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Velocity and temperature distribution for a variable viscosity
generalized Couette flow of a dilute suspension

F. N. IBRAHIM (CAIRO)

A stuDY of a plane generalized Couette flow with constant heat flux through the lower plate
and isothermal upper plate is made. Concerning the suspension, the viscosity factor » derived
by Simha is used for the limiting case when the rotary Péclet number Pe = 0. Using a nonlinear
viscosity — temperature relation for the solvent, expressions for the velocity, temperature
and the Nusselt number are obtained for prolate and oblate spheroids. The results are written
in a general form which can be applied to any other scalar expressions for the viscosity factor

v of other suspensions.

Przeanalizowano ptaski uogo6lniony przeptyw Couette’a przy stalym strumieniu ciepta na plycie
dolnej i z ustalona temperatura plyty gornej. Dla zawiesiny przyjeto wspodlczynnik lepkosci v
wyprowadzony przez Simh¢ w granicznym przypadku liczby Pécleta Pe = 0. Postugujac sie
nieliniowa zaleznoscia lepkosci od temperatury rozpuszczalnika wyprowadzono wyrazenia
na predkos¢, temperature i liczbe Nusselta dla przypadku sferoidy splaszczonej i wydluzone;j.
Wyniki podano w postaci ogoélnej nadajacej si¢ do zastosowania w przypadku dowolnych

wyrazen skalarnych dla wspotczynnikOw » w innych zawiesinach.

ITpoananuaupoBano niaockoe o6o0wwennoe teuenue Kysrra npu nocrosiHHOM IIOTOKe Teruia
Ha HIDKHEH IUIMTE M C YCTAHOBJIEHHOH TeMmIepaTrypod BepxHed IUmMThbI. i1 B3BecH HNPUHAT
KoaddHIMeHT BA3KOCTH ¥, BbIBefeHHbIi Cumroil B nipefiesibHoM ciiydae uucina [Texie Pe
ITocny)kuBasgich HEMMHEMHOW 3aBHCMMOCTHIO BA3KOCTH OT TEMIEPATYphl PAaCTBOPHTENS, BbI-
BeJIeHbI BBIPAXKEHUA JJIST CKOPOCTH, TEMIIepaTyphl H unucaa HyccenbTa niis ciiyuas CIUTIONIeH-
HOTro M yJJIHHeHHoro chepoumoB. Pe3ynsTaThl MpHUBefieHbI B OOIIEM BH[E, MIPUTOAHOM IS
TIPUMEHEHUA B CIIyuae NPOM3BOJIBHEIX CKAJAPHBIX BhIParKeHHH 1A K03 dULHEeHTOB ¥ B APY-

THX B3BECsAX.

Nomenclature

Ao, Bo, Co constants given by Egs. (3.10), (3.9) and (3.16),
a, b major and minor semiaxes of the spheroidal particles,
C constant of integration, Eq. (3.2),
Cp, specific heat at constant pressure P,
Ec the Eckert number,
F,, F,, F3, F, functions given by Egs. (3.8), (3.14) and (3.15),
h distance between the plates,
k thermal conductivity,
Q, R, J, K quantitities given by Egs. (3.18) and (3.20),
E L, MG H
N, § dimensionless parameters, Eq. (3.5),
Pe rotary Péclet number,
dp
(Z) constant pressure gradient along the x-axis,
Pr Prandtl number,
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q, g dimesnionless pressure gradient, Egs. (2.6) and (3.3),
re axes ratio,
T, T* temperature and dimensionless temperature, Eq. (2.2),
T, temperature of the upper plate,
V velocity of the upper plate,
u* dimensionless velocity, Eq. (2.1),
x the x-axis along the lower plate,
y the y-axis normal to the x-axis.

Greek symbols

o dimensionless parameter, Eq. (2.7),
f constant heat flux through the lower plate, Eq. (2.4),
io; constant viscosity of the solvent at temperature 7o,
Lo the viscosity of the solvent,
n*  dimensionless viscosity of the solvent,
u¥r dimensionless viscosity of the suspension, Eq. (2.5),
v viscosity factor for the suspension,
£, n dimensionless distances, Eq. (3.2),
6* dimensionless temperature, Eq. (2.7),
@ volume concentration of suspended particles.

1. Introduction

A COMPREHENSIVE review of research on the motion of small particles in a fluid is given
by BRenNER [1] and LeaL [2]. For the solvent, which is a Newtonian fluid, the specific
heat and thermal conductivity are relatively independent of temperature, but the viscosity
decreases very markedly with temperature. Various relations between the dimensionless
viscosity and temperature are used in studying the flow of a variable viscosity fluids [3-6].
The variable viscosity plane Poiseuille flow of a fluid is studied by HAUSENBLAS [7], keeping
both the walls at the same temperature. It is reconsidered by BANsAL and Jain [6], taking
the walls at unequal temperatures. The problem of Bansal has been extended by the author
[8] to cover the case of a dilute suspension of rigid spheroidal particles.

The main purpose of the present work is to study the effects of heat transfer on the
velocity and temperature profiles for the generalized Couette flow of a dilute suspension.
The Nusselt number for the transfer of heat at the upper plate is calculated in Table 1.
Expressions for the velocity, temperature and the Nusselt number are written in a general
form which can be applied to suspensions of spherical particles [9] and near spherical
particles [10]. The constant viscosity flow of the suspension and constant viscosity flow
of the solvent are easily deduced.

2. Basic equations and boundary conditions

Consider a steady generalized plane Couette flow between two parallel plates, taking
the x-axis along the lower one and the y-axis at a right angle to it. The dilute suspension
consists of rigid spheroidal particles suspended in a Newtonian fluid of variable viscosity.
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In this case the momentum and energy equations governing the motion in the dimensionless
form are [8, 11]

d| , adu*|

2.1 ‘T"?['ueﬁd—ﬂ] = —2g,

i d2T* o [ du* )2

(22) W +EC"|"PI' .Meff(d—n =0

and the boundary conditions are

(2.3) n=0: u =0, ng=1: wu*=1,
dT*

2.9 n = 0: =8, n=1: T*=0

dan

in which % = y/h, h is the distance between the plates,

@2.5) pte = Lo (1 +9®) = p*(1+1D).
Ho1

o is the viscosity of the solvent which depends on the temperature, uo, is the viscosity
of the solvent at the constant temperature of the upper plate Ty, » is the viscosity factor
of the suspensien which is given by SiMHA [12] for prolate spheroids and by KuHN and
Kunn [13] for oblate spheroids and depends on the axes ratio r, = a/b, a and b are the
major and minor semiaxes of the spheroidal suspended particles, @ is the volume concen-
tration of the suspended particles, u* = u/V is the dimensionless velocity, ¥ is the velocity
of the upper plate,

h? dpP
- 0=~ |

(dp/dx) is the constant pressure gradient along the x-axis [14], T* = (T— T,)/T, is the
dimensionless temperature, Ec = V2/(Cp, T,) is the Eckert number, Cp, is the specific
heat at constant pressure Py, Pr = (uo, Cpo)/K is the Prandtl number, k is the thermal
conductivity, 8 being a constant. The empirical relation between the dimensionless visco-
sity of the solvent and the temperature [7]

(V)] % = 14+aT* = 0* (say),
where « is a parameter which depends on the nature of the solvent. It is used to solve the

coupled differential equations (2.1) and (2.2).

3. Analysis

By integrating Eq. (2.1), we obtain

d *®
G.1) u* ;5 = —2¢,¢,
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where
(3.2) §=n-C,
3.3 q: g

BGEET))

and C is the constant of integration. Substituting from Eq. (3.1) into Eq. (2.2) and using
Eq. (2.7), we get

20%
(.4) ffi;T +ANEQ* = 0
where
o Ec-Pr-gq? Sq?
3v5 — LR T e . — o “ P
() N (1+vD) (1+vD)° = P B

is a dimensionless parameter.
The boundary conditions associated with Eq. (3.4), in'view of Egs. (2.4), (3.2) and
(2.7) are

(3.6) f=-c B _p e-1-c o=
. = . F = N = . = .
The solution of Eq. (3.4) satisfying the boundary conditions (3.6) is given by
(3.7 0* = Ao F|£2Y/N | +BotF, {82 YN |,
where

. (;1)! ” (L)Y ( f{.)“
(3.8)  F(t) = E ;" ;lf‘, . (’7’) R = E ,’:T ili,l,,
n=0 ' (T +n)! n=0 ’ (T +PI)!
(3.9) B, = L= AT (-0 YN}
(1-C)F,{(1-C)?y N}
and

(3.10) A, = __il{ﬁqfi{czlﬁi“LF{{pz Vﬁ;‘fﬁ@,__c)]:%{(l —CPyYN} ,
2C(1-C)YNF{C? YN | F{(1—-C) YN}
+F{(1-C)? YN} |2c?yNF;|c? YN+ F,{c?yNl]
where a prime denotes differentiation with respect to .
Equation (3.1), in view of Egs. (2.7) and (3.7), may be written as

du*

(3.11) G = "E AR YN+ BRE YN
The boundary conditions on u*, in view of Eqs. (2.3) and (3.2), are
(3.12) £=—-C: w*=0, £=1-C: u*=1.

The solution of Eq. (3.11) is given by
(3.13) u* = —2q,|A4682F; Y N &2} + Bo£3F, {62 Y N ]+ Co,
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where

(3.14) LB .
n=0 m (;41— +n)! (4ﬂ+2)

i

9

— wa 1 (_TI)'([?[)Z

SR
1 F4(t)=,; F(i +n)‘(4n+3) .
e |

The boundary conditions (3.12) when applied to Eq. (3.13), give the value of C, as
(3.16) Co = 2¢,|40C2F;{C2 YN} - B, C*F,|C*yN}|
= 142g,[4,(1 = C)*F3{(1 - C)2 YN} + Bo(1 - C)*F{(1 = C)2 /N }].

By substituting the value B, from Eq. (3.9) in Eq. (3.16), the value of the constant A, is
given by

G.17) 4 = A=OFI=CPYN|+2,|0-CPFI(-C)YN}+CFifc?yN]
L 0 Q+R ’

where
a1y 2= 200-ORI0-CrYN] [c2F|cy N} - -crRla-0)2yN),
0 R=2qR0-0yN}|a-CrRl-C? YN+ CR{C?y N]|.

Equating the two values of the constant 4, given by Egs. (3.10) and (3.17), the equation
which will determine the constant C, for prescribed values of ¢g,, N and af, is given by

I (K+E)(L+M)

Gek2) W=k~ KGrH)

where

J = 2C*YNF;|C? YN} +F|C*VN},
K = (1-0O)F,{(1-C)?*VN},
E = 2q,[(1-CPF|(1-Cy YN+ CR{C? YN,
(3200 L =2C(1-CO)YNF{C?YN}|F|1-0)?yN},
M = F{(1-C)* YN} 2¥NC2F;|c? YN} + F,{c2y N},
G = 24,(1-OF{(1 -0 YN}[C?R{C*y N} - (1-CPF{(1-C) VN,
H=2¢,F{(1-C)? yN}|(1=C)PF(1-C)? YN} + C*F {C*yYN}|.

From Eq. (3.19) it is not possible to calculate the value of C for given values of ¢q,,
N and «f since C appears in the form of an infinite series. However, it is convenient to
determine the values of «ff for prescribed values of ¢,, N and C.
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The velocity and temperature profiles for @ = 0.01, ¢ = 2.0 and S = 0.25 are drawn
in Figs. 1, 2 and 3. The velocity profiles u* are displayed in Fig. 1 for different values of
r. when the parameter «ff = 3 and are compared with the profiles representing the flow
of a Newtonian fluid having constant or variable viscosity. It is found that in the present
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F1G. 1. The variation of u* with # for different values of u. when aff = 3.
— — — — Newtonian fluid with constant viscosity,
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Fig. 2. The variation of 4* with n for different values of off when v = 0.
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case the magnitude of the velocity increases with the decrease of r, and is always less
than the velocity of a Newtonian fluid with variable viscosity but greater than the velocity
of a Newtonian fluid with constant viscosity. The velocity profiles representing the flow
of a Newtonian fluid having variable viscosity are drown in Fig. 2 for different values
of af. Figure 3 represents the variation of 6* with # for different values of «f when» = 0.0
and » = 55.19. As shown in Figs. 2 and 3, the velocity and temperature increase with the
decrease in «f and the maximum velocity moves towards the upper plate as the value of
af increases.

v=00
———— y=5519

FI1G. 3. The variation of 6* with 5 for different values of «f.

The dimensionless coefficient of heat transfer at the upper plate, viz the Nusselt number
is defined as

' —1 [dr*
No= 2L (4T)
( ) Tq*=0 dn lo=1

In view of Egs. (3.2), (2.7) and (3.7), Eq. (3.21) may be written as
24,(1- Oy NFi{(1-C)* YN}

+B,{2(1-C)2 YN F|(1-C) YN} + F,{(1-C)*yN}]

(322) Nu= 1— A, F, [C? YN | + B, CF,{C*y N

The calculated values of the parameter «f and the Nusselt number Nu for some given
values of the viscosity factor » and the constant C are given in Table 1 for @ = 0.01,
g =2and S = 0.25.

From Table 1 it can be seen that Nu increases with the increase of «ff and ».
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Table 1.
v C aff Nu
0.0 —0.81 1 0.3141
0.0 —0.47 2 0.7479
0.0 —0.19 3 0.9070
13.63 - —0.22 3 0.9223
38.53 —0.28 3 0.9412
55.19 —0.32 3 0.9510

4. Constant viscosity solution for the suspension

F. N. IBRAHIM

In this case the constant « in Eq. (2.7) equals zero; consequently, from Eq. (3.5), § =

= N = 0. Substituting these values in Eq. (3.20) it follows that

J=1, K=1-C, E=lg(u-cr+c);

(CHY

2
L=0, M=1, G=q(1-0@QC-1), H=73q(1-CP+C).

From Egs. (4.1) and (3.19) we get

1+aq
2q,

(4.2) C=

Substituting the value N = 0 in Egs. (3.10), (3.9) and (3.16) we find

4.3 Ao =1, B, =0, Co = q, C>.

Hence Eqgs. (3.7), (3.13) and (3.22) for T*, u* and Nu reduce to

44 T*=p(n-D- % Ec-Pr(l +v®) [29in* —4q,(1+q9)n* +3(1 +4,)*n?

4.5 w* =yl +q,:(1-7),

—;f Ec: Pr(gi+3)(1+vD)—p8

(4.6) Nu = —

6

respectively:.

Ec- Pr(gi+2q,+3)(1 +v?)—§

— (g} +29,+3)],

Expressions for T*, u* and Nu representing the flow of a Newtonian fluid having
constant viscosity can be deduced from Egs. (4.4)-(4.6) by taking the viscosity factor

y = 0.
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