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Velocity and temperature distribution for a variable viscosity 
generalized Couette flow of a dilute suspension 

F. N. IBRAHIM (CAIRO) 

A STUDY of a plane generalized Couette flow with constant heat flux through the lower plate 
and isothermal upper plate is made. Concerning the suspension, the viscosity factor v derived 
by Simha is used for the limiting case when the rotary Peclet number Pe = 0. Using a nonlinear 
viscosity- temperature relation for the solvent, expressions for the velocity, temperature 
and the Nusselt number are obtained for prolate and oblate spheroids. The results are written 
in a general form which can be applied to any other scalar expressions for the viscosity factor 
v of other suspensions. 

Przeanalizowano plaski uog6lniony przeplyw Couette'a przy stalym strumieniu ciepla na plycie 
dolnej i z ustalon(l temperatur(l plyty g6rnej. Dla zawiesiny przyj~to wsp6lczynnik lepkosci v 
wyprowadzony przez Simh~ w granicznym przypadku liczby Pecleta Pe = 0. Posluguj(!C si~ 
nieliniow(l zaleznosci'l lepkosci od temperatury rozpuszczalnika wyprowadzono wyrai:enia 
na pr~dkosc, temperatur~ i liczb~ Nusselta dla przypadku sferoidy splaszczonej i wydlui:onej. 
Wyniki podano w postaci og6lnej nadaj(lcej si~ do zastosowania w przypadku dowolnych 
wyrai:en skalarnych dla wsp6lczynnik6w v w innych zawiesinach. 

IlpoaHaJIH3HpOBaHO llJIOCI<Oe o6o6meHHOe TeqeHHe Ky3TTa npH ITOCTOHHHOM ITOTOI<e TenJia 
Ha HH}I{HeH llJIHTe H C ycraHOBJieHHOH TeMnepaTypoif BepXHeH llJIHTbl. ,UJIH B3BeCH npHHHT 
I<03Q:>Q:>n~neHT BH3I<OCTH v, BhiBe,n;eHHhiH CnMroif B npe.n;enbHOM cnyqae qncna Ilei<ne Pe = 0. 
IlocnymnsaHCb HeJIHHeHHOH 3aBHCHMOCTblO BH3I<OCTH OT TeMneparypbi paCTBOpHTeJIH, Bbi
Be,n;eHbl BbipameHHH .n;nn ci<opocrn, TeMnepaTyphi n q:ucna HycceJibTa .n;nn cnyqan cnnroll.{eH
Horo :u y.n;n:uHeHHoro cQ:>epo:u.n;os. Pe3yJibTaThi npnse.n;eHbi B o6meM s:u.n;e, np:uro.n;HoM ,n;JIH 
np:uMeHeHHH B CJiyqae llpOH3BOJibHbiX CI<aJIHpHbiX BbipameHHH ,ZJ;JIH 1<03Q:>Q:>:u~eHTOB V B ,n;py
r:ux B3BeCHX. 

Nomenclature 

Ao, Bo, Co constants given by Eqs. (3.10), (3.9) and (3.16), 
a, b major and minor semiaxes of the spheroidal particles, 

C constant of integration, Eq. (3.2), 
Cp0 specific heat at constant pressure P0 , 

Ec the Eckert number, 
F1, F2, FJ, F4 functions given by Eqs. (3.8), (3.14) and (3.15), 

h distance between the plates, 
k thermal conductivity, 

Q, R, J, K quantitities given by Eqs. (3.18) and (3.20), 
E, L,M,G, H 

N, S dimensionless parameters, Eq. (3.5), 
Pe rotary Peclet number, 

( d
dpx) constant pressure gradient along the x-axis, 

Pr Prandtl number, 
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Greek symbols 

1. Introduction 

q, q1 dimesnionless pressure gradient, Eqs. (2.6) and (3.3), 
r e axes ratio, 

T, T* temperature and dimensionless temperature, Eq. (2.2), 
T0 temperature of the upper plate, 
V velocity of the upper plate, 

u* dimensionless velocity, Eq. (2.1), 
x the x-axis along the lower plate, 
y the y-axis normal to the x-axis. 

ex dimensionless parameter, Eq. (2.7), 
p constant heat flux through the lower plate, Eq. (2.4), 

p,01 constant viscosity of the solvent at temperature T0 , 

flo the viscosity of the solvent, 
p,* dimensionless viscosity of the solvent, 

p,:rr dimensionless viscosity of the suspension, Eq. (2.5), 
v viscosity factor for the suspension, 

~. 'YJ dimensionless distances, Eq. (3.2), 
8* dimensionless temperature, Eq. (2.7), 
c» volume concentration of suspended particles. 

A COMPREHENSIVE review of research on the motion of small particles in a fluid is given 
by BRENNER [1] and LEAL [2]. For the solvent, which is a Newtonian fluid, the specific 
heat and thermal conductivity are relatively independent of temperature, but the viscosity 
decreases very markedly with temperature. Various relations between the dimensionless 
viscosity and temperature are used in studying the flow of a variable viscosity fluids [3-6]. 
The variable viscosity plane Poiseuille flow of a fluid is studied by liAUSENBLAS [7], keeping 
both the walls at the same temperature. It is reconsidered by BANSAL and JAIN [6], taking 
the walls at unequal temperatures. The problem of Bansal has been extended by the author 
[8] to cover the case of a dilute suspension of rigid spheroidal particles. 

The main purpose of the present work is to study the effects of heat transfer on the 
velocity and temperature profiles for the generalized Couette flow of a dilute suspension. 
The Nusselt ·number for the transfer of heat at the upper plate is calculated in Table 1. 
Expressions for the velocity, temperature and the Nusselt number are written in a general 
form which can be applied to suspensions of spherical particles [9] and near spherical 
particles [10]. The constant viscosity flow of the suspension and constant viscosity flow 
of the solvent are easily deduced. 

2. Basic equations and boundary conditions 

Consider a steady generalized plane Couette flow between two parallel plates, taking 
the x-axis along the lower one and the y-axis at a right angle to it. The dilute suspension 
consists of rigid spheroidal particles suspended in a Newtonian fluid of variable viscosity. 
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In this case the momentum and energy equations governing the motion in the dimensionless 
form are [8, 11] 

(2.1) d [ du*] - t-t*rr-- = -2q 
d'Y} e drJ ' 

(2.2) d
2
T* ( du* )

2 

drJ 2 +Ec+Pr · P:rr d'Y} = 0 

and the boundary conditions are 

(2.3) 'Y} = 0: u* = 0, 'Y} = 1: u* = 1, 

(2.4) 'Y} = 0: 
dT* 
(bj = {3, 'Y} = 1: T* = 0 

in which 'YJ = yfh, his the distance between the plates, 

(2.5) 

flo is the viscosity of the solvent which depends on the temperature, p,01 is the viscosity 
of the solvent at the constant temperature of the upper plate T0 , v is the viscosity factor 
of the suspt:(nsivn which is given by SIMHA [12] for prolate spheroids and by KUHN and 
KUHN [13] for oblate spheroids and depends on the axes ratio re = afb, a and b are the 
major and minor semiaxes of the spheroidal suspended particles, f/J is the volume concen
tration of the suspended particles, u* = ufV is the dimensionless velocity, Vis the velocity 
of the upper plate, 

(2.6) h2 
( dP) 

q = - 2 V p
0 1 

dx ' 

(dpfdx) is the constant pressure gradient along the x-axis [14], T* = (T- T0 )/T0 is the 
dimensionless temperature, Ec = V2 f(Cp 0 T0) is the Eckert number, Cp0 is the specific 
heat at constant pressure P0 , Pr = (p,01 Cp0 )/K is the Prandtl number, k is the thermal 
conductivity, {3 being a constant. The empirical relation between the dimensionless visco
sity of the solvent and the temperature [7] 

1 - = 1 +aT* = 0* (say), 
p,* 

(2.7) 

where <X is a parameter which depends on the nature of the solvent. It is used to solve the 
coupled differential equations (2.1) and (2.2). 

3. Analysis 

By integrating Eq. (2.1), we obtain 

(3.1) 
du* 

p,* -- = -2ql ~' a; 
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where 

(3.2) 

(3.3) 

F. N. iBRAHIM 

; = rJ-C, 

q 

and Cis the constant of integration. Substituting from Eq. (3.1) into Eq. (2.2) and using 
Eq. (2.7), we get 

(3.4) 

where 

(3.5) N = ex · Ec · Pr · q 2 

(1 +v(/>) 
S = ex· Ec · Pr 

is a dimensionless parameter. 
The boundary conditions associated with Eq. (3.4), in · view of Eqs. (2.4), (3.2) and 

(2.7) are 

(3.6) ; = -C: 
d()* 
a; = ex{J; ; = 1-C: ()* = 1. 

The solution of Eq. (3.4) satisfying the boundary conditions (3.6) is given by 

(3.7) 

where 

(3.8) 

(3.9) 

and 

00 I ( -1 )' I 00 I ( 1 )' ( it )

2

n I ~ 1 4 • ( it ) 2
n ~ 1 4 • T 

F,(t) = ~ /If (~I +n)! 2 , F2(t) = ~ /If (! +n)! 
Bo = 1 - A0 F 1 { (1 - C)2 J;/N J 

( 1 - C) F2 { ( 1 - C) 2 y' N J 

(3.10) Ao = 2 yN C2F~{C2 J! .N} +F2{C2 yNJ- ex{J(1-_c)F2((1-C)2 yNJ 
2C(l-C) J/ N F~{C2 V N} F2{(1-C)2 yN J 

+F1 { (1- C)2 ~~ N} [2c2 1/N F~ {c2 1/N} +F2{ C2 yN }] 

where a prime denotes differentiation with respect to t. 
Equation (3.1), in view of Eqs. (2.7) and (3.7), may be written as 

(3.11) 

The boundary conditions on u*, in view of Eqs. (2.3) and (3.2), are 

(3.12) ; = - C: u* = 0, ; = 1- C: u* = 1. 

The solution of Eq. (3.11) is given by 

(3.13) u* = -2qt[AoeF3 {y'N;2
} +B0 ;

3F4{e yN}]+Co, 
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where 

(3.14) 
co I (2)' (!!_)2n I 

F3(t) = 2 ~ -14 • 2 ' 
n~o · ( T +n )! (4n+2) 

00 j, I!)! i ~ )'" I 
F4 (t) = 2,-, 1 ,. 

n~o n. (4- +n)! (4n+3) 
(3.15) 

The boundary conditions (3.12) when applied to Eq. (3.13), give the value of C0 as 

(3.16) Co= 2ql[AoC2F3{C2 VN}-BoC3F4{C2Ji'N}) 

= 1 +2qt(Ao(l-CYF3{(1-C)2J/ N} +B0 (1-C)3F4{(1-C)2 v.N}J. 

By substituting the value B 0 from Eq. (3.9) in Eq. (3.16), the value of the constant A 0 is 
given by 

(3.17) A - (1- C)F2 { (l-C)2 )/N} +2ql[(l- C)3F4{ (1- C)2 VN} +C3F4{ C2JIN} 
o- Q+R ' 

where 

(3.18) 
Q = 2q1 (1- C)F2 { (1- C)2 ~~ N} ( C2 F3 { C2 y N}- (1- C)2 F 3 { (1- C)2 J! N}), 
R = 2qtFt { (1- C)2 J!' N} ((1-C)3F4{(1- C)2 yN} + C3F4{C2JIN}]. 

Equating the two values of the constant A 0 given by Eqs. (3.10) and (3.17), the equation 
which will determine the constant C, for prescribed values of q 1 , N and a{J, is given by 

(3.19) 

where 

fJ _ _!_ _ (K+E) (L+M) 
a - K K(G+H) ' 

J = 2C2 J/ N F~ { C2 ~1 N} + F2 { C2J/ N}, 

K = (1-C)F2 {(1-C)2 yN}, 

E = 2qt[O- C)3F4{(1- cy ~1N} +C3F4{C2 Vr N }], 

(3.20) L = 2C(l- C) v N FU C2 v N} F2 { (1- C)2 Jl N}, 

M = Fl {(1-C)2 VN} [2 JI'NC2F~{C2 ti.N} +F2{C2 yN }], 

G = 2qt(l-C)F2{ (1- C)2 yN }[C2F3{C2 V N}- (1-C)2F3{(1-C)2 )/N}, 

H = 2q1 Ft{(l-C)2 VN} [(1-C)3F4{(1-C)2 VN}+C3F4{C2yN}]. 

From Eq. (3.19) it is not possible to calculate the value of C for given values of q1 , 

N and a{J since C appears in the form of an infinite series. However, it is convenient to 
determine the values of a{J for prescribed values of q1 , Nand C. 
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The velocity and temperature profiles for (/) = O.OI, q = 2.0 and S = 0.25 are drawn 
in Figs. I, 2 and 3. The velocity profiles u* are displayed in Fig. I for different values of 
r e when the parameter r:xp = 3 and are compared with the profiles representing the flow 
of a Newtonian fluid having constant or variable viscosity. It is found that in the present 

FIG. 1. The variation of u• with 17 for different values of #e when a.P = 3. 
----Newtonian fluid with constant viscosity, 

0 

....... ........ Newtonian fluid with variable viscosity, 
----suspension with variable viscosity. 

0.., 0.8 1.2 1.6 2.0 2.4 2.8 
* u 

FIG. 2. The variation of u• with 17 for different values of a.P when , = 0. 

http://rcin.org.pl



VELOCITY AND TEMPERATURE DISTRIBUTION FOR A VARIABLE VISCOSITY GENERALIZED COUETTE FLOW 319 

case the magnitude of the velocity increases with the decrease of r e and is always less 
than the velocity of a Newtonian fluid with variable viscosity but greater than the velocity 
of a Newton4l,n fluid with constant viscosity. The velocity profiles representing the flow 
of a Newtonian fluid having variable viscosity are drown in Fig. 2 for different values 
of rx{J. Figure 3 represents the variation of(}* with fJ for different values of rx{J when v = 0.0 
and, = 55.19. As shown in Figs. 2 and 3, the velocity and temperature increase with the 
decrease in rx{J and the maximum velocity moves towards the upper plate as the value of 
rx{J increases. ' 

---- V=55.19 

Z.5 2 1.5 1 0.5 0 0.5 

FIG. 3. The variation of 0* with TJ for different values of rxP. 

1.0 

a* 

The dimensionless coefficient of heat transfer at the upper plate, viz the Nusselt number 
is defined as 

(3.21) Nu=-- ---1 ( dT*) 
T,t=o · dry '7=1 • 

In view of Eqs. (3.2), (2.7) and (3.7), Eq. (3.21) may be written as 

(3.22) 

2Ao(l -C) y N F~ { (1- C)2 y N} 
Nu = __ +Bo{2(1-C)2 JINF~{(l-C)2 VN}+F2 {(1-C)2 y'N}J 

1 - Ao F1 { C2 V N} + Bo CF2 { C2 y' N} 

The calculated values of the parameter rx{J and the Nusselt number Nu for some given 
values of the viscosity factor v and the constant C are given in Table 1 for f!> = 0.01, 
q = 2 and S = 0.25. 

From Table 1 it can be seen that Nu increases with the increase of rx{J and v. 
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Table 1. 

v c af3 Nu 

0.0 -0.81 0.3141 
0.0 -0.47 2 0.7479 
0.0 -0.19 3 0.9070 

13.63 -0.22 3 0.9223 
38.53 -0.28 3 0.9412 
55.19 -0.32 3 0.9510 

4. Constant viscosity solution for the suspension 

In this case the constant a in Eq. (2.7) equals zero;.consequently, from Eq. (3.5), S = 
= N = 0. Substituting these values in Eq. (3.20) it follows that 

1=1, K=1-C, 
2 

E = Tql ((I- C)3+C3); 

(4.1) 

L=O, M= 1, G = q1(1-C)(2C-1), 
2 

H = 3qt ((1-C)3+C3). 

From Eqs. (4.1) and (3.19) we get 

(4.2) c = 1 +ql • 
2q1 

Substituting the value N = 0 in Eqs. (3.10), (3 .9) and (3.16) we find 

(4.3) 

Hence Eqs. (3.7), (3.13) and (3.22) for T*, u* and Nu reduce to 
~ 

(4.4) 
1 

T* = {J('Y}-1)- 6 Ec-Pr(l +v4>) [2qf'YJ4 -4q1(1 +q1)'Y}3+3(1 +q1 )
2 'YJ 2 

(4.5) 

(4.6) 

respectively:. 

u* = 'Y}[l +ql(l-'Y})], 

1 T Ec · Pr(qf + 3) (1 +v4>)- fJ 
Nu = 

1 
, 

6 Ec · Pr(qf+2q1 +3)(1 +v4>)-fJ 

-(qi+2q1 +3)], 

Expressions for T*, u* and Nu representing the flow of a Newtonian fluid having 
constant viscosity can be deduced from Eqs. (4.4)-(4.6) by taking the viscosity factor 
v = 0. 
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