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On influence of viscosity on stability of train-track-systems

R. BOGACZ (WARSZAWA), J. DANIELSKI (POZNAN)
and K. POPP (HANNOVER)

THE PAPER is devoted to an analysis of behaviour of the train-track-systems modelled as a con-
tinuous or lumped subsystem moving with constant speed along an infinite Bernoulli-Euler-
beam on a visco-elastic foundation. The critical velocities were determined on the basis of the
stability criteria. It was proved that the stability regions are also influenced by a very small
intensity of damping.

Pracg poswigcono analizie zachowania ukladu pojazd-tor modelowanego jako podukiad ciagly
lub dyskretny poruszajacy si¢ ze stala predkoscia wzdluz nieskoniczonej belki Bernouliego—Eulera
na lepkosprezystym podlozu. Krytyczne predkosci okreslono na podstawie kryteriow statecz-
nosci. Wykazano zalezno$¢ zakresow statecznos$ci od lepkoSci nawet w przypadku bardzo
matej intensywnosci ttumienia.

PabGora nocesillieHa aHAIM3Y MOBEJEHUA CHCTEMBI TPAHCIIOPTHOE CPENCTBO-IIYTh, KaK CILIONI-
HOH HJIH IMCKPETHOIH IOJICHCTEMbI, ABIMKYILUEHCA C IIOCTOAHHONW CKOPOCTBIO BIIOJIb GECKOHEU-
Hoit ©anku BepHym-2Myepa Ha BSABKOYNPYTOM OCHOBaHHMH. KpHTHUECKHE CKOPOCTH onpe-
[leJleHbl Ha OCHOBE KPHUTEpHEB YCTOMYMBOCTH. IloKasaHa 3aBHCHMOCTh MHTEPBAIOB yCTOMUM-
BOCTH OT BA3SKOCTH AaXKe B Cllyuae OUeHb MaJloH HHTEHCHBHOCTH 3aTyXaHHA.

1. Introduction

WITH INCREASING travelling speeds, the dynamic interaction between vehicles and guideway
becomes more and more important. Thus, there is a need for simple but reliable models
for such transportation systems in order to study the dynamical effects.

The models are useful to examine the vertical as well as the lateral motion. The track-
subsystem is modelled as an infinite Bernoulli-Euler-beam on an elastic foundation, while
the train-subsystem consists of different lumped or continuous models which are infinite
in length, respectively. Both subsystems are in relative motion to each other with a con-
stant velocity. The suspension is modelled by linear springs. The mathematical description
of the different train-track-models depends on the modelling of the subsystems. It consists
either of two coupled partial differential equations or of a set of ordinary differential
equations coupled with a partial differential equation. The solution is obtained by applying
the concept of travelling waves. Special attention is paid to the stationary solution and
its stability.

The stability analysis of linear system is performed by investigating the roots of the
resulting characteristic equation. Critical travelling speeds can be calculated depending
on the system parameters. The results are obtained in the case of damping. The results
obtained by means of comparatively simple models are believed to remain valid also for
more complex systems and provide an insight into the problem of the dynamic stability
of real train-track-systems.
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There are various extensions of the classical problems towards more realistic models
of railway tracks. A tensionless Winkler foundation was investigated in an analog-com-
puter study by CrRINER, MCCANN [1], where only small differences of the beam deflection
were found compared to the classical model with the same loading. Another paper devoted
to this subject is due to CHORUS, ADAMS [2]. Different beam models resting on a Pasternak
foundation have been compared by Sarto, TERasawA [3]. Though the Bernoulli-Euler
beam theory compared to Timoshenko beam theory and the exact two-dimensional elastic
theory gives extremely inconsistent results in front of the load for U > U,,, it seems to
be reliable for all velocities excluding the region mentioned. A periodic mass and stiffness
distribution along the beam was investigated by Popp, MULLER [4] in order to approxi-
mate the effects of sleepers in a railway track. Again, for realistic system parameters the
differences compared to the classical model turned out to be very small. Thus, the classical
continuous model seems to be quite appropriate for the investigation of real railways
tracks.

In contrast to the reviewed literature, the present paper, as an extension of [5], is
devoted to models with more than one contact point. As a limiting case of a longtrain,
an infinite moving beam will be investigated in detail. On the other hand, the case of a
moving lumped system with two contact points will also be analyzed. Superposition of
the solutions may provide insight into the dynamical bevaviour of trains of finite length.

2. Stability of interaction of two infinite beams on viscoelastic foundation

We consider the model shown in Fig. 1 composed of two infinite continuous beams
J» 7 =0,1, where beam 0 moves with a constant velocity U, relative to beam 1. Each
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Fig. 1. Two continuous subsystems in relative motion.

beam (flexural rigidity E,I;, mass per unit length y;, longitudinal force 7;, T, > 0 means
compression and 7; < 0 means tension) is supported by a linear viscoelastic foundation
(foundation constants d;, ¢;). Two reference frames with coordinates (x,, x,) and (J*cl , X2)
are used, attached to beam 1 and 0, respectively. For an undisturbed motion, the beam
displacements w;(x;, t) in x,-direction are assumed to be zero. The equations of motion
with respect to the (x,, x,)-frame read

84W1 82W1 62w1

T ®
ot Thia th—a

@1 E. I “+pe(xy, ) —pi(x(, t) = 0,
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owy(xy,t
2.2) Pr(xy, t) = ¢;wy(xq, 1)+ 6, Wy (a;l,l ,
8"‘w «Bzw azw azw azw
(2.3) Eolo _3x‘}'0 + T, —dﬁ o+ 0(_3t—20_ +2U, ox, aot + U3 ax; ) —polxy,2) =0.

Here p;,j = 0, 1, denotes the pressure which acts on beam ; due to the disturbed motion
of the beams. From the condition of compatibility it follows

d(wo—wy)

ot + U,

(2.4) pi(x,t) = —po(xy, 1) = co(wo—w,)+ g ( d(wo—wy) )

ax

In order to simplify the analysis let us write Eq. (2.3) in the moving (3‘?l i ;‘cz)-frame, where
(2.5) x =% —Upt =0,

26) x-% = 0.

Then Eq. (2.3) takes the form

o e o i 2w 8w, i 8(Wo—Wy) £ Ko o
2.7 oo'a—g*' o*b;:éf‘—*'ﬂcw“'at—z'* 0—37—'*'00(“’0_“’1)‘ .

To solve the set of Egs. (2.1), (2.4), (2.7) together with the condition (2.5), we are looking
for a steady-state solution in the form of travelling waves,

® ¥ ¥
—tk (x vt - ik (x;—v,t)
“)J.:Aje (%1 l), Wf—AJEJl 2,

2.8 ;
&9 —p; = (= Ypet==on,  j=0, 1.

Making use of relation (2.6) we find

(2.9) A=A, ky=k =k Imk)=0, j=0,1,
(2.10) v, —v,— Uy = 0.
Introducing Eq. (2.8) into Egs. (2.3), (2.5), (2.7) and using Eqs. (2.9) and (2.10) it follows
(2.11) (R —v})—a?]A; +a?dy—i[(8;v, + 00s) A1 — Oo¥2 4o] = 0,
(2.12) (RE—vi+a?)do—a?Ad; —idevy(do—A4,) = 0,
where

2 1 2 1 2 €1

R} = — (Eolok®~To), R:=——|ELK-Ti+ %),
Mo M1 k
(2.13)
7 = o I S
to’ fho k?

The condition of uniqueness of solution of the set (2.11)-(2.13) with respect to Ao, A4,
yields a relation between v, and v,.

(R} — a2~ —o0}) —i(d; 7, + 602,), a?—idow,

= 0.
—a?—idev, . Rj+a*—vi—idov,

(2.14)
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Eq. (3.14) together with Eq. (2.10) yields the characteristic equation of the problem under

consideration

D(vy,v,;) = Dr(vy, 0,)+iD (v, 0,) = 0,
(2.15)
V4 —0y— UO = 0.

3. Stability analysis

In the present case with damping, the solution (2.8) may be unstable, stable and asym-
ptotically stable, what depends on the value of the velocity U,. Stability of the steady-
state solution (2.8) requires Im (kv,) < 0 or » = 1,2 and in the case of instability
Im (kv), > 0, » = 1 or v = 2. Now we will analyze the stability behaviour depending on
the velocity U,. First let us observe that the solution is stable if and only if there exist
four complexrootsof™, » =1,2,n=1,2,3,4 of Eq. (2.15) such that
(3.1) m(kot™) < 0.

If the inequality sign holds it follows asymptotic stability while in case where the

equality sign holds it follows stability, when the real roots are different.

The regions S; of U, for which
3.2 St ={Us:v,, Im(z,) >0, @(v,, Uy) = 0},
will be called instability regions. Since the analytical determination of critical parameters
is complicated, let us use a geometrical approach. The critical values of U, at the boundaries
of the instability region S; are determined in the v,;,v,-plane by the straight lines v, =
= v, — U, passing through the intersection points of the curve Re® = 0 and Im® = 0
Eq. (2.14). In the region S = {U,: Uy €[U;ep, User]}, the solution (2.8) describes waves
with amplitudes increasing in time. Beside this solution there exists also a trivial solution;
thus, according to Lapunov’s instability criterion, region S is the region of instability,
§=3S5.

Now let us determine the instability regions for certain particular cases. From the form
of the characteristic curves in the v,, v,-plane it follows that for 6, = 0, §, > 0, or d, > 0,
d, = 0 and R3, R?, o® € [0, o0], the region of stability is bounded. The limit case «? =
= coloks?, describes a stiff connection between beams 0 and 1. For this case the second
critical velocity tends to infinity. The case R* = E,I,k*— T, = 0 corresponds to a moving
beam j = 0 with rigidity equal to zero. For;T, =0, E,I, = 0, the case of a moving chain
of densely distributed oscillators without mass interaction is obtained [8]. On the basis.
of the characteristic equations derived it can be found that the critical velocities depend
on the products of the damping coefficient and their ratios. The characteristic results
are illustrated in the (1, v2)-plane. The curves representing the real part of the character-
ictic equations Re®(w, , v,) = 0 depend on the product 8, 8, and for the case d§, d, = O
they are identical with the elastic case. The imaginary part of the characteristic equations
depends both on the product d; d, and the ratio 4, d5'. The curves representing the
imaginary part In®(v,, v,) = 0 for §, dg' ~ 1 are shown in Fig. 2, and for the cases
d; 671 > 0 and 6, d5' — oo they are shown in Fig, 3. It is easy to see that in the case of
6, 6o — 0, the critical value of the motion velocity is not greater than that in the elastic.
case, and sometimes the difference is very pronounced (Fig. 3).
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FiG. 3. Characteristic curves for 8¢9, - 0 and a—d,d3! > 0, b— 48,05 — 0.

7] A

FiG. 4. Characteristic curves for the case of
large damping— 6,6; ~ 1
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In the case when the value of product &, J, is relatively great, the influence of damping
-on the shape of the curves representing the real part of the characteristic equation is essen-
tial, what is shown in Fig. 4.

-4, Interaction of a moving lumped system with an infinite continuous system

Let us now consider the case similar to that shown in [5] but including damping. The
-system consists of a one degree of freedom vehicle (mass m, string contants ¢) with two
-contact points (distance L), moving along an infinite beam supported by linear elastic
foundation or, in the case of E;I; =0, T < 0, moving on a string under tension. The
remaining parameters and the reference frames are specified as in Sect. 2. First let us
.analyze the case of a single periodic contact force F(t) acting at point x, = 0, (cf.
MATHEWS [5]). The corresponding equation of motion has the form

o, PE 2w, o2, oW,
41) El I i —2U, Mz & —)
@ El oxs Lo, ‘( ar? ok ot ok,
b, (3“" - af‘)+c¢1—pl(§,,t> =0,
2t =
4.2) pi(Xe, 1) = F()8(X,) = Pett8(%,).

‘The solution consists of two parts,
* ¥ % * * *
4.3) Wi(xy,t) = Wi(xy, t) H(=x) +Wo(xy, r) H(xy),

where H(;) is the Heaviside step function, i.e. H(X) = 1if ¥ > 0 and H(X) = 0 if % <o.
The functions W, and W, fulfil the following compatibility condition at ;c*l =0:
oW %
* = < * : ’ n= 0’ 1, 2’
axt axt
03 * 3%
E (”-,f"‘ _ OV | pemtat _ g
ax3 ox3

(4.9)

Utilizing the condition of radiation and the Egs. (4.3), (4.4) we obtain a relation between

the beam deflection wl(;l, t), force F(t), velocity U, and frequency w. In the steady-state
case it follows that

.5 RG] . Fral) G, Uo);
F(2) JIa P TR
in the case of elastic waves the relation between the wave velocity v and wave number k is
4.6) 02 = (E\ L k*—Tk* +¢)/uk?,
what leads to the critical velocity U,
4.7 %.LDUN =0= Uz = I/4Cl/f? I _ Z;ll ]
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Now let us analyze the model shown in Fig. 5. Since the symmetry is assumed, the equation
of motion of the mass m takes the simple form

d%y
dt?

(4.8) i e Foft ==,

dv"&l(_ g—)—dﬁ?l(+L)

dy
thl == ———— 5 R

where ) characterizes the mass displacement, and F,/2 denotes the contact force in the
x,-direction. Equation of the continuous system is given by Eq. (4.1), where the load has
the form

4.10) puCee, 1) = %Fc(t)a(i— é) + %cha(h é)

For a steady-state motion from Egs. (4.8), (4.9) and (4.5) we obtain the characterisﬁc
equation in the form

(4.11) Go(0)+2G0, w, U)+G(L, w, U)+G(—L,w, Uy) = 0.
For U? < U2 the function G(x,,w, Uy) is
@12 Gy, 0, Up) = [Gr(Wyl, 0, Up)+iGi(X4], @, Up) H(X;)
+Gr(%1], @, Ug)—iG (%], , Ug)l H(—X)),

where the forms of functions G and G; in the case of a beam are given in [7], and in the
case of such a simple continuous systems as a string, Eq. (4.11) takes the form

(4.13) [-;—az'—ﬁlf(—/l, Uo)]/lz—[;c;f(—/l, Uy)—p,a31A+x%,a® =0 for Uy > a.
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In the case of a string the function f(— /1, U,) is given by the formula

L
Aot vg = Uoma 7 Uota
N (R R D

“4.149)
A= (e+iw)L = 6+i0, x = agl? oy=cm™, B, =>bm L,

Yo = doLm™1.

Separating the real and imaginary parts of the characteristic equation (4.13) we obtain

al

(415) [Fcﬂ1+%i:| 0'2+[Fc"1_,81a3}0_[Fcﬁ1+2 0

+ [Fo%,10— 2F,B,]00—x,a® = 0,

3

@4.16)  —[Fp]o*~ [Fou]o+ [Ff10°+ [Fc?c1+ﬁ1613]9+2[1’c.31 + F;._] of = 0.
where the following abreviation are used
y2—1 ¢ [ Q pau

.eV*1 | cos—— —eV*-Tcos———
2y,

FC = FC(U’ 6) = V+1 V—l 3

4.17)

Vil -~ | . ~oa, 0
— =7 - V+1 L —pV2-1
F, = F(c,0) = i 27e e [sm Vil e sin 7 ],

Q=6a", V=Uma™"

Now, using Eqgs. (4.15)-(4.17) and the instability condition, the boundaries of the regions
where instability is possible can be plotted in the V, £2-plane.
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FiG. 6. Estimates of instability regions for the case of vanishing intensity of damping and the case without
damping.
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FiG. 7. Estimates of instability regions for the case of large damping.

The results calculated for various values of damping are shown in Fig. 6 and Fig. 7.
It is interesting to note that, also in the case of two points of interaction, the regions of
instability for damping equal zero [9] are different from those in the case of damping
tending to zero (Fig. 6). If the value of the generalized damping parameter j, increases,
the regions of instability are changed and for very large values of f, the configuration
takes the form shown in Fig. 7.

The above estimates obtained from the characteristic equations (4.14), (4.16) and
based on the stability condition (3.1) give only a qualitative information on the influence
of damping in the hybrid systems in relative motion.

It is interesting to note that for the estimates shown in Fig. 6 and Fig. 7 the set of
such regions is countable but infinite. The first critical velocity is equal to the velocity of
elastic waves in the continuous subsystem.

The results of more accurate calculations show that the fist critical velocity depends
also on the value of damping. Further results concerning the instability region, as well
as a discussion of the influence of the parameters » and y on the instability regions of
a damped system, will be given in a separate paper.

5. Concluding remarks

In the case of dynamic analysis of an infinite beam resting on an elastic foundation
and subject to the action of a moving infinite beam or a moving lumped subsystem of
finite length, the wave approach is appropriate and yield results of practical importance.
The methods applied and the results obtained for comparatively simple models can be
extended to more complex systems and, thus, provide additional insight into the problem
of the dynamic stability of real train-track-systems.
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