[391

391.

SOLUTION OF A PROBLEM OF ELIMINATION.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. VIII. (1867), pp. 183—185.]

IT is required to eliminate x, y from the equations

$\ x^4$,	æ ³ y,	x^2y	2,	xy^3 ,	y^4	= 0.
α,						a) (a
a',						
a'',						

This system may be written

$$\begin{aligned} x^4 &= \Sigma \lambda a, \\ x^3 y &= \Sigma \lambda b, \\ x^2 y^2 &= \Sigma \lambda c, \\ x y^3 &= \Sigma \lambda d, \\ y^4 &= \Sigma \lambda e; \end{aligned}$$

if for shortness

Or putting

we have

 $\Sigma \lambda a = \lambda a + \lambda' a' + \lambda'' a'', \&c.$

$$\frac{x}{y} = -k,$$

 $\Sigma \lambda (a + kb) = 0,$ $\Sigma \lambda (b + kc) = 0,$ $\Sigma \lambda (c + kd) = 0,$ $\Sigma \lambda (d + ke) = 0;$ or, what is the same thing,

$$\begin{split} \lambda & (a+kb) + \lambda' (a'+kb') + \lambda'' (a''+kb'') = 0, \\ \lambda & (b+kc) + \lambda' (b'+kc') + \lambda'' (b''+kc'') = 0, \\ \lambda & (c+kd) + \lambda' (c'+kd') + \lambda'' (c''+kd'') = 0, \\ \lambda & (d+ke) + \lambda' (d'+ke') + \lambda'' (d''+ke'') = 0; \end{split}$$

and representing the columns

a	Ь,	a'	<i>b</i> ′,	a''		
Ь	с,	b'	<i>c</i> ′,	· b‴	c",	
с	d,	c'	<i>d</i> ′,	<i>c</i> ′′	<i>d</i> ",	
d	е,	ď	e',	d''	e",	
1,	2,	3,	4,	5,	6,	

by

each equation is of the type

$$\lambda (1 + k2) + \lambda' (3 + k4) + \lambda'' (5 + k6) = 0.$$

Multiplying the several equations by the minors of 135, each with its proper sign, and adding, the terms independent of k disappear, the equation divides by k, and we find

$$\lambda \ 2135 + \lambda' \ 4135 + \lambda'' \ 6135 = 0;$$

operating in a similar manner with the minors of 246, the terms in k disappear, and we find

 $\lambda \, 1246 + \lambda' \, 3246 + \lambda'' \, 5246 = 0 \, ;$

again, operating with the minors of (146 + 236 + 245 + k246), we find

$$\begin{split} \lambda & \{1236 + 1245 + k (2146 + 1246)\} \\ &+ \lambda' \{3146 + 3245 + k (4236 + 3246)\} \\ &+ \lambda'' \{5146 + 5236 + k (6245 + 5246)\} = 0, \end{split}$$

where the terms in k disappear, and this is

$$\lambda \left(1236 + 1245 \right) + \lambda' \left(3146 + 3245 \right) + \lambda'' \left(5146 + 5236 \right) = 0.$$

We have thus three linear equations, which written in a slightly different form are

 $\begin{array}{ll} \lambda \ 1235 & +\lambda' \ 3451 & +\lambda'' \ 5613 & = 0, \\ \lambda \ (1236 + 1245) + \lambda' \ (3452 + 3461) + \lambda'' \ (5614 + 5623) = 0, \\ \lambda \ 1246 & +\lambda' \ 3462 & +\lambda'' \ 5624 & = 0, \end{array}$

and thence eliminating λ , λ' , λ'' , we have

1235,	1236 + 1245,	1246	=0,
3451,	3452 + 3461,	3462	- ann
5613,	5614 + 5623,	5624	L. toss

C. VI.

6

which is the required result. It may be remarked that the second and third column are obtained from the first by operating on it with Δ , $\frac{1}{2}\Delta^2$, if $\Delta = 2\delta_1 + 4\delta_3 + 6\delta_5$. Or say the result is

In like manner for the system

 $\begin{vmatrix} x^5 &, x^4y, x^3y^2, x^2y^3, xy^4, y^5 \\ a &, b &, c &, d &, e &, f \\ a' &, b' &, c' &, d' &, e' &, f' \\ a''', b'', c'' &, d''', e''', f''' \\ a''', b''', c''', d''', e''', f''' \end{vmatrix} = 0,$

if the columns are

ab,	a' b',	a" b",	a‴ b‴,
b c,	b' c',	b" c",	b‴ c‴,
c d,	c' d',	c'' d'',	c''' d''',
de,	<i>d' e'</i> ,	d'' e'',	d''' e''',
e f,	e' f',	e" f",	e''' f''',
=1, 2,	3, 4,	5, 6,	7, 8;

then the result is

 $\Delta = 2\delta_1 + 4\delta_3 + 6\delta_5 + 8\lambda_7.$

where

www.rcin.org.pl