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Thermal creep in a spherical shell subjected to an elevated' 
temperature field 

J. C. MISRA, S. B. KAR and S. C. SAMANTA (KHARAGPUR) 

THIS PAPER presents an analysis of the strain, strain rate and stress fields developed in a spherical 
shell under the combined influence of an internal pressure and a steady temperature field. A non
linear visco-elastic model repre~ented by means of the Norton's law of creep is taken for the 
purpose of finite strain analysis. The analysis may be useful in estimating the failure criteria 
of spherical pressure vessels and other mechanical devices in which spherical geometries are 
of use. In the realm of biomechanics too, the present investigation would be of much practical 
interest in providing useful information on strain and stress fields generated in the human skull 
when subjected to the simultaneous action of mechanical and thermal loads. 

Przeprowadzono analiz~ p61 odksztalcen, napr~i:en i pr~dkosci odksztalcen w powloce sferycznej 
poddanej dzialaniu cisnienia wewn~trznego i ustalonego pola temperatury. Przyj~to nieliniowy 
lepkospr~i:ysty model ciala spelniaj~cy prawo pelzania Nortona i umoi:liwiaj~cy uwzgl~dnienie 
odksztalcen skonczonych. Wyniki analizy mog~ znaleic zastosowanie przy ocenie warunk6w 
zniszczenia sferycznych zbiomik6w cisnieniowych lub innych konstrukcji o podobnej geometrii. 
Badania te mog~ r6wniei: miee zastosowanie w biomechanice, dostarczaj~c informacji o od
ksztalceniach i napr~i:eniach w czaszce ludzkiej poddanej r6wnoczesnemu dzialaniu obci~i:en 
mechanicznych i cieplnych. 

IlpoBeAeH aHaJIH3 IIOJieH Aecl>opMaQHH, Harrp.HmeHHH H CI<OpOCTeH Aecl>opMaQHH B ccl>epwt:ec
KOH o6oJiot.II<e IIOABeprHyToii AeHCTBHIO BHyTpeHHero AaBJieHH.H H ycraHOBHBIIIeroc.H IIOJI.H 
TeMrrepaTyphl. IlpHH.HTa HeJIHHeiiHa.H B.H3Koyrrpyra.H MOAeJib Tena, YAOBJieTBOp.HIOJ.na.H 3a
KOHY IIOJI3yt.IeCTH HopToHa H AaiOrna.H B03MOmHOCTb yt.IeTa KOHet.IHhiX Aecl>opMaQHH. Pe3yJih
TaThi aHaJIH3a MoryT HaHTH IIpHMeHeHHe IlpH OQeHI<e YCJIOBHH pa3pyiiieHH.H ccl>epwt:eCKHX 
HarropHbiX pe3epsyapOB HJIH ApyrHX KOHCTpyKQHH aHaJIOrWIHOH reOMeTpHH. 3TH HCCJieAO
BaHH.H MoryT TOme HMeTb IIpHMeHeHHe B 6HOMeXaHHI<e, AOCTaBJI.H.H HHcPOpMaQHH 0 Aecl>op
MaQH.HX H Haiip.HmeHH.HX B t.IeJIOBet.IeCKOM t.Ieperre, IIOABeprHYTOM OAHOBpeMeHHOMY AeHCTBHIO 
MeXaHH'lleCKHX H TepMwt:eCKHX Harpy30K. 

1. Introduction 

MosT MODERN heavy industries like steel plants, power generators, jet engines and nuclear 
reactors work at considerably high pressure and temperature. In order to prevent functional 
damage and failure, the limiting strain rates for such systems must be known earlier. 
This is why an analysis for the creep of a material subjected to elevated temperatures is 
required. 

Creep of isotropic and homogeneous tub~s under internal pressure was studied by 
RIMROTT [1]. Replacing strain increments by strain rates in Levy-Mises equations for 
orthotropic materials, BHATNAGAR and GuPTA [2] formulated the constitutive equations 
for orthotropic visco-elastic materials. With these equations and the analysis of Rimrott 
several problems on cylindrical shells were analysed by BHATNAGAR et a!. [3]. Creep 
behaviour of cylindrical and spherical shells at elevated temperature was discussed by 
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MISRA and SAMANTA [4, 5]. It is quite likely that temperature variation may have a signifi
cant role in the creep behaviour of a shell. The present investigation is devoted to the 
analysis of creep problems of spherical shells having internal pressure under the assumption 
of the validity of Norton's law. The effect of temperature variation is taken into account. 
The material of the shell is taken to be mechanically incompressible so that the dilatation 
is zero. The· temperature field has been considered to be steady. The magnitudes of the 
strain and the strain-rate are computed for various time intervals. 

2. Method of solution 

Let us consider a spherical shell with a and b as the internal and external radii, respec
tively, subjected to a uniform normal pressure p on the inner surface. On account of sym
metry there will be three nonzero stress components viz., ar, the radial component a0 and 
alP, the two tangential components such that a0 = atp = at (say). If e, e0 and etp are the 
normal components. of the strain tensor in the spherical polar coordinates (r, (), cp) and 
u, the radial displacement, the equation of equilibrium in the radial direction is given 
by 

(2.1) 

where 

(2.2) 

so that 

(2.3) 

da 2 
-d-. r + -exp(er-eo) (ar-a,) = 0, 

r r 

de0 
r dr = exp(er-e0)-1. 

This may be regarded as the equation of compatibility. Assuming incompressibility 
of the material of the shell, the constitutive equations are suitably modified in order to 
take the generated temperature field into account. Taking the principal axes of stress 
to be coincident with the axes of symmetry (which are further taken to be the axes of 
coordinates), and taking G = H and a0 = atp = at for the present study, the strain
stress temperature relations may be put in the form 

(2.4) 
e 

er = -:fc1[2G(a,-ar)]+a1T and 

(<X1 , <Xz and <X3 denote the coefficients of linear thermal expansion in the radial, circum
ferential and azimuthal directions, respectively). 

Due to mechanical incompressiblity, we have 

For <X2 ~ <X3 , the equation reduces to er+2e0 = (<X1 +2<X2)T. This equation, on using 
the relations (2.2), assumes the form 
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1 + - 1 + - + - = e<cxl + 2cx2)T. ( 
du) ( 2u u

2
) 

dr r r2 

Neglecting the terms involving the products and higher powers of the displacement 
u as well as its derivatives and also considering that (a1 +2a2 )T is so small that its higher 
powers can be neglected, the above equation reduces to 

du 2u 
. -d + - = (a1 +la2)T. r r 

The general solution of this equation may be expressed as 

(2.5) 

where k is an arbitrary constant. 
Now, if the inner surface is maintained at a temperature T 1 and the outer one at T2 , 

the temperature distribution is obtained in the form 

(2.6) T = aT1 + (bT2 -aT1 ) (r-a) 
r (b-a)r 

From Eqs. (2.5) and (2.6) one obtains 

(2.7) 

which gives the displacement at any point of the shell under consideration. 
The significant stress a is given by 

(2.8) 

In the present consideration, since 

G = H and a0 = a, = at> 

the above relation takes the simple form 

(2.9) 

From Eq. (2.4) we now have 

(2.10) 

and 

(2.11) 

so that 

(2.12) 
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Making use of Eqs. (2.11) and (2.12), one obtains from Eq. (2.3) 

Multiplying this equation throughout by rl and integrating, we have 

e = 2(a1 - al) [aT1i::_ + bTl- aT1 f__C__ _ arll] 
y G ,3 2 b-a \ 3 2 

- - --=--- r - dr-3 Trldr + - , 2al [ 3 r oT f l B 
Jl Gr 3 • or r 3 

B being a constant of integration. 
bTl -aT1 

Setting a 1 + 2al = P, b _a = Q and using the boundary condition viz., e = ea 

on r = a, we get 

(2.13) e = !_ [ aT1 + Q(2r- 3a) ] _ -~al [ aT1 + Q ( 1 _ ~) j 
G r 3r y G r r 

+e a
3 
_ _ Pa

3 lT _ Q] + (2alT1a
3
). 

a r3 y G '3 t 3 )I G r3 

Differentiating this with respect to time, one obtains 

(2.14) 

since the other quantities involved in Eq. (2.13) have been assumed to be independent 
of time. In Eq. (2.14) ea is the effective strain rate at r = a. 

Therefore 

(2.15) 

By Norton's law of creep 

(2.16) 

we can write 
1 

(2.17) e)" ~ a~ j/G(a,-a,). 

Now Eq. (2.1), with the help of Eq. (2.17), yields 

I 

(2.18) dar = ~(!-)--; I [l+(al-al)T- 3yG]. 
dr r 1 y'G 2e 

The above equation has been written on the assumption that (a1 -a2)T-
3 

r.G is small 

and thereby higher powers of this quantity can be neglected. 
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Also, using Eqs. (2.6), (2.13) and (2.16), we have 

1 3 f 2(ea)nan 1 aT1 1 a 3P aT1 

__!__ _ ~+3 +PI 2n+3 +Q( n+3 - 2n+3 )J-T I 2n+3 +Q 
An y'G r n r n r n r n r n 

2 - a l 1 { JPa'( T,- ~) 3Ga'e. •}] 
X ( n + 3 - 2n + 3 ) + 4'1 + 3_ 2 - 2 - 3 (1.2 Tl a . 

3r n r n r n 

Integrating this equation and making use of the boundary conditions ar = -p on 

r = a and a r = 0 on r = b, one finds 

(2.19) 

where 
3 

2an 
X=---., 

yGAn 

1 

p = (ea)nX[Y+(Zea+M)N], 

y = _ n/3 (·_1 _ _ 1 ) _pI aT1 n (____._1 _ _ 1 __ ) _ _2-a'!_ 
2_ 2_ n + 3 n+ 3 _!!__+~ _ n + 3 

bn an b n a n 

X ( }+3 - }+r-)J + ~~::~; ( n
1
+3 - n

1
+3)- ~(n~a~ ( }+3 - 1+3)' 

bn an bn a" bn an 

3 J/ Ga 3 

Z= --2- , 

M = 3lJ.2 T1 a3 -3Pa3 (T1 -Q/3), 

n ( 1 1 ) 
N= 3(n+I) ~- ~ . 

b n a n 

Setting Y + ZNea + MN = x, we have 

.X= ZNea. 

Equation (2.19) may now be rewritten in the form 

X"x" 
-- dx = dt 
ZNp" 

which, when integrated between the limits at t = 0 

X= Y+MN, 

and at t = t 
X= X, 

gives 

___£__ J x"+t_ (Y + MN)"+t} = t. 
ZNp" \ n+I 
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X" 
Further setting ZN" = Q 1 we have 

p 

(2.20) 
[ ]

1/n+1 

ea = (n~1
1 )t +(Y+MN)"+ 1 -(Y+MN) 

ZN 

Also, from Eq. (2.19) one gets 

(2.21) 
p" 

{(Y+MN)+ZNea}"X". 

Equation (2.20) can be used to calculate the strain ea on the inner surface at any time 
t. Once ea is known, we can calculate ea from Eq. (2.21). e and e can be found from Eqs. 
(2.13) and (2.14). Using this we can calculate e, and e8 from Eqs. (2.10) and (2.11)so that 
the strain field at any given point can be completely specified. The radial stress a, may 
also be similarly obtained from Eq. (2.18) and the radial displacement from Eq. (2.7). 

3. Numerical results and conclusions 

Let us now try to illustrate the applicability of the above analysis by considering 
a specific example. For this purpose we take (cf. MISRA and SAMANTA [4]), T1 = 1200°K, 
T2 = 300°K, 

00 b 00 2 SN a= .1 m, = .5 m, p= .75xl0 - 2-, 
m 

. ( N )-
6 

n = 6, A = 4.647 x to- 53day- 1 ITl"2 , F = 0.5, G = H = .75, 

cx 1 = 25 x 10- 6 per °K, a2 = cx 3 = 26 x I0- 6 per °K. 

The values of the strain and the strain rate on the inner surface of the shell obtained 
through numerical computation of the expressions (2.20) and (2.21) are presented in 
Table I. 

Table 1. 

Time (t) in e"(in units of 10- 2 m/rn) e41 (in units of 10- 4 per day) 
days 

0 0 0.786 
20 0.15 0.788 
40 0.31 0.791 
60 0.47 0.793 
80 0.63 0.796 

100 0.79 0.799 
120 0.95 0.801 
140 1.11 0.804 
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A comparison with the computed values presented in [5], shows that the effect of tem
perature variation on the generated strain field in the shell is considerable. 

In conclusion, it may be pointed out that although the analysis presented here could 
be further improved by considering the temperature dependence of the material parameters 
and that of the constant 'A' involved in Norton's law, the present study possesses the 
potential of providing a reasonably good estimate of the concerned values. 
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