391.

SOLUTION OF A PROBLEM OF ELIMINATION.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. viII. (1867), pp. 183-185.]

It is required to eliminate x, y from the equations

$$
\left\|\begin{array}{lllll}
x^{4}, & m^{3} y, & x^{2} y^{2}, & x y^{3}, & y^{4} \\
a, & b, & c & , & d, \\
e \\
a^{\prime}, & b^{\prime}, & c^{\prime} & , & d^{\prime}, \\
a^{\prime \prime}, & b^{\prime \prime}, & c^{\prime \prime}, & d^{\prime \prime}, & e^{\prime \prime}
\end{array}\right\|=0
$$

This system may be written

$$
\begin{aligned}
x^{4} & =\Sigma \lambda a \\
x^{3} y & =\Sigma \lambda b, \\
x^{2} y^{2} & =\Sigma \lambda c, \\
x y^{3} & =\Sigma \lambda d, \\
y^{4} & =\Sigma \lambda e
\end{aligned}
$$

if for shortness

$$
\Sigma \lambda a=\lambda a+\lambda^{\prime} a^{\prime}+\lambda^{\prime \prime} a^{\prime \prime}, \& c .
$$

Or putting

$$
\frac{x}{y}=-k
$$

we have

$$
\begin{aligned}
& \Sigma \lambda(a+k b)=0 \\
& \Sigma \lambda(b+k c)=0, \\
& \Sigma \lambda(c+k d)=0, \\
& \Sigma \lambda(d+k e)=0
\end{aligned}
$$

or, what is the same thing,

$$
\begin{aligned}
& \lambda(a+k b)+\lambda^{\prime}\left(a^{\prime}+k b^{\prime}\right)+\lambda^{\prime \prime}\left(a^{\prime \prime}+k b^{\prime \prime}\right)=0 \\
& \lambda(b+k c)+\lambda^{\prime}\left(b^{\prime}+k c^{\prime}\right)+\lambda^{\prime \prime}\left(b^{\prime \prime}+k c^{\prime \prime}\right)=0 \\
& \lambda(c+k d)+\lambda^{\prime}\left(c^{\prime}+k d^{\prime}\right)+\lambda^{\prime \prime}\left(c^{\prime \prime}+k d^{\prime \prime}\right)=0 \\
& \lambda(d+k e)+\lambda^{\prime}\left(d^{\prime}+k e^{\prime}\right)+\lambda^{\prime \prime}\left(d^{\prime \prime}+k e^{\prime \prime}\right)=0
\end{aligned}
$$

and representing the columns
by

$$
\begin{array}{llllll}
a & b, & a^{\prime} & b^{\prime}, & a^{\prime \prime} & b^{\prime \prime}, \\
b & c, & b^{\prime} & c^{\prime}, & b^{\prime \prime} & c^{\prime \prime}, \\
c & d, & c^{\prime} & d^{\prime}, & c^{\prime \prime} & d^{\prime \prime}, \\
d & e, & d^{\prime} & e^{\prime}, & d^{\prime \prime} & e^{\prime \prime},
\end{array}
$$

$$
1, \quad 2, \quad 3, \quad 4, \quad 5, \quad 6
$$

each equation is of the type

$$
\lambda(1+k 2)+\lambda^{\prime}(3+k 4)+\lambda^{\prime \prime}(5+k 6)=0
$$

Multiplying the several equations by the minors of 135 , each with its proper sign, and adding, the terms independent of k disappear, the equation divides by k, and we find

$$
\lambda 2135+\lambda^{\prime} 4135+\lambda^{\prime \prime} 6135=0
$$

operating in a similar manner with the minors of 246 , the terms in k disappear, and we find

$$
\lambda 1246+\lambda^{\prime} 3246+\lambda^{\prime \prime} 5246=0
$$

again, operating with the minors of $(146+236+245+k 246)$, we find

$$
\begin{aligned}
& \lambda\{1236+1245+k(2146+1246)\} \\
+ & \lambda^{\prime}\{3146+3245+k(4236+3246)\} \\
+ & \lambda^{\prime \prime}\{5146+5236+k(6245+5246)\}=0
\end{aligned}
$$

where the terms in k disappear, and this is

$$
\lambda(1236+1245)+\lambda^{\prime}(3146+3245)+\lambda^{\prime \prime}(5146+5236)=0 .
$$

We have thus three linear equations, which written in a slightly different form are

$$
\begin{array}{llll}
\lambda 1235 & +\lambda^{\prime} 3451 & +\lambda^{\prime \prime} 5613 & =0 \\
\lambda(1236+1245)+\lambda^{\prime}(3452+3461)+\lambda^{\prime \prime}(5614+5623) & =0 \\
\lambda 1246 & +\lambda^{\prime} 3462 & +\lambda^{\prime \prime} 5624 & =0,
\end{array}
$$

and thence eliminating $\lambda, \lambda^{\prime}, \lambda^{\prime \prime}$, we have

$$
\left|\begin{array}{lll}
1235, & 1236+1245, & 1246 \\
3451, & 3452+3461, & 3462 \\
5613, & 5614+5623, & 5624
\end{array}\right|=0
$$

C. VI.
which is the required result. It may be remarked that the second and third column are obtained from the first by operating on it with Δ, $\frac{1}{2} \Delta^{2}$, if $\Delta=2 \delta_{1}+4 \delta_{3}+6 \delta_{5}$. Or say the result is

$$
\left(1, \Delta, \frac{1}{2} \Delta^{2}\right)\left|\begin{array}{c}
1235 \\
3451 \\
5613
\end{array}\right|=0
$$

In like manner for the system

$$
\left\|\begin{array}{llllll}
x^{5}, & x^{4} y, & x^{3} y^{2}, & x^{2} y^{3}, & x y^{4}, & y^{5} \\
a, & b, & c, & d, & e, & f \\
a^{\prime}, & b^{\prime}, & c^{\prime}, & d^{\prime}, & e^{\prime}, & f^{\prime} \\
a^{\prime \prime}, & b^{\prime \prime}, & c^{\prime \prime}, & d^{\prime \prime}, & e^{\prime \prime}, & f^{\prime \prime} \\
a^{\prime \prime \prime}, & b^{\prime \prime \prime}, & c^{\prime \prime \prime}, & d^{\prime \prime \prime}, & e^{\prime \prime \prime}, & f^{\prime \prime \prime}
\end{array}\right\|=0
$$

if the columns are

$$
\begin{array}{rlll}
a b b, & a^{\prime} b^{\prime}, & a^{\prime \prime} b^{\prime \prime}, & a^{\prime \prime \prime} b^{\prime \prime \prime} \\
b c, & b^{\prime} c^{\prime}, & b^{\prime \prime} c^{\prime \prime}, & b^{\prime \prime \prime} c^{\prime \prime \prime} \\
c d, & c^{\prime} d^{\prime}, & c^{\prime \prime} d^{\prime \prime}, & c^{\prime \prime \prime} d^{\prime \prime} \\
d e, & d^{\prime} e^{\prime}, & d^{\prime \prime} e^{\prime \prime}, & d^{\prime \prime \prime} e^{\prime \prime \prime} \\
e f, & e^{\prime} f^{\prime}, & e^{\prime \prime} f^{\prime \prime}, & e^{\prime \prime \prime} f^{\prime \prime \prime} \\
=1,2, & 3,4, & 5,6, & 7,8
\end{array}
$$

then the result is

$$
\left(1, \Delta, \frac{1}{2} \Delta^{2}, \frac{1}{6} \Delta^{3}\right)\left|\begin{array}{l}
12357 \\
34571 \\
56713 \\
78135
\end{array}\right|=0
$$

where

$$
\Delta=2 \delta_{1}+4 \delta_{3}+6 \delta_{5}+8 \lambda_{7} .
$$

