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Thermal creep in a spherical shell subjected to an elevated
temperature field

J. C. MISRA, S. B. KAR and S. C. SAMANTA (KHARAGPUR)

THIS PAPER presents an analysis of the strain, strain rate and stress fields developed in a spherical
shell under the combined influence of an internal pressure and a steady temperature field. A non-
linear visco-elastic model represented by means of the Norton's law of creep is taken for the
purpose of finite strain analysis. The analysis may be useful in estimating the failure criteria
of spherical pressure vessels and other mechanical devices in which spherical geometries are
of use. In the realm of biomechanics too, the present investigation would be of much practical
interest in providing useful information on strain and stress fields generated in the human skull
when subjected to the simultaneous action of mechanical and thermal loads.

Przeprowadzono analiz¢ p6l odksztalcen, napre¢zen i predkosci odksztatcen w powloce sferycznej
poddanej dzialaniu ci$nienia wewnetrznego i ustalonego pola temperatury. Przyjeto nieliniowy
lepkosprezysty model ciala spetniajacy prawo petzania Nortona i umozliwiajgcy uwzglednienie
odksztalcen skonczonych. Wyniki analizy moga znalez¢ zastosowanie przy ocenie warunkow
zniszczenia sferycznych zbiornikow cisnieniowych lub innych konstrukcji o podobnej geometrii.
Badania te moga rowniez mie¢ zastosowanie w biomechanice, dostarczajgc informacji o od-
ksztalceniach i naprezeniach w czaszce ludzkiej poddanej rownoczesnemu dzialaniu obcigzen
mechanicznych i cieplnych.

ITpoBenen ananus nosei aedopmanmii, HanpsHKEHUE U ckopoctei aedopmanuit B chepruec-
KoM 060JI0UKe TMOABEPrHYTONH MEHCTBHIO BHYTPEHHEro AABJIEHHA M YCTAaHOBHUBUIETOCA IOJA
Temneparypbl. IIpuHATa HenMHEHHAsA BA3KOYNPYras MOJeNb Tella, YAOBJIETBOPAIOLIAA 3a-
koHy nonsyuecth HopToHa u marolnas Bo3MOMKHOCTh yueTa KOHEUHbIX Aedopmanmii. Pesyib-
TAaThl AHAJIM32 MOrYT HAWTHM INpUMEHEHHE IIPH OLEHKE YCJIOBHI pa3pylIeHHA CHepHUYECKHX
HAIOPHBIX pPe3epBYapoOB MJIM OPYTHX KOHCTPYKLMIT aHaJIOTHYHON IEOMETPHUH. DTH HCCIe0-
BaHUSI MOTYT TOKE€ MMETh NpPHMEHEHHE B OHOMeXaHWKe, J0CTaBiAsA MHpopmauui o jgedop-
MalLHAX ¥ HAIPS)KEHHAX B UEJOBEYECKOM uepere, IMOABEPrHyTOM OJ{HOBPEMEHHOMY [IeHCTBHIO
MEXaHUYEeCKNX M TEPMHYECKHUX HArpy3oK.

1. Introduction

MosT MODERN heavy industries like steel plants, power generators, jet engines and nuclear
reactors work at considerably high pressure and temperature. In order to prevent functional
damage and failure, the limiting strain rates for such systems must bz known earlier.
This is why an analysis for the creep of a material subjected to elevated temperatures is
required.

Creep of isotropic and homogeneous tubzs under internal pressure was studied by
RIMROTT [1]. Replacing strain increments by strain rates in Levy-Mises equations for
orthotropic materials, BHATNAGAR and GUPTA [2] formulated the constitutive equations
for orthotropic visco-elastic materials. With these equations and the analysis of Rimrott
several problems on cylindrical shells were analysed by BHATNAGAR et al. [3]. Creep
behaviour of cylindrical and spherical shells at elevated temperature was discussed by
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Misra and SAMANTA [4, 5]. It is quite likely that temperature variation may have a signifi-
cant role in the creep behaviour of a shell. The present investigation is devoted to the
analysis of creep problems of spherical shells having internal pressure under the assumption
of the validity of Norton’s law. The effect of temperature variation is taken into account.
The material of the shell is taken to be mechanically incompressible so that the dilatation
is zero. The temperature field has been considered to be steady. The magnitudes of the
strain and the strain-rate are computed for various time intervals.

2. Method of solution

Let us consider a spherical shell with a and b as the internal and external radii, respec-
tively, subjected to a uniform normal pressure p on the inner surface. On account of sym-
metry there will be three nonzero stress components viz., ¢,, the radial component ¢, and
g,, the two tangential components such that o, = o, = o, (say). If e,, ¢ and ¢, are the
normal components of the strain tensor in the spherical polar coordinates (r, 0, ) and
u, the radial displacement, the equation of equilibrium in the radial direction is given
by

. fz%’ + %exp(e,—ee) (0,—a,) =0,
where
2.2) b= 1og(l + d”), e = log(l + 1),
dr r
so that
dey
2.3 r— = = exple,—eg))—1.

dr

This may be regarded as the equation of compatibility. Assuming incompressibility
of the material of the shell, the constitutive equations are suitably modified in order to
take the generated temperature field into account. Taking the principal axes of stress
to be coincident with the axes of symmetry (which are further taken to be the axes of
coordinates), and taking G = H and o, = 0, = o, for the present study, the strain-
stress temperature relations may be put in the form

Q4) e = %[26(0‘,—6,)]+oc1T and e, = ¢ = %[G(o‘,—a,)]+oz T,

(x;, oy and o3 denote the coefficients of linear thermal expansion in the radial, circum-
ferential and azimuthal directions, respectively).
Due to mechanical incompressiblity, we have

e,+egt+e, = (o +o,+a3)T.

For «, = a3, the equation reduces to e,+2e; = (&; +2x,)7. This equation, on using
the relations (2.2), assumes the form
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du 2u u?
e - —) = (g + 20,)T
(1+dr)(1+r+r2) e ;

Neglecting the terms involving the products and higher powers of the displacement
u as well as its derivatives and also considering that (a; +2«,)T is so small that its higher
powers can be neglected, the above equation reduces to

du 2u
Tr -+ T = (th +20C2) T.

The general solution of this equation may be expressed as

2.5 r2u = (o, +2a2)fTr2dr+k,

where & is an arbitrary constant.
Now, if the inner surface is maintained at a temperature T, and the outer one at T,
the temperature distribution is obtained in the form

aril 5 (bT,—aT)) (r—a)

2:9) = r (b—ayr

From Egs. (2.5) and (2.6) one obtains
e afur? | GT.—aly) (12 a”)}
2.7) riu = (a1+2a2){ — = 3 3 +K,

which gives the displacement at any point of the shell under consideration.
The significant stress o is given by

(2.8) o = /)2 [F(oy—0,)* +G(og—0,)* + H(a,—0,)*]"/%.
In the present consideration, since
G=H and oy=0,=0,
the above relation takes the simple form
(2.9) o =vG (¢6,—0,).
From Eq. (2.4) we now have

(2.10) e,=u,T—e}G,
and

-
@.11) ep = a; T+ e‘VzG
so that

(2.12) e, —ey = T(ul—az)—%el/a.
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Making use of Egs. (2.11) and (2.12), one obtains from Eq. (2.3)

] e}/ G 3 =
ra—r(a2T+—lg——) = exp{T(a,—az)——fe]/G}—l.

Multiplying this equation throughout by r? and integrating, we have

_ 2(0(1—&2) [glﬁ-l_sz_aTllr arz}]

yGrl B S b-a |3 2

B being a constant of integration.
sz—aTl

Settlng Gfl +20€2 = P, b_a

= @ and using the boundary condition viz., e = ¢,

on r = a, we get

P[aT, Q(2r—3a) 20, aly
@1y o= o[, 0" ]—w[ +Q( )]

8 Pa® 20, Ty a?
+e, Ej e IV g + #_1— .
r VGrd 3 yGr?

Differentiating this with respect to time, one obtains

[13

(2.14) é=é,—

r3’

since the other quantities involved in Eq. (2.13) have been assumed to be independent
of time. In Eq. (2.14) &, is the effective strain rate at r = a.

Therefore
oé 3a%
215 L. . Y
(2:13) or ré
By Norton’s law of creep
(2.16) e = Ad",
we can write
1
(2.17) (%) =0 =)G(o,—0,).
Now Eq. (2.1), with the help of Eq. (2.17), yields
1
ds, 2(e\" 1 [ 3G
(2.18) = = 7(/{) ﬁll-'_(al-aZ)T— %% ]

3/G

The above equation has been written on the assumption that (o, —ot,)T— N is small

and thereby higher powers of this quantity can be neglected.
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Also, using Egs. (2.6), (2.13) and (2.16), we have

1 3

do, 2@)"a | 1 aT, 1 a 3P ( aT,
= m el P ":.J'+Q(’—,,+T‘W) — 5 {23 T
A" yYG Lrn r = rn n ron
3P 3'(T - g)
2 a 1 i 3Gae, 5
x( 3 2n+3») + a3 | ) =30, Tha
3rn ron "
Integrating this equation and making use of the boundary conditions o, = —p on

r=aand o, =0 on r = b, one finds

-

1
p = ()"X[Y+(Ze,+ M)N],

aln 1 1 Qan
o vy e 1+_3_)—___
b n an

(2.19)
where
3
¥ — 2a .
VGAn
- —n/3( L
b
1
x( a3
b n
_ 3Y/Ga?
=—5—y

3PaT,n 7177 B 1 _ 3PQan 1 _
_n+1)l T 2(n+3) ( 243 L*i) 2(n+3) (b"”
n a n n

b n

M = 3a, T, a®—-3Pa*(T,-Q/3),

. n
- e |

JECDY

1
B TCTS VI
a B n

Setting Y+ ZNe,+ MN = x, we have

x = ZNe,.

Equation (2.19) may now be rewritten in the form

X"x"

which, when integrated between the limits at t = 0

and at t =t

gives

x=Y+MN,

X = X,

={.

X" {xn+1_(Y+MN)n+l }

ZNp" | n+l
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-

n

. X
Further setting Z—N; = @, we have

1/n+1

e = [(n;l)t+(Y+M "+1] _(Y+ MN)
1

(2.20) - -

Also, from Eq. (2.19) one gets

- p
.21) “a = {(Y+ MN) ¥ ZNe, X"

Equation (2.20) can be used to calculate the strain e, on the inner surface at any time
t. Once e, is known, we can calculate é, from Eq. (2.21). ¢ and é can be found from Egs.
(2.13) and (2.14). Using this we can calculate e, and e, from Eqgs. (2.10) and (2.11) so that
the strain field at any given point can be completely specified. The radial stress ¢, may
also be similarly obtained from Eq. (2.18) and the radial displacement from Eq. (2.7).

3. Numerical results and conclusions

Let us now try to illustrate the applicalﬁi[ity of the above analysis by considering
a specific example. For this purpose we take (cf. MisrRA and SAMANTA [4]), T, = 1200°K,

Tz = 3000K,

a=010m, b=050m, p=275x% lOB-ij,
m

-6
n==6, A=4647x lO'“day'l(—Igi) , F=05 G=H=.5,

o = 25x 107 per °K, o, = a3 = 26 x107° per °K.

The values of the strain and the strain rate on the inner surface of the shell obtained
through numerical computation of the expressions (2.20) and (2.21) are presented in
Table 1.

Table 1.
Time (¢) in eg(in units of 1072 m/m) &, (in units of 10~* per day)

days
0 0 0.786
20 0.15 0.788
40 0.31 0.791
60 0.47 0.793
80 0.63 0.796

100 0.79 0.799

120 0.95 0.801

140 1.11 0.804
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A comparison with the computed values presented in [5], shows that the effect of tem-
perature variation on the generated strain field in the shell is considerable.

In conclusion, it may be pointed out that although the analysis presented here could
be further improved by considering the temperature dependence of the material parameters
and that of the constant ‘A’ involved in Norton’s law, the present study possesses the
potential of providing a reasonably good estimate of the concerned values.

References

1. F. P. S. RiMrOTT, Creep of thick-walled tubes under internal pressure considering large strain, J. Appl.
Mech., 26, 271, 1959.

2. N. S. BHATNAGAR, R. P. GUPTA, On the consititutive equations of the orthotropic theory of creep, J. Phys.
Soc. Japan, 21, 1003, 1966.

3. N. S. BHATNAGAR e! al., Large strain creep analysis of thick-walled cylinders, Int. J. Nonlinear Mech.,
9, 127-140, 1974.

4. J. C. Misra, S. C. SAMANTA, Finite creep in thick walled cylindrical shells at elevated temperatures, Acta
Mech. 41, 149-155, 1981.

5. J. C. Misra, S. C. SAMANTA, Kriechverhalten der Kugel schalen, Beton und Stahlbetonbau, 76, 143-145
1981.

DEPARTMENT OF MATHEMATICS,
INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR, INDIA.

Received April 9, 1983.





