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Propagation of weak nonlinear long waves (*)

K. PIECHOR (WARSZAWA)

THE LONG time behaviour of solutions of the Cauchy problem (1.2) and (1.3) is studied. Problems
of the considered type arise in the theory of weak, nonlinear long waves in various branches
of mechanics. The aim of the paper is a generalization of the method presented in [6]. It is found
that, in general, it is necessary to solve systems of nonlinear partial differential equations in
order to obtain approximate solutions in the far field. However, in many applications it is enough
to solve either a few independent Burgers equations or a system of linear equations. This is
the case of flow of a magnetoactive gas subject to a transversal magnetic field. This problem is
solved to.show an application of the theory.

Badamy zachowanie si¢ po diugim czasie rozwigzan zagadnienia Cauchy’ego (1.2), (1.3). Pro-
blemy powyzszego typu powstaja w teorii stabych, nieliniowych dlugich fal w réznych dziatach
mechaniki. Celem pracy jest uogélnienie metody podanej w [6]. Stwierdza sig, ze na ogét trzeba
rozwiazywa¢ uklady nieliniowych rownan rézniczkowych czastkowych po to, aby otrzymacé
przyblizone rozwiazania dla czaséw odleglych od chwili poczatkowej. Jednakze w wielu zasto-
sowaniach wystarczy rozwigza¢ albo kilka niezaleznych réwnan Burgersa albo uklad rownan
liniowych. Jest tak w przypadku przeplywu gazu magnetoaktywnego w poprzecznym polu ma-
gnetycznym. Problem ten jest rozwigzany dla ilustracji ogolnej teorii.

Hccnenyem moBefeHue, TIOCHE JUIMHHBIX OTPE3KOB BpeMeHM, pemtienuit 3amaun Komm (1.2),
(1.3). 3aaum BBINIEYIOMSHYTOTO THIIA BOSHUKAIOT B TEOPUM CNa0bIX, HEMMHEHHBIX [IJIMHHBIX
BOJIH B pasHbIX obnacTsaAx MexaHuku. llenmpio paGoTel ABNAercs oboblleHue meToga NpHBeE-
nennoro B [6]. Koncratupyercsa, uto B ofllleM HafO pellaTh CHCTEMBI HEJIHHEHHBIX OHpde-
PEHLHAIBHBIX YPaBHEHHI B YaCTHBIX NPOH3BOIHBIX JUISI TOTO, YTOOBI MOJYYHTh IIPHOJIHMKEH-
Hble PEeLUeHHUs JUIA BPeMEH OTHAJICHHBIX OT HAauyaJbHOro MoMeHTa. OIHAKO B MHOIHX IIpHME-
HEHHAX JOCTATOUHO PELIHTh HJIM HECKOJIPKO HE3aBHCHMBIX YpaBHeHHH Broprepca, Wi cucremy
JIMHEHHBIX ypaBHeHHH. TaK COCTOMT [eJIo B cjlydyae MarHHTOAKTHBHOI'O Ia3a B HOIEPEYHOM
MarHMTHOM IIOJI€, KOTOpasi TO 3ajaya pelueHa JUIA MIUIIOCTpalMy oOIuel TeOpHH.

1. Introduction

WE STUDY problems concerning the formation and evolution of a weakly nonlinear mo-
tion of a physical system. This motion is assumed to be a small disturbance of a uniform
state. In this paper we limit ourselves to such phenomena which can be treated as unsteady,
i.e. time-dependent and spatially one-dimensional. Let f denote the nondimensional time
(t > 0) and let x be the dimensionless space coordinate (—o0 < x < o0).

Let

u= u(xs t) = (ul(x9 t): cery u,,(x, t))

represent the disturbance of an initially quiescent system. In many cases of interest it is
a solution of the initial value problem

) Paper given at XVI Symposium on Advanced Problems and Methods in Fluid Mech-
anics, Spala, 4-10 September, 1983.



344 K. PIECHOR

ou ou on 2%u 5 u 9%
(1.1) 7‘*‘145; +€B(U)E— eC axz +& V(M, E,-W,S),
(1.2) u(x,0) = u®x), t>0, —o<x< 0,

where A and C are constant n X # matricgs, B(u) is matrix linear in u i.e.
n
:
B(u) = 2 By,
h=1

where B, are constant matrices of the size n x n.

Next, ¢ > 0 is a small parameter, #'®(x) is a given vector field of initial data, and
V(x, y, z, &) is a continuous function of its arguments.

We want to find an approximate solution z(x, ¢, &) of Eqs. (1.1) and (1.2) such that for

|]u(x, t: 8)—7)()‘5 [ s)li < Ke
for

1
0<tgs—, —w<x<ow, 0<ec<e.
&

Here K > 0, &, > 0 are some positive constants. As a rule in such a situation, the term

ox* oxt "
which is multiplied by & must be kept (cf. [1], [2]), hence we have to solve the following
systems of equations:

2
szV(u,@— e ) in the right hand side of Eq. (1.1) is neglected. However, all terms

o%u
ox2’

ou ou du
(1.3) - +A M +EB(u)W = &C

subject to the initial data (1.2).

However, although Eq. (1.3) is much simpler that the original Eq. (1.1), still it re-
mains nonlinear and it is hopeless to solve it explicitly. Therefore a perturbation tech-
nique must be used. As it is well known ([1, 2]), any regular perturbation method is out
of use, therefore a more sophisticated argument must be applied. Usually either a tech-
nique of the group called methods of strained coordinates or that of multiple scales is used
([1, 2]). However, there are problems which cannot bz solved by any of those msthods
when applied separately. An example is provided by the problem of reflexion of a weak
shock wave from a plane wall ([3], [4]). The first who solved it were M. B. LEssEr and
R. SeeBAss [3]. In order to determine the approximation in the far field, they divided it
into suitable subdomains, introduced a “slow” time variable
(1.4) T =gt
and used repeatedly the matching principle.

Thus, in a sense, their approach was a combination of the matched asymptotic expan-
sion and multiple scale expansions (each type of those expansions is presented in [1, 2]).
The use of such a sophisticated technique gave facilities for determining the correct incident
and reflected shock structure as well as their trajectories.

Later, an alternative approach was presented by the present author [4] who used
the slow time variable 7 and strained both x and ¢; no division of the far field was used.
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This technique was a combination of the strained coordinates method and two time
expansions.

Next, the same technique was applied to determine uniformly valid approximation
for the problem of regular reflexion of a weak shock wave from an inclined plane wall
[5].

Recently, this method was extended by the same author to problems whose solutions
are composed of more than two modes and the theoretical results were applied to the shock
tube problem [6], exhibiting good a agreement with the other authors’ results.

The aim of this paper is to weaken some of the assumptions under which our technique
can work, also we reformulate the main idea what makes the calculations less tedious.
Finally, the general scheme is applied to the problem of propagation of weak unsteady
one-dimensional disturbances in a magnetoactive gas subject to a transversal magnetic
field.

2. The general scheme

It will be easier to formulate assumptions and results of the general considerations by
giving an abstract interpretation of the initial value problem (1.4) and (1.5).

We follow the general notation and terminology of the monograph by T. Kato [7],
where further information can be found as well.

Let X be a finite-dimensional, normed linear space, let » = dimX and let |} - || be the
norm. Let A be a linear operator from X into itself. We assume that it is reducible, i.e.
there linear subspaces M, ..., M,, such that X can be represented as the direct sum

X=MeM® .. &M,
and each to them is an invariant subspace of 4, i.e.
AMc M;, i=1,2,..,m.
Let Py(h =1, 2, ..., m) be the projector from X into M,. We assume that there are real
numbers «,, ..., &, such that

m
.1 A=) uP,
h=1

The projectors are given by the formula [7]

1 _
(2.2) P, = — —2;!] (4-¢n—de,

Iy
where [ is the identity operator, and the contour I, encircles only one point { = «. The
numbers «;, ..., a, are eigenvalues of 4 and they are solutions of the algebraic equation
2.3) det(4-C¢D) = 0.
Next, let B(u, v) denote a bilinear operator from X2 = X< X into X. We assume that

there are real linear functionals 8, (), ..., f,.(#) from X into the set of real numbers R such
that for every fixed u € X and arbitraryv e X

(2.4) PuB(u, Py, ) = f()Pav, h=1, .., m.

4 Arch. Mech. Stos. nr 3/84
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Finally, let C be another linear operator from X into itself. We assume that for every
h=1,2,..,m the eigenvalues of the operators

(2.5) Chh = PhCPh
considered as linear operators from M, into M), have a positive real part.
Let u®(x) be a twice continuously differentiable function with values from X. The aim

of this chapter is to construct an approximation to the solution of the following abstract
initial value problem:

ou ou ou 2%u
(2.6) W+Aa +B( E) eCaz, —wm<x<o, t20
suﬁject to the initial condition
@7 u(x, 0) = u9(x),

where the operators 4, B(-, -) and C have the properties formulated above, and ¢ is
a small positive parameter.
Introducing the notation
Pyu = uy,

we can replace Eq. (2.6) by a system of m coupled equations

8 3 1
2.8) 7 e a +e ZP,, u,, = Z Pl -
= =1

2.9 up(x, 0) = u},"’(x) = Pu®(x), h=1,2,....m

Now the problem (2.8) and (2.9) is formally similar to that considered in [6].
We assume that solution for Egs. (2.8) and (2.9) can be written in the form

(2.10) u,,(x, t, E) = 'U,,(fk, T)+8wh(£1. seey Em, t)+ casy Uh, a),, € M",
.11 x—oyt = Eptepp(€yy vony Emy D+ .o,
(2.12) t=¢t, h=1,2,....m

Substituting the expansions (2.10)-(2.12) into Eqgs. (2.9) and equating the terms multiplied
by the same powers of &, we see that v, can be arbitrary and therefore we pass to the
approximation of order ¢ to Egs. (2.8).

This is a linear partial differential equation which can have a bounded solution pro-
vided that [6] ’

i) sup  |lop(én, DI < 0, h=1,2,...,m,
mmr<;6,<w
(2.13) i) sup |22 0 h=1,2,...m,
—0<fp< 0 a‘fh
20

déy < 0, h=1,2,..,m,

¥y

0

111 su —— vy T
) o !Hah Mé )

-00 <X <00

—<y<w
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iv) the functions @u(¢;, ..., &m, 7) are given by

m &
2.14) s s b D = D) [ B0, D)o,
=1 s
Jj#h

v) the vector fields r,(&;, 7), ..., rs(&, T) are solutions of the following initial value
problems: find the vector fields r,(&,, 7) € M, such that

b (I d *vy(En,
(2.15) _h(é%ll +ﬂh(‘vn(§m T)) '@Wh(&n 7) = Cw _“‘Z')ha(Th;I)_ >
(2.16) (én, 0) = U (X)x—es€ My, h=1,2,...,m.

All calculations are omitted here because they can be carried out exactly in the same manner
which is given in full extense in [6].

We must point out an essential difference between Eqgs. (2.15) and very similar in form
equations obtained in [6]. If for some h = hy dimM, = 1, then Eq. (2.15) for i = hg
is in fact the Burgers equation or the diffusion equation. However, if dimM,, > 2, then
Eqgs. (2.15) for h = h, form in general a system of dim M, nonlinear partial differential
equations. Thus, in the case of multiple eigenvalues of the operator A, it is much more
difficult to determine the asymptotics of the initial value problem (2.6) and (2.7).

Let us note that if we assume additionally that

< 0,

vi) sup ” fy Vn(&n, T)dEn

—<x<o 'y
— 0 <y<
20

then it is not necessary to strain the variable, i.e. we can assume that
&y = x—oyt.
Indeed,

ovp(x— oyt, T)

2
%, @n+0(e?)

Op(n, T) = vh(x—out+ep+ ..., T) = vp(x—aut, )+ ¢

using here the expression (2.14) for ¢,, we see that if ii) and vi) are satisfied, then—a—r;,(x-—

O&n

—oyt, T)p, = O(1) and therefore we can write

u(x, t, ©) = va(,x—oyt, T)+0(e)

instead of Eq. (2.10).
scale method in order to get a uniformly valid approximation. This remark is in accord-
ance with the discussion given in [2], Chapter 5.1.

However, if vi) is not satisfied, the straining of coordinates along with the multiple
scales must be applied.

Assuming that v, depends on more variables, say some &,, 7y, ..., {, and , it is pos-
sible to weaken the assumption (2.4), however, it remains an open question how to con-

4*
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struct an approximation to the initial value problem (2.6) and (2.7) uniformly valid up
to the time of order e~! in the case of an arbitrary bilinear operator and multiple eigen-
values of the operator 4. Let us notice, however, that in the extreme case when

A=ol, oeR
with the help of the transformation of independent variables
E=x—at, T=c¢t

and substitution
u(x,t, e) = v, 1),

we reduce the problem (2.6) and (2.7) to the equivalent form

dv dv *v
@179 ol )= cgm
(2.18) v(£,0) = u®(@) eX.

Here the small parameter & is not present and no further simplification can be attained.
Note also that it is not necessary to impose any assumptions for the bilinear operator
B, (the eigenvalues of C must have a positive real part).

3. Application to magnetogasdynamics

Equations of flow of a viscous and heat conducting fluid susceptible to electromagnetic
forces consist of the usual equations of conservation of mass, momentum and energy with
the magnetic force JxB (J is the current density, B is the magnetic induction) induced
in the momentum equation and the Joule heat ¢~1J% (o is the electrical conductivity)
introduced into the energy equation; thus the system is [8]

(3.1) % yv.@v) =0,
ot
oV
(3.2) Q(W +V-VV)V+Vp — JxB+V-P,
(3.3) 9(—‘;‘; +V-Ve) +pV-V = 071J2 +P:VV -V,

where o is the density, V is the fluid velocity, P is the stress tensor, e is the internal energy,
0 is the heat flux.
To these Maxwell’s equations and Ohm’s law are added

0B

3, 9B _

(3.4) = +VxE =0,
1

(3.5) —VxB=1J,
U

(3.6) J = 6(E+VxB),

where u is the magnetic permeability, E is the electric field.
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In order to close the system of equations (3.1)-(3.6), we add

X P = = 2V VU VV+ V),
(3.8) 0= —-AVT

and limit ourselves to the ideal, polytropic gas

(3.9) p = RoT,

(3.10) e=c¢,T,

(3.11) R =c,—c,.

where T is the temperature, y, is the viscosity, U is the unit matrix, 4 is the coefficient of
heat conductivity, ¢, and ¢, are specific heat constants, finally A is a quadratic matrix and
A* denotes its transposition.

In this paper we bound ourselves to one-dimensional motion in the x direction with
speed v(x, t). Then only a transverse magnetic field is possible, and therefore we may put
V= (‘U, 0; O)s B = (O’Os B): E = (05 E’ 0)9 J = (0: E_TJB9O)
with all quantities being functions of x and ¢ only. Under these conditions we obtain from

Egs. (3.1)-(3.11).
do do ov

(3.13) g(‘;i: —HJSZ) +R a(gf) = ¢B(E—vB)+ % ai (m 2;’)
(3.19) QC,,(?; +o %) +p% = o‘(E'—‘vB)z %‘ul (Zz 2+ % (lg),
(3.15) aa—f + i—f ~0,

(3.16) —:T—g% +o(E—vB) = 0.

We shall consider small disturbances of a uniform flow which is described by the constant
density p,, temperature T, magnetic induction By, vanishing velocity v, = 0, and electric
field E, = 0. Thus we take

(3.17) 0 = 0o(l+20),
(3.18) T = To(1+£7),
(3.19) B = By(1+¢B),
(3.20) v = ap e,
where

(3.21) ao = VyRT,

is the speed of sound of the basic flow, y is the ratio of specific heats.
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From Eq. (3.16) we get

= 1 ©&B
(3.22) E = ¢ay By [-v— rar Y +¢ B]

Additionally, we assume that the small disturbances vary slowly, therefore we may assume
that the viscosity coefficient y, , the coefficient of heat conductivity 4, the electrical conduc-
tivity o and the magnetic permeability x are constant. The nondimensional space variable x

and nondimensional time 7 are defined by

X
(3.23) X = e

7
(3.24) =

The new unknown functions g, 7, B, ¥ satisfy the following system of equations (the
bar over the dimensionless quantities is omitted):

de , v
3t+4+€ (Q‘U)—O

(3.25) 3

& 1o 19T 1 2B

G20 S+t mt =

o, 1 % , |1 8B 4 _ 9% .
+£[”H+7(T'9)§+m—w O =3 Fnax ] (e,
aT BT — - y o2
oB v 2*B
(3.28) 7 + ‘E (‘UB) E—H—> a 2
where M, is the Alfvén number
(3.29) M, = a ]/ o,
B,
Pr is the Prandtl number
(3.30) Pr = &i“—‘
and P,, is the magnetic Prandtl number
(3.31) p, = El
@o
We assume that
1 )
1
—+ = o),
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and

P, = 0(]).
We close Eqgs. (3.25)-(3.28) with the initial conditions
(3.31) e(x, 0) = o*(x),
(3.32) T(x,0) = TO(x),
(3.33) o(x, 0) = v@(x),
(3.34) B(x,0) = B@(x).

In order to have an approximate solution to the initial value problem (3.25)-(3.28)
and (3.31)-(3.34), it is enough to use the general theory developed in the previous Chap-
ter.

As the linear space X we take the set R, of all ordered quadruples u = (g, T, v, B),
where p, T, v, B are real, with the usual operations in the Euclidean space. The linear
operator A from R, into itself is given by the matrix

0 0 1 0
0 0 »p—1 O
= 1
A=(1 1 1
S M3
0 0 1 0
(We denote linear operators and their matrices with the same symbols. It will not lead to
confusion because we will not make any changes of basis in R,).
The eigenvalues of A are

1 1
o = — 1+—ﬁTj" d2=0, o3 =V1+Ti,

where «; and o5 are single, and «, is double.
There are three invariant subspaces of A4:
M, consists of all ordered quadruples of the form

a(l,y—l,—l/1+ 12,1), aeR;, dimM, =1;
A

M, consists of all ordered quadruples (a+5, (y—1)a—b, 0, — MZa), a, b € R,, there-
fore

dimM, = 2;

and, finally M, is a one-dimensional linear subspace given by

1
a(],‘)"—'l,"}'Vl'f"m',l), acR,

Ry = M1®M29M3-

It is clear that
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The corresponding projectors P,: Ry — M, are given by the following matrices:

ML oM M, 1
2y(1+M3%)° 2y(1+M3)° 2y 1+M3° 2(1+M3)
MGy —-1) _Miky—1) M.y—1) g—l
2y(1+MY)° 2y(1+M3) 2/1+M2 ° 2(1+M3)
By = M, M, 1 _ 1 )
29 V1+M2° 2y 1+M32° 2 2M Y1+ M3
ML _oMi o M. 1
2y(1+ M%)’ 2y(1+M3)° 2V 1+M3 2(1+M2)
We have
(3.35) ulzPluzr(l,y—l,—]/l+—A;72—,l),
A
where
(3.36) _ Mie+T)—yM 1+ Miv+yB
) 2y(1+ M) ’
Miy-D+y M 1
y(l+M2) ° y(1+M3 > 7 1+ M3
_ _Miy=h o Mivy o y—l
P, = y(l+M3)° y(1+M3)° ’ 1+M?
0, 0, 0, 0
Mz ME ML
y(1+M2) "’ y(+M3H* 7 1M
and
(3'37) U EP2u:C1(lsy_l’Os _Mi)-'-cl(l)_l,oyo),
where
o+T—yB
3.38 = ot
39 P M2)
(3.39) ¢, = ¥—De-T
Y
Finally
___Mj__ “;Mj M, 1
2y(1+MJ)° y(+MD° 2/ 1+MZ2° 2(1+M3%)
MAy—=1) Mip=D) M=) y-l
2y(1+M3) 2p(0+M2)°  2y1+M%° 2(1+M3)
Py = M, M, 1 1
yVY1I+ME 0 pyi+ME 2 M Y 14+ M3
__Mi __Mi Ma 1
2y(1+M3)° y(+MY> 2/ 1+MZ 201+MD)
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and

-
(.41 u3=P3u—s(1,y—1,l/1+ w )
where
(3.42) o Mie+T)+yM, )1+ Miv+yB

2y(1+M3)
It is easy to check that

:
A= _]/1+ g7 Pt Pt ]//1+ iz s

and, additionally,

(3.43) 0 =r+c+c+s,

(3.44) T=(@=1)(+e,+s)—c,,

(3.45) v = l/l—l— 12 (s—r),
M3

(3.46) B=r—Mic, +s.

Thus all conditions imposed upon the operator A in the previous chapter are satisfied
in the case under consideration, hence we can pass to a study of the bilinear operator B.
For any fixed u € R, the operator B(u, *): Ry — R, is given by the following matrix:

v 0 0 0

0 » (y—1DT 0
B =|T-e B-o

y 0 v M2

0 O B v

It is a problem of simple calculations to check that

PIB(u)Pl = ﬁ1(“)P1’
where
o—M;T+2)'1+M3iM,v—2B

3.47 ) = 4 +MaA :
(3.47) B1() TR

next
Py, B(u)P; = f,(u) P,
where
(3.48) fa(w) =
and finally

PaB(“)Ps = —ﬁl(“)Ps-

Thus we have checked that the assumptions (2.4) are satisfied as well.
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The following formulae will be used later:

Miy+1)+3
(3.49) Biluy) = — EM‘(VV—— %;“ b
AV 4 A
1-(y—3)M3 M,
(3.50) Bilud) = saps Jivaz @t 2yTaE o
1-(y-3)M}
(3.51) Br(us) = M%/—Wi— .
(3.52) Ba(wy) = - ]/1+ _;,;3 "
(3.53) B2(u2) =0,
(3.54) Ba(us) = ]/1 e -A;'A

where r, ¢;, ¢, and s are defined by Eqgs. (3.36), (3.38), (3.39) and (3.42), respectively.
The final assumptions that must be checked concern the operator C which in the present
case is given by the matrix (see Eqgs. (3.25)-(3.28))

0 0 0 0

. 0 Pr 0 0
B 4
0 —

0 3P,,,O

0 0 0 1

It is a matter of simple calculations to show that

(3.55)
where

4MA('}"‘1) 7’
(335} [( Wi+

Ciy = P,CP, = wP,

P,+ L = const
mt e = const.

Therefore the operator P, CP, considered as an operator from M, into M, has only one

eigenvalue which is positive.
Next we have

(3.58) P,CPu = (1, y—1,0, —M2)+&(1, —1,0,0),

where

(3.59) m= (? 204303 T T3MZ) T 3y
4 P (y— 4 P

(3.60) g 3 Pyl 4 P

3 Y 3
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The eigenvalues of the operator P, CP, considered as an operator from M, into itself,
are those of the matrix

4 P,(y—1) M2 4 P,
3 1+ M2 1+M2> ~ 3 y(+M2)
G.61) D '}’( ) A 7’( )
4 Puly=1) 4 Pu
3 y 3y

It can be readily proved that they are positive provided that P,, > 0.
Finally

(3.62) P3CP3 == wP3,

what proves that the last of the imposed conditions is satisfied.
Thus we can use the results of the previous chapter, that is we must solve the following
equations:
or Mi(y+1)+3  or a%r,
—-— = e =05,
(3.63) ot M, Y1+ME 9% 0&%
rl(sl H] 0) = r(10)(£l)7

ey (4 P.(y—1) M2\ 9%, _ 4 P, 9%c,
ot |\ 3 y(1+M3) 1+ M2 ) 02 3 y(1+M3) 0&3°
oc, 4 P,(y—1) 9% 4 P, 9%,
3.64 i NNl .. A0 Lom
(5% ot 3 y &2 3 y 0827
c1(£,,0) = "—'(10)(52),
c2(£2,0) = c§”(&,)
and
O MI(y+D+3 s Os —® 0%s
(3.65) ot aMY1+M; 9 083’

(&3, 0) = (&),

where 1%, ¢, ¢{” and s° are obtained by substitution of ‘@, T, v® and B into
Eqgs. (3.36), (3.38), (3.39) and (3.42) instead of o, T, v, B.

Equations (3.63) and (3.65) are the Burgers equations and therefore they can be solved
explicitly [9]. Also, Egs. (3.64) can be solved explicitly since it is a system of linear equa-
tions.

Once the functions r, ¢,, ¢, and s have been determined, we can find ¢, , and @,
as a result of integration. Thus the asymptotics is determined. We do not go into those
details because it is quite a routine work (for the details, results, and graphs see [6]).
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