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Dynamics of a model of two-component medium

Z. WESOLOWSKI (WARSZAWA)

Two INFINITELY long, parallel elastic rods interact with each other, the forces of interaction
being proportional to the difference of their axial velocities. The dispersion curve is determined,
and two initial problems are solved. In the first problem the initial displacement distribution
corresponds to Heaviside’s function, and in the second one —to the case of contact of auni-
formly deformed and an undeformed rod. The solutions are sought in the form of Fourier
series. At the beginning of the process, for small values of time, the profile velocities in both
the rods are equal to the corresponding propagation speeds, and for large values of time the
wave profile propagates at the velocity different from the individual propagation speeds.

Dwa rozne nieskonczenie diugie prety spre¢zyste oddzialywuja na siebie sila proporcjonalng
do réznicy ich predkosci. Wyznacza si¢ krzywa dyspersyjna, a nastepnie rozwiazuje dwa za-
gadnienia poczatkowe. W pierwszym rozklad przemieszczen jest taki jak w funkcji Heaviside’a,
a w drugim odpowiadajacy kontaktowi pr¢ta poddanego jednorodnemu odksztalceniu i prgta
nieodksztalconego. Rozwigzan poszukuje si¢ w postaci szeregow Fouriera. W chwilach bliskich
zera pr¢dkosé profilu w precie pierwszym i drugim jest réwna predkosci propagacjiw tych pre-
tach. Dla duzych czasow profil fali porusza si¢ z pregdkoscia inna niz predkosci propagacji
w pretach.

JIBa pasHbIX GeCKOHEUHO JUIMHHBIX YIPYTHX CTEPXKHA BO3JAEHCTBYIOT Ha ceOA CHII0H npolopil-
HOHaNBHOM PasHOCTH UX cKopocTH. OnpenensieTcA QUCNIEPCHOHHASA KpHMBasi, a 3aTeM pellaloTCa
JIBe HayaJlbHble 3afjaud. B mepBoii pacnpeneneHHe nepemellleHHH Takoe Kak B ¢yHKUuH Xe-
BHcalifa, a Bo BTopol paclpefesieHHe OTBeYarolliee KOHTAKTY CTeP>KHS NOABEPrHYTOrO OJQHO-
pPoaHOM gedopmManky H HexehopMHPYEMOro CTepyKHs. Pelienuit niuercs B Buae pagoe Pypse,
B moMmeHTax OJIM3KHX HYJIA CKOPOCTh NPOQHIIA B IEPBOM M BO BTOPOM CTEPIKHAX PaBHA CKO-
POCTH PaclpoCTPaHeHHs B 3THX CTepyKHsX. st OoJibIIuX BpeMeH NpodhHIIb BOJIHBI ABUMKETCA
C APYro# CKOPOCTHIO, YEM CKOPOCTE PaclpOCTPAaHEHHA B CTEPXKHAX.

THERE exists a large literature concerning the statics of multi-component media, but very
few papers deal with the problem of dynamics of such media. Formal consideration of
discontinuity waves is worthless since, as it was shown in [1], the speed of the wave profile
is completely different from the speed of the wave propagation; that is why none of such
papers will be quoted here.

1. Equation of the problem

Two parallel elastic rods of cross-sections S;, S, are made of different materials with
the respective elastic moduli E,, E, and densities o,, 0,. Let us consider the motion of
the rods in the direction of their axes and disregard the motion in the transversal direction.
The rods are assumed to exert forces on each other, and the forces are proportional to
the difference of their velocities, Fig. 1. An experimental model of such a system may be
represented by a rod placed in a thick-walled pipe filled with a viscous liquid, Fig. 2.
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Displacements of the first rod are denoted by u, and in the second — by v. Elementary
considerations yield the following equations of motion:

Evug+h(v,—u,) = o0U,y,

(1.1

E;vge+h(u,—v,) = 0204,

where % denotes the interaction coefficient. In order to simplify the considerations assume
01 = 0, = p. By introducing a new coordinate

(1.2) x = e ’
and the parameters
(1.3) H=—, g¢*=722%

the following system of equations is obtained

Uxt+ H@®,;—u;) = U,

1.4
) qzv,“+H(u_,—'v_,) =Y,

this is a set of linear second order differential equations. if H = 0, then the rods will be
uncoupled. In such a case the disturbances in the first rod will be propagated with the
speed ¢; = 1, and in the second one — with the speed ¢, = gq.

2. Weak discontinuity wave

Let us assume the existence of a time-dependent surface & described by the equation

.1) x = Ui,
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at which the displacements u(x, t) and v(x, t), and their derivatives u,,, u,,, v, v, are
continuous, and the higher order derivatives are discontinuous. Denoting by double
brackets the jump at &,

(2.2) [-1=_lim ()= lim (),

x—>Ut— x—>Ut+0
we obtain the following compatibility conditions (cf. e.g., [2]):
I]:u.xx]] = Blv [I:u, 1!]] = UZBI s
[[v,xx]] = B,, [[v.tt]] = U2B2,

B,, B, denoting certain parameters. Substitution of expressions (2.3) into Eqgs. (1.4)
yields two equations

(2.3)

(U*~1)B, = 0,
(U*-q*)B, =0,

which must be satisfied simultaneously. It follows that the equalites must be satisfied:

Q.4)

2.5) U=1, B,=0,
or
(2.6) U?*=gq% B, =0.

The discontinuity surface must propagate therefore either at velocity U = 1 or at
velocity U = g. This result is of a great scientific value but, as it will be shown later, it
yields no information on the real behaviour of the mechanical system discussed here.

The system considered is linear and, hence, the propagation speeds of strong discon-
tinuity waves are the same as the weak discontinuity wave speeds determined above.

3. Sinusoidal wave

The solution of Egs. (1.4) is sought in the form
U= Aei(kX—m!),

v = pAei(kx-an),

(3.1

frequency w and amplitudes 4, p4 being constant, independent of x and ¢. The wave
number k is assumed to be known.

By substituting the expression (3.1) into Egs. (1.4) we obtain the set of two equations
in constants w and p

(w2 ~k?*+iwH)—iwHp = 0,
—iwH+ (w?—k*q* +ioH)p = 0.
Non-zero solutions of the set exist provided its principal determinant vanishes. Denoting
o = iw we obtain the fourth degree algebraic equation
3.3) w*+ 2Hw +k2(1 + ) w2 +k2(1 +g®) Hw+k*q? = 0,
with real-valued coefficients and the single unknown w(k). This equation has four solutions
wy, Wi, ws, wy. Hence, there exist four branches of the dispersion curve w(k), and namely

w, (k), w,(k), w3(k), wy(k). For each g, H # 0 the values of w(k) are imaginary or complex
numbers. In Fig. 3 are shown the numerically determined real (solid line) and imaginary

(32)
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(dashed line) parts of the function w,(k), r = 1,2, 3,4 for H = 1. For large k the real
part of w(k) is proportional to k, and

(3.4) Rew; = —Rew, = ¢,
Rew; = —Rew, = 1.
For H = 0 the Eq. (3.3) is a biquadratic equation
(3.5 w2+ k2(1+q¥)w2+k*q? = 0,
and we have
(3.6) W = —w, =¢, ®3= —wg =1,

Such system is dispersionless and its dynamics is very simple. In the considerations to
follow it will be assumed that H # 0.

From the theory of algebraic equations it is known that the roots of the fourth degree
Eq. (3.3) are identical with the roots of two quadratic equations

S |5 2
w2+ QH+ M)~ + (y+ jHﬂ)) -0,
2 M
}H%*ﬁbﬂi)_o
-M -

3.7)

W+0H—M)gb+
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Here y is an arbitrary solution of the algebraic equation of the third degree
(3.8)  8y*—4k*(1+q?)y* +4k*[H*(1 +49*)—2k*q?]y
+4k4q2[k1(1 _qZ)_HZ]_k4H2(1 +q2)2 = 0,
and parameter M is defined by the formula
(3.9) M=2yn, n=2p+H*-k*(1+4q?.

Equation (3.8) is of the third degree, and so it must possess at least one real-valued
root y. This conclusion enables further analysis of the solutions of Egs. (3.7). Without
going into detailed calculations, let us present the final conclusion concerning the frequency
. There exists such k depending on H that for k > k Egs. (3.7) have complex conjugate
roots, and the corresponding frequencies w have the forms

W, = a1+f'81, w3 = a2+fﬁz,

(3.10) Wy = —a+iffy, @4 = —o,+if,.

However, for k < k one of the Egs. (3.7) has real-valued roots, and the second one —
complex conjugate roots. In such a case
wy = ap+if, w3 = iy,
Wy, = —oy+Hifly, g = iy,.
If H=1, then k ~ 0.84, Fig. 3.
In compliance with Eq. (3.2), the coefficient p is found from any of the formulae
2 2 2_ 12
3.12) el T e ?u%'
In the case of very small values of H, Eq. (3.12), is more expedient since it doesn’t
contain the 0/0-type ratio. Using the formulae (3.10), (3.11) we obtain for k > k
Py =@+, ps = @ +iy,,
P2 = @1—iyy, Pa = p2—iy,,

e n 3l
(3.14) Po=1+-pl\I+ o) =g |-+ aip

il am) e ats)
= 14 L2 (1§ ——mpr =2 (—14——o]).
e E T gl T E\T g
For k < k the formulae for p,, p, remain unchanged, while p,, p, are determined by
the formulae

(3.11)

(3.13)

Y3 k?
= | dt s
(3.15) Ps =1+t
_ Ya k?
p4 — 1+ "H— + Hy4

The solutions of Egs. (1.4) are the following displacements

u= Arei(kx—wr(k)x)’

(3.16)

— itkx—w_(k
v = PrAre‘( X—w.( )x)’
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where w,, r = 1, 2, 3, 4 are determined by Eqs. (3.10) or (3.11), and p, — by Egs. (3.13)
or (3.15). Superposition of the solutions of Egs. (3.16) makes it possible to solve the initial
problem (Sect. 5). Observe that the phase and group velocities, U, and U,, corresponding
to the solutions (3.16)
w(k) dw (k)

k S dk

are complex and different at different branches of the dispersion curve w(k).

(3.17) U, =

U, =

4, Case ¢>* =2

Having in view the solution of the initial problem, let us now analyze in detail the case
g* = 2; it corresponds to the case when the ratio of propagation speeds in both the rods
equals J/2. Substitution of g2 = 2 into Eq. (3.8) and simple transformations lead to the
following equation for % (y was found from Eq. (3.9), and substituted into Eq. (3.8))

4.1) L(n) = n*+(6h*=3H?*)n*+ (k*—6k*H?*+3H*)n—H® = 0.
One root of this equation lies within the interval
0 <n < H?

since L(0) = — H® < 0, and L(H?) = H?k? > 0. This root must be determined numeri-
cally. With H = 1 the curve %(k?) is shown in Fig. 4.
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Equations (3.7) are reduced to two equations
= — 2
4.2) w2+ (H+yYnw+ %[3k2—H2+niH H/fl =0.
| ]

which enable us to determine w and w = iw. Denote
Q, = 6k*+n—3H>+2H[)/ 7,

(4.3)
0, = 6k*+n—3H?>-2H3/)/y.

Il
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For each k we have Q, > 0. If Q, > 0, then

Wy, = Lo +iff;, w34 = to,+iff,,

1 = 1 _
(4.4) oy =7VQ1, By = “T(H'—]/W),

1 ,— 1 _
0‘2=?l/Qz, B2 —T(H‘f‘l/??)-

If 0, < 0, the formulae for «; and f; remain unchanged, while

. | — 1 —
(4.5) W3 = 1Yz, Y3 = _7(H+V )+ 'Z—I/_Qz;

. 1 = 1 =

@g =Way V4e= — 5 (H+y n)— 5 l/—Qz-

The parameter k introduced in the preceding section corresponds to Q, = 0. Coefficients:
@1, P15 @2, ¥2, P2 Which correspond to the above functions are determined by the formulae
(3.14), (3.15).

Let us now pass to the construction of the solutions. In accordance with the definitions.
introduced above, we obtain the following solutions:

u= eﬁ‘tei(kx_alt)’ v = ((p‘_’_iwl)el(kx-alr)’
u= E‘a‘tei(_kx“x"), v = (¢1_iW1)et(_kx+alt)v
(46) u= eﬁ,tei(kx+m,l), v = (¢1_i¢l)ei(kx+alt),

U= eﬁ,tet(—kx—m,t), ¢ = ((Pl+iw1)ei(—kx—¢xt).

Following the scheme [(1)+(2)— (3)— @] : 2, [(1)—(2)+ (3)—(4)] : 2i, we obtain two
real-valued solutions

u = ey, vy = (e -8y,

4.7
al u, = efr's;, v, = eﬂ‘t('l’l e t+@ic1),
where

¢; = cos(kx—o t)—cos(kx+oyt),
4.8) 1 ( ) ( 11)

sy = sin(kx—o, t)+sin(kx+ay ).
If @, > 0, a similar reasoning yields two further solutions

us = ébi'c,, vy = P (pro—y,sy),

4.9

“9) u, = efils,, v, = Py, +@scy),
where

“.10) ¢; = cos(kx—a,t)—cos(kx+oast),

53 = sin(kx —a,1)+sin(kx+a,1).
If 0, < 0, we obtain
uy = (e”' —e"sinkx, w3 = (pie’ —pye’)sinkx,

4.11) u, = (e"' +e")sinkx, v, = (pze’* +pye’’)sinkx.
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Having in view the initial problem, let us now determine the displacements and speeds
at the instant £ = 0. In accordance with Egs. (4.7) and (4.9) we obtain with Q, > 0

'u,(x, O) Alr

v,(x, 0) A, ] .
(4.12) e, 0) Pl sinkx

T'),-(X, O) A4r
matrix A4;, being determined by the formula

0, 1, 0, 1
— Y1, P1> — Y2, P2

4.13 Ay =12
( ) ! oy, ﬁl ’ ®z, /32

=Bt a g, figitaay, =Byt o, faprtany,
If @, < O then, in accordance with Eqgs. (4.7) and (4.11), we obtain

fi 0, 1, 0, 1
= +
—u,, 1. Ps 2’1, Ps_il?a,
4.19) Ay =2 & 8 Y3 — Y4 V3t VYa
13 1> 2 ] 2
_ﬂl"Pl‘}'“l(Pl’ ﬁx‘?i‘*‘“x%a ‘ys—pi‘;ﬂ!‘)i, ?3P342f)/4p4

It should be stressed that A4;, depends on the wave number k.

5. Initial problem

Let us assume that the displacements and their time rates at t+ = 0 are known; under
this condition let us find the displacements at ¢ > 0. Let us consider two cases only. [n the

first case
ol
u(x,0) = v(x,0) = 0.

In the neighbourhood of zero this function represents the Heaviside function. In the
second case

4 (. sin3kqx sin5kq x
= 0 = - — 774- - _ E
.1) u(x, 0) = v(x, 0) —= (smkox + 3 5

4 (. .
(5.2) u(x,0) = v(x,0) = — —|sinasink,x+ . sin3asin 3k, x
oL 2

3

1 .
+ 2 sinSasin Skyx + ) ;

u(x,0) = 2(x,0) = 0.

The graphs of functions (5.1) and (5.2) are shown in Fig. 5. Both the functions are
periodic, but let us concentrate upon the motion of the wave profile which at instant ¢
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lies close to the point x = O (in the case of (5.1)), or close to x = « (in the case of (5.2)).
The calculations will be confined to a finite number of terms of the Fourier series.
It should be stressed that, due to a very complex form of the dispersion formula, the
application of the Fourier transform is impractical. The transforms would have to be
determined numerically thus obscuring the physical sense of the results.
Let us fix the value of k, and assume

(5.3) k = Nk,
Coefficients X, X,, X3, X, are selected so as to satisfy the following equations
5.4 Ay X+ A5 X+ A X +A4,X, = (1,1,0,0).
Obviously, 4;, = 4;/(N), X, = X,(N). The displacements

4

4
) (N)
(5.5) u=duX, ov=)uX,
r=1

=1

are, at instant 7 = 0, equal to sin Nk, x and their time derivatives vanish since Egs. (5.4)
are satisfied. Suitable summation will then lead to a solution fulfilling the conditions (5.1)
or (5.2).

In particular, by assuming

s, 1) 4 ((l) 13 1 G 1 (K))
ux,t)=— —\u+ 5 ut+ - ut+ ... +—u
’ 3 5 K ’
(5.6) i
4 (1 1 ® 1 ® 1 &
?)(x,t)——?t- 'U+—3—'U+?"U+ +?‘U y

10 Arch. Mech. Stos. nr 6/85
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FIG. 6.

we obtain the solution satisfying the initial conditions (5.1). The wave profiles at times
t=0,1,2,4for H=1, ko = 0.1 are shown in Fig. 6. The last term of (5.6) taken into
account corresponds to N = K = 75. The solid line represents u(x, t) and the dashed
line — 2(x, ). Points of the second rod are reached by the disturbances earlier than
those of the first rod. From the measurements made at half height of the profile it follows,
however, that the profile speeds for large values of time (¢ > 2) are practically the same
U,~ U, ~ 1.23.
At small times U, < U,. The corresponding measurement yield the following speeds
U, ~1, U, =~ 140.

Let us obser_ve that the discontinuity wave velocities determined for g = 2 are U = 1
and U = /2 x 1.414.

'
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The wave profile deforms, its slope becoming more gentle with increasing time. To
visualize the effect of viscosity upon the process of smoothing the profile, the subsequent
profiles for H = 0.5 and H = 5 (at time ¢ = 8 only) are shown in Fig. 7. The viscosity
is seen to increase the profile distortion.

V>

10*
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Assuming
4 [, 1 & 1 &,
G.7) u(x, 1) = — -E( usina+ 37 usin3o+ ... + KT usmKa),
4 [ 1 &, 1 (K
o(x, 1) = — H(vsmm+ 37 osin3a+ ... + X vsmKoc),

we obtain the solution of the initial problem (5.2). With « = 7/6 the series is alternating
and converges rapidly. The profiles shown in Fig. 8 are obtained under the assumptions
ko = 0.1, H = 1, K = 39; dashed lines correspond to v, and solid lines — to u. In order
to proceed with the analysis in the case of small times we may use the diagrams in Fig. 9
which present the enlarged neighbourhood of point (5.5, —1). Wave profiles for ¢ = 5

uy A
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and various viscosities H are shown in Fig. 10. At low viscosities the displacements u
and v differ from each other considerably, and at high viscosities ¥ & v. For H = 5 the
profiles # and v are practically identical.
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