is necessary.

1. Model of the composite material

Two parallel elastic rods have equal cross-sections and equal densities but different
elastic moduli E; and E, > E,, Fig. 1. Denote by u, v the axial displacements in the first
and second rod, respectively. It is assumed that the rods interact with each other by force
a(u—v), a = const. As the approximation for such a system may serve two elastic wires
connected by an elastic layer or a system of elastic springs.
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Assuming that the strain is one-dimensional
u=u(x,t), v=u9x,t),
the equations of motion are

El H’ZZ-}-U('U—H) = Qu,lt:
(1.1)

Denoting

1 o o B E,
1.2 £ = l/——z, rzl/—t, ==L, g="72,
( ) Cy [ [ ! e 4 El

Ev . +oa(u—2) = 0v .

and assuming « # 0 we have

Ueet(@—u) = U,
(1.3)
qw,55+ (H—'U) = U, q-
The case @ = 0 is trivial. Already this simple model has interesting properties; we do not
intend to consider obvious generalizations.
The initial problem will be considered later. Here we look for the solution of Eq. (1.3)
of the form
u = Ae!(kftmr)’

(1.4)

o = pAel'(k.f;twt),
where A, p, k, w are constants. Substitution into Eq. (1.3) leads to the algebraic equations

2 k2 14p=0
(1.5) ® He=1,
1+ (02—k?q—1)p =0,
having the solutions
1 —
(1.6) wiz = 5 [K(g+D+2FVkg-1)+4],

(1-.7) P12 =K +1-oi ,.

The formulae given above describe the monochromatic sinusoidal wave. The dispersion
relation w(k) given by Eq. (1.6) has two branches, Fig. 2. The lower branch , (k) starts
at the point (0, 0). In accord with Eq. (1.7) for £ — 0 we have p, — 1, hence v — u. The

upper branch w, (k) starts at the point (O, 14"5). For k - 0 we have p, > —1, hence v »
— —u. It is, therefore, inherently connected with the relative motion of the rods. Because
of this fact the upper branch may be called the optical branch, in contrast to the acoustical
branch w,(k).

In order to compare with the results of the next section, we calculate the phase, group
and propagation speeds for the system considered above. The phase and group speeds are
respectively

@ 1

U, = —
vk ky2

dw k - kz(q_ 1)2
U = = — +]. el [~
91,: dk 2(01‘ 2 [q + '/k4(q“" 1)2 +4 ]

V@) +25y/ G-k 44 ,
(1.8)
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The upper sign holds for the acoustical and the lower sign holds for the optical branch.
For k - 0 we have

U, > V@+D2, U, - o,
Uy, »V@+D2, U, —0.

Consider in turn the weak discontiniuity wave. Denote the speed of the discontinuity
surface & (wave front) by U. If the displacements u, v and their first derivatives are con-
tinuous at %, then the jumps of the second derivatives satisfy the compatibility relations

[u.ec] = K, [0.e] = Kz,
(1'9) H:u,ér]] = —Kl U: I]:U.ET]] = _KZ U’
[u,.] = K; U2, [v.:] = KU
Equations (1.3) being satisfied at both sides of S, we have
sl = [
(1.10) [wee] = [w.ee]
CI[”.e,e]] = [[v.n]]-
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It was taken into account that [u] = [v]] = 0. Substitution into the relations (1.9) leads
to the equations

K, = U?K,,
(1.11)
qKZ = U2K2.
It follows that either
(1.12) U=U, =1, K,=0,
or
(1.13) U= U, =yg, K =0.

Each of the six speeds (1.8), (1.12) and (1.13) has some physical sense. The most import-
ant is the speed that describes the behaviour of the structure as a whole. This will be dis-
cussed in the next chapter.

2, Initial problem

Consider the motion following the static deformation
u(¢,0) = v(&,0) = g(9),
u(€,0) = v(£,0) = 0.

By assumption the function g(&) is given and may be decomposed into the (cosine)
Fourier series

2.1

(2.2) 2(6) = Y Cycosnkoé.

n=0
Try
i(&, 1) = Alcos(ké —w, 1) +cos(kE+wy T)]
+ Blcos(k& —w, T) +cos(ké +w, 1)),
(€, ) = Ap,[cos(ké—w; T)+cos(ké+w, )]
+ Bp,[cos(ké—w, ) +cos(ké+w, T)].
If w,, w,, p,, p, are functions of the wave number k as in ES_S- (1.6) and (1.7), then
the displacements (2.3) satisfy the equations of motion (1.1) for each 4, B.
In accord with Eq. (2.3) there is

#(&,0) = 2(A+ B)coské,
2.9 2(£,0) = 2(Ap, + Bp,)coské,
&.t(Es 0) = ‘5,,(5, 0) = 0.

The initial condition (2.1), is therefore automatically satisfied. In order to satisfy
the condition (2.1), assume that the whole set of functions (2.3) with the parameters
Apn, B,, k, is considered. There follow the equations for 4,, B,

24,+2B, = C,,
2Anp1n +2Bnp2n = Cm

(2.3)
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which lead to the relations

pZn_l plu_1
2.5 Ay=""——0C,, B,=-7"
28 2(pan—P1n) 2(P2n—P1n)

Basing on Eqgs. (2.3) and (2.5) the displacement field for each g(£) may be calculated.

Take in particular

(2.6) g8 = 1+%— (%coskof—%ﬁc053k0§+%cos5k0§+ )

This function equals 0 or 2 and has the period equal to 2n/k,, Fig. 3. In the neighbourhood
of & = T/4 it equals the double of the Heaviside function. Many other series possess
the same property, but Eq. (2.6) is exceptionally convenient because of the regular structure.

g(e) &
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Fi1G. 3.
Finally, taking into account the relations (2.5) for g(§) given by Eq. (2.6) we have

2
H(E, T) == 1+ﬂ_ (Dl _D3+D5—D7+ )’

2.7 )
v(é, 1) =1+ = (E,—Es+Es—FE;+ ...),
1 p2n_1
D, = — 12— [cos(nkoE—wy,T)+cos(nkoé+wi,T)
N \Pan—Pin
(2.8) _ Pzl cos(nko&E—w,,7)+cos(nkoé +ws, 1:)]},
P2n—P1n
1 p2n_1
E, = —\pin —— [cos(nko & —w,, T)+cos(nko &+ w4, T)]
n Pan—Pin
—Dan Ul I [cos(nko & —w,,7) +cos(nkoé +ws, T)]}.
P2n—Pin

The formulae (2.7) give u(o, t), v(o, t) for initial deformation given by Eqs. (2.1).
It should be added that the Fourier transformation allows to obtain the formal solution
as the integrals

(2.9) w1 = Of do %:711— jizﬂ [cos(aé—w; 1) +cos(aé +w, 7)]

8+
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2.9) © .
[cont.] - f da 51 ﬂlj su:xab [cos(aé —w, T)+cos(aé+w, 7)],
B 2 1

[cos(a& —w; T)+cos(aé +w, T)]

vk, 7) = f dopy B O
& P>—D

0 _1 o
—f dap, iyl A [cos(aé —w, T) +cos(aé +w, 7)),
3 P2—D o

which satisfy the equations of motion (1.3), provided w,, w,, p,, p, are functions of « as
in Egs. (1.6) and (1.7). They satisfy the inital conditions

w/2  for |& > b,
0 for |&] < b.

sinab

u*(£,0) = v*¥(£,0) = f cosada = {
0

The integrands being very complex functions of « it is impossible to perform analytically
the integration.

Cutting the summation on Cs9, D3 the wave profile was found for ¢ = 2.25, k = 1,
Fig. 4. This value of ¢ corresponds to the ratio of speeds U, /U, = 1.5, cf. Egs. (1.12),
(1.13). Similarly, as in the case of string, the wave propagates to the left and to the right.
It is seen that the propagation speeds along the first rod and the second rod are 1 and
1.5, respectively. Note that for £ > =2 there is v < 1. The interaction with the first rod
leads to the smaller displacement as compared with that in the first rod.

The picture changes drastically after the wave travels a large distance. Figure 5 shows
the wave profile for k, = 0.01, & = 2.25, = = 25, 50, 75, 100. Approximately there is
u(¢, 1) ~ v(&, 7).

The difference #—w is very small and never exceeds 0.015 e.g. for v = 50 there is
u(210) = 0.053, v(210) = 0.048,
u(220) = 0.414, 2(220) = 0.414,
u(230) = —1.064, v(230) = —1.060.
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The propagation speed ¢ equals approximately
(2.10) c=~ 127.

It is an unexpected value; compare with the results of Sect. 1.
In order to explain the relation (2.10) eliminate « or 2 from Eqs. (1.3) to obtain the
fourth-order equations

qu.ééff— (q+ l)u.Eén'{" U prer— (q+ l)u,55+ Zu," = 05

@.11)
qu gzee— (q+ ])W.F,Eﬂ"'v,fﬂr_ (CI+ 1)7).56'*‘2'”." =0.

Looking for the solutions of the form
(2.12) u = fly(¢—c7)]
we have
vlg—(g+ D e+ +r - (g+ 1) +2c2)/" = 0.
Forv — oo there is
(2.13) ¢c2=1 or ¢ =g or fV=0.

For v — 0 there is
(2.14) c? = q_2+l_ or fM-o,

The last value corresponds exactly to the relation (2.10). It follows that tiie speed (2.10)
corresponds to the slowly changing profile, cf. Eq. (2.9) for v — 0.

There remains unansvered the question what is the mechanism of passing from the
propagation speeds v, = 1, v, = 1.5 to the propagation speed ¢ = 1.27. In order to
illustrate this fact Fig. 6 shows the wave front for 7 between the small values (as on Fig. 4)
and large values (as on Fig. 5). For ko, = 0.1 u(&, 7) is shown as the solid curve and v(p, 7)
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FiG. 6.

is shown as the dotted curve. At T = 2.5 the amplitude 4B of the faster wave equals about
0.75 of that at = = 0 (equal 1). At the expense of the faster wave the amplitude CD of the
slower wave increases. At 7 = 5 the amplitude A’B’ of the faster wave equals 0.45 and

at 7 = 7.5 only 0.3 of the amplitude of the slower wave.
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