
[451]

XIX.
RESEARCHES RESPECTING VIBRATION CONNECTED 

WITH THE THEORY OF LIGHT

[1839.]

[Note Book 52.]

[The dynamical system consists of a number (n÷2) of particles (Pθ > ∙f*l  > ∙ ∙ ∙ -f*n+l)  each of unit mass 
and in equilibrium, spaced at unit distances along a straight line. The end particles are fixed and 
each particle is attracted by a force (α≡) by the one immediately before and immediately after. The 
system executes small transverse vibrations and these are studied in five Problems. Each Problem 
is worked out in great detail with examples and Hamilton is led to various results, some of which 
must have been independent discoveries such as sequence equations and asymptotic values of Bessel 
Functions and others were many years ahead of their time such as the Reciprocal Theorem in 
Dynamics and the distinction between Phase-velocity and other types of velocity. The idea of a 
“fluctuating” function is first mentioned also here.

Problem I (pp. 451-463). Pθ, P„+i fixed, P^, P^, ... Pn having any assigned initial displacements 
and velocities.

Problem II (pp. 463-487). All initial displacements and velocities zero except for Pj^, Pj,+n ∙∙∙ 
P,_i, Pj and their displacements and velocities to correspond to the ith mode of vibration.

Problem III (pp. 487-503). The initial displacements and velocities of a number of particles to 
correspond to those of a progressive sinusoidal wave.

Problem IV (pp. 503-510). Discussion of previous case for large values of t.

Problem V (pp. 511-526). A single particle is constrained to move in an assigned manner.]

Problem I.

1. A finite number (n + 2) of equal particles {Pθ, P^, ... P^, ... P^, P„+i) being supposed 
to be arranged in one plane, and nearly in one straight line, at finite and very nearly equal 
intervals (each = 1); the two extreme particles (Pθ and P^+ι) being also supposed to be fixed and 
each of the (n) intermediate particles (as P^) to be acted on only by the attractions (each = α≡) of 
the two (P/_i & R∕+ι) which immediately precede and follow it in the series; it is required to 
determine the laws of the transversal vibrations of the system: that is, to express the transversal 
displacement {yιj}, at any time {t,}, of any intermediate and moveable particle (P∣) from the right 
line or axis (of x) connecting the two extreme and fixed particles (Pθ and Pn+ι), for any given 
but arbitrary set of (n) small initial transversal displacements (y^ θ), and of (n) small initial 
transversal velocities (yj θ).
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452 XIX. VIBRATION AND THEORY OF LIGHT [2, 3

2. {Solution.} This problem is equivalent to that of integrating generally a system of n 
simultaneous differential equations, of the second order, and of the form

(1)

(2)or

the integer I taking in succession all values from 1 to n; and yθj, t being supposed to be 
each equal to zero. It is easy to effect this integration by the known methods. We have only 
to assume

k being an integer which takes in succession all values from 1 to n; and to observe that these 
assumptions give

For thus we easily transform the differential system (1) into another, which may be thus 
denoted.

and which gives, by integration.
(3)

(4)
so that the sought expression for may be thus written

or, more concisely.

(5)

(6)

in which we are to remember that

3. {Corollary 1.) If there be but one particle, Pj, displaced at the time 0, and if no particle 
have at that time any velocity, we may write F*,o  = ^i,o^y,* ’ *̂,o  = θ> the expression for 
the displacement y^ of any particle at the time t becomes
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4r-8] XIX. VIBRATION AND THEORY OF LIGHT 453

4. {Corollary 2.) In like manner, if only one particle, Py, have an initial velocity, yj,θ, and 
if no particle have any initial displacement, we may write 

and

5. {Corollary 3.) The general solution (6) may therefore be put under the form

(7)

6. {Corollary 4.) If the initial displacements and velocities be of the forms 

i being any integer from 1 to n and η  being constants, we shall have Ff,o= » Ιi>

Ή ”1~ 1y' θ = -— 77', and all the other values of T⅛,θ and q will vanish; therefore, in this case, the 

general expression (6) reduces itself to the following:

7. {Corollary 5.) By taking 

yvQ may express any arbitrary initial displacements θ and velocities θ by developements of 
the forms 

if then we had found otherwise the expression given in the last corollary for yι ι, corresponding 
to the particular suppositions 

we might have thence deduced the general expression (6) under the form

(8)

8. {Corollary 6.) If we write, according to a notation already employed.

and introduce two new constants, and such that
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454 XIX. VIBRATION AND THEORY OF LIGHT [8-10

we may employ this other expression

(9)

in which r^ is a known function of the index (or integer) i, but and are in general arbitrary 
functions of that index.

9. {Corollary 7.) The general system of total displacements yu may be considered as the 
sum of n component systems of partial displacements, 

of which each is separately possible, & of which all are mutually superposed. Each system of 
displacements, by itself, may be called a simple movement or mode of simple vibration. It corre­
sponds to some one integer value of i (from 1 to n inclusive), and to one corresponding periodic 
time 

involving also two arbitrary constants, or arbitrary functions of i, namely and η , or 
and , which latter may be called constants of amplitude and of epoch.

10. {Corollary 8.) In any one such simple movement, corresponding to any one value of i, 
the displacements all attain extreme values when t = r^^^βp, and these simultaneous and extreme 
values are all expressed by the formula

If i = 1, these extreme displacements (relatively to t) increase in magnitude with I from Z = 1

till I = if n be odd, or till I = if n be even; and afterwards decrease from I = or from 2i 2i Zt
I 2

I = -^ to l = n  being all of the same sign as B^. But if i = 2, the displacements

increase in magnitude with I from Z = 1 till I = , or = , or = , or = , according

as n is of the form 4ρ — 1, or 4r, or 4v + 1, or 4p + 2, v being an integer & «j; 0; they afterwards 
72- “1“ 1

decrease and become negative when Z is between and n ÷ 1, if Rg > θ∙
Zi

In general the formula B^ sin------ may be considered as corresponding to i — 1 nodes

... , for which I (though integer for each actual particle) is supposed to receive the (perhaps

fractional) values , , ... ——. Between Pq and the sine of is
2-2- % 72- 1

positive; between and N2 negative; and so on alternately. The i intermediate points V-^^, F2> 
. w+1 3(n+l) (2i-3)(π+l) (2Z-l)(n+l)

∙∙∙ M-iJ M which Z = --^, - .—-, ... ------ -, -------- are venters oτ points

oi extreme excursion, alternately positive and negative (if B^ > 0).
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11-13] XIX. VIBRATION AND THEORY OF LIGHT 455

11. {Example 1.) If n = 1, so that there is but one moveable particle , attracted equally 
to two fixed centres, Pθ and , and slightly and transversally displaced from the middle of 
the line (= 2) which joins them; then the variable displacement of this particle P^ at the time 
t is represented by the formula 

because sin = 1; in which formula = 2a sin = α V2. The extreme displacement is and 

the law is that of the cycloidal pendulum.

and

12. {Example 2.) If n = 2, so that there are two moveable particles and P^ between two 
fixed particles Pθ and P^} then the variable displacements and of P^^ and P^ are

∕Q ∕Q
yr,t = {^1 θθs - βι) + cos ~ βz)  y2,t==~γ{^ι oθs “ βι) “ cos (iZg-β2)}>

because

also

The two simple modes of vibration, which are here superposed, are

pt 

and2nd
. The periodic time of the first mode is greater than that of the 2“<*  in the ratio of √3 to 1. The 

displacements of the two particles P^ and P^ are equal and on the same side in the 1≡*  mode, 
but equal and opposite in the 2“·^.

1:
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456 XIX. VIBRATION AND THEORY OF LIGHT [13-15

2τr 2τr 2πthere are three simple modes of vibration, with periods which are respectively—,.—, —, that

they may also be

thus written in the 1≡*  or slowest mode, the 3 displacements

have all the same sign & are proportional to √⅜, 1, √⅜, that is, to 1, √2, 1, the second particle 
being a venter·, in the mode, the 1≡*  & displacements are equal and opposite, & the 2≈<^ 
displacement vanishes, so that the middle particle remains at rest and forms what is called 
a node, the first and third particles being venters; in the 3^*'  or quickest mode, the 1®*  and 3^^ 
displacements are equal and of a common sign, while the 2“^ is of an opposite sign and greater 
in the ratio of √2 to 1; so that, in this mode there may be considered to be two nodes, one 
between Pγ and P^ but nearer to P^ and the other between P^, and P^ but nearer to Pθ; in 
fact the abscissae of these two nodes are ∣ and -∣ respectively, the abscissae of the 3 vibrating 
particles P^,P^, P^ being 1, 2, 3; and in the same third mode, there are three venters of which the 
first and third have for abscissae f and so that they are near Pj & Pθ, but between Pq and 
Pj and P^ and P^ respectively, while the second venter coincides with the particle Pg.

14. {Corollary 9.) If there be but one particle Pj which at the time 0 has any displacement 
or velocity, we shall have

and therefore

15. {Example 4.) If n = 2, then

therefore, more particularly.

StiU more particularly, if j = 1,
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15-18] XIX. VIBRATION AND THEORY OF LIGHT 457

and, if J = 2,

In this manner we determine the coefficients of the two coexisting simple modes of vibration in 
the system Pθ P^, corresponding to any initial displacement and velocity of P^ alone,
or of Pg alθnθ∙

16. {Example 5.) In the svstem P∩ P^ P^ P^ P., n = 3 and 

that is,

17. {Corollary 10.) By last corollary or by corollary 3, article 5, the whole effect at the 
time t on the particle of the initial state of Pj, is 

in which

- be much larger than j or I, this finite sum is nearly = the definite integral

If then we consider the case of a very numerous system of particles, we shall have, nearly, for 
those which are much nearer to one end than to the middle,

dθ sin 2,jθ sin 2lθ cos (2αi sin θ}; (10)

2?y. Q and y', θ being supposed = 0 unless —be small; and this expression corresponds rigorously * * 72/ ”1” ±
to the limit n = eQ,j and I remaining finite.

18. {Corollary 11.) If nothing be neglected, we have

HMPII 58

www.rcin.org.pl



458 XIX. VIBRATION AND THEORY OF LIGHT [18

therefore*  

* [/{jt = {d2(1—it {2at) — J2(i+i) (2αi)}.The following note appears ∪n the opposite page of the manuscript. “ It is remarkable that this function f{j, I, t) is symmetric relatively to j and /, even if n be not large. Indeed each part, corresponding to any one value of i, or to any one mode of simple vibration, is symmetric also. Thus, the effect (and even that part of the effect which corresponds to any given number i of venters) of the initial state of Pj or the state of Pj at the time t, is the same as the effect of a like initial state of Pj on the state of Py at the time even though Py may be near one extremity and Pj near the middle of the system. It will be important to try whether a similar result holds good for other attracting or repelling systems.”]f [This can be inferred from the value given in the previous note for /(j, I, t). Hamilton’s paper on Fluctuating Functions did not appear until 1843, Trans. Ii.I.A. xιx, pp. 264-321, although there is a short note in Proceedings 
R.I.A. I (1841), pp. 475-477.]

and therefore

(11)

If, now, 7,1 and n all tend to ∞ but so that - is nearly = 1, and that —4 is nearly = 0, or 
’ n+1 n+1

21 2jin other words so that and are each nearly = 1, though 21 — n — 1 and 2j — n — 1 may

both be large numbers positive or negative; in short, if we consider only particles Py and P^ 
which are much wearer to the middle than to the ends of the very long line Pθ , although they 
are not necessarily near to one another; we may then neglect those sums of rapidly fluctuating 

cosines which involve ——∣ and may transform the other sums into definite integrals by

making = θ  and thus we obtain, as a very approximate formula.

dθcos2hθcos{2at8inθ'). (12)

Accordingly this expression gives
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therefore τr 

and

the function (12) therefore satisfies rigorously and indefinitely the equation in mixed differences 
(1), and is the complete integral of that indefinite equation because it reproduces the arbitrary 
initial data ι∕∕.o θ'® values of and y  ι, for / = 0.

19. {Remark.} Thus the expression (10) corresponds rigorously to the transversal vibrations 
of an indefinite line of equal particles extending in one direction from the fixed point Ρθ; or if 
in both directions, then so that y^m= -yι,t', and the expression (12) corresponds rigorously to 
the transversal vibrations of an indefinite line of particles extending in two opposite directions, 
& having no point fixed.

As apphed to the theory of light, the expression (12) seems adapted to illustrate the internal 
propagation of luminiferous vibration, and the expression (10) to illustrate the reflexion of such 
vibration. And this expression (10) may be thus written

(13)

if we consider and y'-j^Q as equal to —yj^Q and — 2∕j∙,o∙

20. When n is finite, if we put for abridgement

and therefore r^ — 2α sin iφ,

we have, for any simple vibration, the formula
yii = cos (2α∕ sin iφ — β^} sin 2ilφ, 

which may be put under the form

It may therefore be considered as the sum (or resultant) of tλvo conjugate simple movements, of 
which the phases are respectively 2ilφ — 2at sin iφ + and 2ilφ + 2at sin iφ — β^; the amplitudes 
are each = ; and the velocities of trarbsmission of phase (from particle to particle) are respec­

tively ; that is, they are equal in amount but opposite in direction. The

positive velocity is < α and > —, because iφ > 0 but < - . The epochs β^ and — β^ are, in like 7Γ 2
manner, equal and opposite.

21. Each of the two conjugate simple movements, described in the last article, satisfies 
the indefinite equation in mixed differences (1) whatever i and φ may be; but the advantage of 

combining them, & of supposing φ = - thereby satisfy also the conditions

58-2
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460 XIX. VIBRATION AND THEORY OF LIGHT [21-23

2∕o.z=θj ‰+ι.z = θ, for all integer values of i. If we omit the last condition (2∕n+1,∕ = θ) we may 
take any values for i and φ; but we must still combine the two conjugate formulae. If we omit 
both of the extreme conditions, we may use either formula alone, and may assign any value to 
i and φ ^between φ-Q and φ = j .

22. In this manner then we might perceive that at the limit considered in article 17, which 
corresponds to the integration of the original equation (1), subject only to the one condition 
2/0, / = θ, we may write

(—I dθBffC0β(2atainθ-βff)sin2lθ, (14)
’ Jβl

the limits and being arbitrary quantities and and βg being arbitrary functions of θ. 
But in order to reproduce in this case the initial values of and y'j f we must (if possible) 
determine these arbitraries so as to have

p∙ p.
yι,Q- dθ Bgcoa βgam2lθ, yι,Q≈ 2adθ Bgavaβgainθa Α2lθ',

J √
and these conditions accordingly are satisfied, as in the formula (13), by supposing

23. We might also, in hke manner, have perceived, that at the other limit considered in 
article 18, corresponding merely to the indefinite integration of the equation (1), we may write

the hmits , Θ2 and ⅛, tg being arbitrary quantities, while Bg, βg are arbitrary functions of θ, 
and are arbitrary functions of l. To reproduce the initial values we must endeavour to
determine these arbitrary quantities and functions, so as to have 

conditions which may be satisfied, as in the formula (12), by supposing
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. In fact these last suppositions give

and therefore

so that, performing on this the operation j dθ we get yi ^, also 
J 0

and therefore 

so that the operation J dθ, performed on this, reduces it to y ,θ; the initial values are there­

fore reproduced. At the same time, the expression (15) becomes 

so that the formula (12) is re-deduced.

24. One element in the solution of the problem of article 1 has been the theorem that 

according as J and I, being both integer numbers > 0 & <n + 1, are unequal or equal to each 
other. As we shall have several analogous summations to perform in these researches, it may be 
well to give here the process of proof in full.

The equation 2sinαcos(2½α + ^) = sin(2½α + α + ^)-sin(2Z:a — <x. +β) gives, when it is 
summed with reference to k,

2 sin α Σ(¾ cos (2A;a + )3) = sin {2k^ α + α + j8) — sin {2kj^ α — α + P).
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462 XIX. VIBRATION AND THEORY OF LIGHT [24, 25

Let 

then 

and

Hence

this sum therefore vanishes, if = , = unless cos 2αa = cos2α^, that is, in the

present question, unless j = I. But, for that particular case, the sum may be found by differ­
entiating numerator and denominator relatively to a^, & then making = it is

25. The same theorem of summation shows that, in the notation of articles 7 and 8,

It is interesting to calculate also Σ∕¾ιZ∙∣ J5∣cos^∣ = ∑⅛ιrf'nf. Since r√ = 2α sin , we have 
n + 1

r↑ = — 2α≡ cos ,; we have therefore only to calculate' n+1
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For this purpose we have to calculate

unless - being each ) and then the last sum

Hence 

therefore 

and finally, because y^

Hence

26. {Examples.} When n= 1, then

When n = 2, then

When n = 3, then

72' "4" Σ27. The non-periodical part of ∑y)j is ∑(¾ι B^·, this non-periodical part is therefore

equal to the sum
Q = ∑(0i {⅛i⅛ + kVi,0 - ‰ι,o)}∙ (16)

This part Q appears to be in some sense a measure*  of the quantity of vibration of the system (the 
mass of each particle being unity).

* [Sum of initial kinetic and potential energies.]

Problem II.
28. It is required to apply the general solution of the Problem to the case where, at the 

time 0, all the displacements & velocities vanish except those of the j —j, ÷ 1 consecutive 
particles Pj,+^, ... Pj-χ, Pf, supposing also that the initial displacements and velocities of
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464 XIX. VIBRATION AND THEORY OF LIGHT [28, 29

these are such as to agree with a simple mode of vibration, in such a manner that, if I be > j, — 1 
and <j +1, we have

, and r⅛ = 2αsin kφ', but thatφ being =

29. {Solution.} The general expressions

become now

But, by article 24,

sin sin =

therefore

Hence, by the general formula (9), we have, in the present question,

(17)
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and the part corresponding to i = k is

30. If = 1, so that the j first particles Pj,... Py are all disturbed originally in the way above 
supposed, then

(18)
and the part corresponding to i = k is

31. If j and I be each much smaller than n, so that n is treated as infinite, while J and I, 
though perhaps large, are finite, then the expression in article 30 becomes a definite integral, 
namely

; (19)

in which a = kφ. This expression satisfies the equation in mixed differences (1); and gives 
yι,Q = 0, y'l^Q = 0, if I >j  but y, q = gos sin 21a., = 2a sin α P*  sin sin 2la, il<j-Vl,l being
a positive integer: it gives also = 0.*

32. In the formula (18), making iφ = θ and kφ = a, yve are led to consider the product

9 “1“ Z Ί IfIf now we suppose, as in article 18, that is nearly = 1 but that is nearly = 0, 

we may neglect those sums which involve cosines of 2 {j +1) θ + const., unless they be divided by 
something which vanishes or becomes very small in the course of the summation; and may 
reduce (under the sign of summation) the recent product to

reserving, however, the part

HMPΠ 59
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for special consideration. It may however be instructive, before thus passing to these hmits, to 
resume the formula (18), & to study first the consequences of it in the case when the number n 

of moveable particles is finite but even, & when j = ~^-

33. The expression, , which occurs in article 30, may be put under

the form it reduces itself therefore to

that is, if exactly half of the whole number n of moveable particles have such original displace­
ments and velocities as correspond to a simple movement of any one kind; & consequently, in 
this case, that part of the whole resultant movement which is of the same period is

it is therefore exactly half of that other movement

which would reproduce the initial displacements and velocities, not only for half but for the 
whole of the system of moveable particles. In other words, we have the theorem:

If the initial state of half the system ... Pn correspond to one simple movement

and if the initial state of the other half P^ , Ρ^-χ» Pn correspond to another simple move- 

ment of the same period and amphtude, but with an epoch differing by an odd multiple of π,

in which resultant vibration of the system will be composed entirely of

simple movements of other orders, that is, with other periodic times. (The next article will 
show that the indices i which mark these orders differ by odd numbers from the index k.}

34. To express this resultant vibration, we may employ the formula (18), under the form

in which the part corresponding to i = k is now to be omitted; we have also, now.

we need therefore attend only to those values of i which differ from k by odd numbers, positive 
or negative. Let I = j + h; then
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because cos - = 0. For the same reason

I If k be odd, this becomes

if ⅛ be even.

Hence the expression for yi becomes

in which the summation is to be performed relatively to i for all values of that index which 
differ from k by odd (integer) differences, being also > 0 and < n + 1; and

35. For example.

that is.

These values accordingly result from the more general formulae of article 12 by sup­
posing X

59-2
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468 XIX. VIBRATION AND THEORY OF LIGHT [35-37

And if we had supposed j = 1, k =2, we should have been obliged to take i=l, ex. = ^, θ =
3 6

that is,

Accordingly these expressions result from the formulae of article 12 by supposing

36. Whatever J may be, if we take k odd and = 2κ — 1, we must take i even, and of the form 
2t; κ and t being each some one of the integers 1, 2, ...j. Hence, in this case.

And if, on the other hand, we take k = 2κ and i = 2t — 1, we have

And these formulae may be considered as rigorous with reference to the present question.

37. Supposing now that j increases without limit, but that k so increases with it as to 
7Γleave α = some finite arc, between 0 and we shall have, as the limits of the two last formulae,

the following:

and
(24)

(25)
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the first corresponding to the case k = 2κ — 1, & the second to k = 2κ. It is evident that both these 
expressions satisfy the equation of mixed differences; & to show that they also reproduce the 
initial displacements and velocities, we must show that they give, according as the integer A 
is > or not > 0,

in which α = , so that
2j + 1 ’

according as k is of the form 2κ - 1, or of the form 2κ.

38. There are, therefore, for a verification, or for an A posteriori proof of the formulae of 
the last article, the 2 following equations to be proved:*  

the upper signs corresponding to positive values, and the lower signs corresponding to negative 
values, of the odd integer 2A — 1.

Now, if we put

we shall have, for all values of A,

therefore this function vanishes, if A be any integer > or < 0; but + c_i — 2 cos 2αcθ = 2 sin 2α. 
Again = and cθ = 0. To prove this last relation, we may set out with the evident 

i∞ dx P °θ dx—, which gives 0= -------, a being real; (though the complete discussion
— 00^ J-∞^

of the value of this definite integral belongs to the theory of singular integrals, considered 
first by Cauchy;) therefore

* J^The integrals whibh follow are to be interpreted as being Cauchy’s Principal Values, i.e.
↑
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and therefore 0 = if a be real and different from 0. Make x = tan 2θ, a = tan 2α, and

suppose (cos 2α)≡ > 0; then 

which is what was to be proved. (However, it is to be observed that we have here supposed 
cos 2α to be different from 0. Yet even if it were = 0, so that we had to consider the integral

∙π IT
dθ—we might consider this as being = (sec 2Θ — sec 2θ)dθ, and therefore as being = 0.) J 0 cos 2tz J 0

Admitting then that Cq = 0, we have c_i = c^ = sin 2α. Hence c⅛ = sin 2Aα, if A be any integer not 
less than 0; and c⅛ = — sin 2Aα, if h be any integer not greater than 0. That is, 

according as the integer A is < 0, or = 0. Hence, if A > 0, 

that is, dividing by + 2, 

if the integer 2A — 1 be >0; from which, without any new calculation, we see that 

if the integer 2A — 1 be <0.

In like manner, if A be >0 ibeinff intefferk we have 

that is.

if the integer 2A — 1 be >0. And hence, without any new calculation, we see that 

if the integer 2A — 1 be < 0. The initial conditions are therefore satisfied.
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39. The same analysis shows that, if the integer h be > 0, 

and accordingly, if we denote this last integral by∕⅛, we have 

therefore 

if h > 0. The same integral vanishes (as we have just remarked) when h = 0, and since it changes
77sign with A, it must become = — — cos 2Aα, if A < 0.

We have therefore the discontinuous equation 

according as the integer A is < 0, or = 0; & we found, in the last article, that 

according as the integer A is 0, or = 0. Indeed, we may consider both the two last equa­
tions as included in either of the two which occur at the beginning of article 38; & as 
conducting reciprocally to those two, by easy combinations.

40. We see then that if we assume

{b sin θ cos {2at sin θ} + c sin α sin (2at sin 0)},

b and c being any constants, & A being any integer number, we shall satisfy the indefinite 
equation in mixed differences 

and also the initial conditions
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according as 2A — 1 is > or < 0. In like manner, if we assume 

we shall satisfy the same indefinite equation in mixed differences, and the conditions 

according as 2⅛ - 1 is < 0. If we assume, in the third place.

{b sin θ cos (2at sin θ) + c sin α sin {2at sin 0)},

we shall satisfy the equation in differences, & the conditions 

according as h is < 0, or = 0. And if we assume, in the fourth place, 

we shall satisfy the same equation in differences, and the conditions 

according as h is < 0, or = 0.

41. It follows that the first expression of article 40 corresponds to the effect, at the time Z, 
of an initial state represented by

yh,Λi- + ⅜ {b θθs {2adt sin α) + c sin {2adt sin α)} cos — <x,),
and the second expression of the same article to the effect of an initial state represented by

yh,di= ± ⅜θθ≡ {2adtsinα) + csin {2adtsinα)}sin (2⅛α — oi.),
the upper or the lower signs being taken according as 2A > or <1.

It follows also that the third expression of the same article corresponds to the effect of an 
initial state represented by

yħ,dt- + ⅜{δcos(2αdZsinα) + csin(2αiZZsinα)}cos2⅛α, or =0,
and the fourth expression to the effect of the initial state

yh,dι- ± ⅜{bCOS (2αdZsinα) + csin {2adtsinα)}sin2hv,, or = 0, 
according as A is < 0, or — 0. The system of particles is here supposed to extend indefinitely in 
two opposite directions from the particle Pθ, so that no account is taken of any fixity of the 
extreme particles.

42. Resuming then the consideration of the case where half only of the system is agitated 
at the time 0, we see that if this system be indefinite in both directions, and if its initial state 
be represented by the formula

2∕⅛,^ = cos(2Aα-α) .(6cos + csin)(2αsinαdZ), or =0,
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according as h is not greater than 0 or is greater than 0, its state at the time t is represented by 
the formula

And if the initial state be

yh,∂i- ~ θθs + csi∩) {2αsin αdi) sin — a.), or = 0,
according as h is not greater than 0, or greater than 0, then the state at the time t will be 

yh,t~ cos + csin) {2atsinα)sin— tx.)

for aU (integer) values of ħ, And hence, by an easy combination, we find that if the initial state be 
yκ, M = Φ θθs + sill) (sin α (Zi) sin 2Aα, or = 0,

according as h is > 0 or >0, the state at the time t is
yħ.t θθs + c sin) {2at sin α) sin 2⅛α

(6 sin θ cos + c sin α sin) (2αi sin θ).

In like manner, if the initial state be 

then the state at the time t is

(b sin θ cos + c sin α sin) (2at sin θ}

(b sin θ cos + c sin α sin) {2at sin 0)

= 1(6 cos + c sin) (2αi sin a) cos 2Aα

(6 sin θ cos + c sin oc sin) {2at sin θ)

■ {b sin θ cos + c sin α sin) {2at sin θ).

43. The third conclusion of article 42 might also easily have been deduced from the fourth 
conclusion of 41. And the fourth conclusion of article 42 might have been deduced from the 
third conclusion of 41, namely from the theorem that if the initial state be

yh,dΛ- + ⅜(6cos + csin) (2αsinαiZi)cos2Aα, or =0,
H MPII 6θ
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according as A is 0 or = 0, then the state at the time t is

{b sin θ cos + c sin α sin) (2αi sin θ}.

For we have only to add to this the term ⅜(6cos + csin) (2αZsinα) cos 2Aα, to allow for the 
additional parts of the initial states of all the particles except Pq, and then to allow for the 
remaining part of the initial state of that one particle, namely the term

2∕o,di = ⅜ θθs + sill) (2« sin αd<) = ∣6 + αc sin αdi,
by means of the formula (12) of article 18; which shows that, in the indefinite system here 
considered, the effect of this initial state of the particle Pθ on any other particle P⅛ at 
any time t is

44. To treat now the question proposed in article 32, we are to suppose, in passing to the 
limit there required, that for all integer values of A > 0, we have 

j being some very large integer number which however is to be treated as given; (but as infinite; 
that is, in one part of the calculation we are not to consider it as varying, but in another part 
of the same calculation we are to treat it as increasing without limit;) and for all integer 
values of A > 0,

P⅛ and )8⅛ being arbitrary constants, and α = = some given and finite arc. And the

problem may be considered as being to find a function which shall satisfy the
initial conditions just now mentioned, & also the indefinite equation in mixed differences

Now, the initial state here proposed may be considered as the sum of two others, of
which one is expressed by the formula

P⅛ cos 2jα (cos )S⅛ cos + sin )8⅛ sin) {2adt sin α) sin 2Aα, or 0,
and the other by the formula

P⅛ sin 2Jα (cos cos + sin j8⅛ sin) {2,adtsin α) cos 2Aα, or 0, 
according as the integer A is > or > 0. The first part of the initial state gives, for its own effect 
at the time t, by article 42,

⅜P⅛ cos 2⅛ (cos βl cos + sin Bl sin) (2αi sin α) sin 2Aα

[cos βl sin θ cos + sin β^ sin a. sin) {2at sin θ);
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and the second part of the initial state gives, by the same article,
⅜R⅛ sin 2j<x, (cos )3⅛ cos + sin sin) {2at sin α) cos 2Η(χ.

the last line of which last expression would have disappeared if the initial values θ and 
had been only half as great as they are here supposed to be. The whole effect at the time t, or 
the expression for yj^n,t^ i®» therefore, in the present question,

2∕j+ft,< = ⅜^* sin 2{j + h}v,. (cos cos + sin β',^ sin) {2at sin α)

Accordingly it is evident that this expression satisfies the indefinite equation in mixed 
differences; & it satisfies also the initial conditions, because the theorem of article 38, 

according as the integer h is < 0, or = 0, gives 

according as h is > or > 0.

45. We ought also to be able to verify the expression obtained in the last article, by deducing

from it those of article 37. Suppose then k = 2κ — 1 and n = 2j∙, we shall have α = . -..; there-
2j + l 

fore 

therefore 

and

sin θ cos + sin β2κ-1 sin si∏) (2αi sin θ);
60-2
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an expression which accordingly differs from the corresponding one (24) of article 37 only by 

the addition of the first line, which was there purposely suppressed. Again, if k = 2κ, α = ,

then sin (2Jα + α) = 0, cos (2jα + α) = (— 1)*̂,  sin (2jα + 20.) = (— 1)*  sin α = — sin 2ja,,

coa2j<x. = {-l)'^co8a,, sin2(j+A)α = (-l)*̂sin(2Aα- a),

and yκM=⅜(-l)''¾ sin {2ho(. — a). (cos cos + sin sin) {2at sin α) 

an expression agreeing, as closely as it ought, with (25) of article 37.

46. The results obtained in recent articles may be used so as to throw light upon the 
analysis begun in article 32. In fact we may now eas∩y perceive that, by admitting the 
transformation in article 31 of sums into integrals, an expression for or for yj+u,t i® deduced, 
involving functions of I +j, namely an expression consisting of the two following parts* ;

and

The first of these two parts coincides with the second part of the expression for μn article 44, 
when we change I to j + h. With respect to the second of the two parts assigned in the present 
article, it may be remarked that (see article 32) 

and that cos 2α — cos 2θ = 2sin (0 — α) sin (0 + a); therefore, dividing by this latter function, and 
neglecting the terms which have no small divisors and those which change sign with 0 — α, we 
find, for the part still to be considered, the expression 

coinciding with the first part of the expression in article 44, because J ÷ I increases without limit.* [If these two parts are joined together under the integral sign, the resulting integrand does not become infinite when 0 = α and can be evaluated by ordinary methods. The process here consists of taking each part separately and interpreting each integral by Cauchy’s method and the method of fluctuation.]
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4 7.  R es u mi n g  n o w  t h e a n al ysis  of  arti cl es 3 0  a n d  3 2,  w e  s e e, i n t h e first pl a c e,  t h at t h e 

e x pr essi o n  ( 1 8) m a y  b e  d e c o m p os e d  i nt o t w o p arts,  n a m el y  t h e t w o v al u es  of  t h e e x pr essi o n

⅜ 7 Γ

i n w hi c h  φ  =  - — -, a n d  J, k,  I, n  ar e  fi nit e. W e  m a y  als o  c h a n g e  
/ 2*  ” 1“ 1

i n w hi c h

t his l ast e x pr essi o n  b ei n g  ri g or o usl y t h at p art  of  y u  w hi c h  h as  ri g or o usl y t h e p eri o di c  ti m e 

- c os e c  k φ. L et  j, k,  I, n  b e  v er y  l ar g e, b ut  s u c h t h at t h e r ati os - ar e  s e nsi bl y >  0  a n d <  1,  
df  7 2*  7 1- 7 2 »

a n d t h at is s e nsi bl y =  0. T h e n  φ  is e xtr e m el y  s m all, a n d  s o is e v e n 2  {j  —  I) φ  =  π,

alt h o u g h  t h e n u m b er  j —  l b e  c o nsi d er a bl e. T h us,  t h e p art  C  oi w hi c h  i n v ol v es j —  i 

alt ers  v er y  httl e  w h e n  i is c h a n g e d  t o i +  1 ; u nl ess  t h e d e n o mi n at or  b e c o m es  s m all b y  i b ei n g  

n e arl y  =  k,  oτ  at  l e ast b y  i φ —  k φ  b ei n g  s m all,  w hi c h  m a y  b e  w hil e  i —  k  is c o nsi d er a bl e;  a n d  t h er e­

f or e, wit h  r es p e ct t o t his p art  C , t h e c o n v ersi o n  of  s u m m ati o n i nt o i nt e gr ati o n is p er mitt e d  

u nl ess  it s h all  b e  f o u n d t h at t his c o n v ersi o n  is i n v a h d n e ar  t h e criti c al  v al u e  i φ =  k φ.  T o  e x a mi n e  

w h at  h a p p e ns  n e ar  t his v al u e,  l et i =  k  +  g,  g  b ei n g  a n  i nt e g er >  0  or  <  0  w hi c h  m a y  b e  c o nsi d er a bl e  

its elf b ut  is t o b e  s o c h os e n  t h at t h e pr o d u ct  g φ  m a y  b e  m o d er at el y  s m all: &  l et us  c al c ul at e  

. . p j χ . , J si n  ( 2 at c o 8  k φ  si n  g φ)  , .
+  G k  a'  T his  s u m I S f o u n d t o i n v ol v e----- ?— ■ a n d -----;---------- γ — -i ∑l∙ t h at is, w e

s m  g φ  s m  g φ
h a v e  t o s u m e x pr essi o ns  of  t h e f or m 

fr o m g  =  1  t o g  =  a  l ar g e i nt e g er, a n d  t h e f u n cti o ns f { g φ} n ot  v ar yi n g  r a pi dl y n e ar  t h e l o w er li mit 

of  t his s u m m ati o n, w hil e  φ  is sti U e xtr e m el y s m all a n d  t e n ds t o 0. B ut  s u c h s u m m ati o ns 
fs-ii

^( g)i Φ  ×  b e  r e pl a c e d b y  t h e d efi nit e  i nt e gr ati o ns J d { g φ }  &  t h er ef or e, ( o n

—  Q  ∖  I ∖
a c c o u nt  c hi efl y  of  si n  — -— a n d  si n 1 2 at  c os  α  si n - ∣ b e ari n g  d et er mi n e d  h mits  t o si n 

n + 1    n +l]  w + 1
w h e n  n  t e n ds t o ∞,)  it is p er mitt e d  t o c h a n g e  t h e s u m m ati o n ( ∑( ⅛f∕ +  ∑(i)*+ι)  Φ  i nt o a  d efi nit e  

i nt e gr ati o n J d θ,  f or t h at p art  C  nι w hi c h  d e p e n ds  o n  j —  I. Wit h  r es p e ct t o t h e ot h er  p art  CJ  

of  Ci  w hi c h  i n v ol v es j ⅛  I, vf e  s e e t h at t his p art  i n v ol v es c osi n es  of  ar cs  w hi c h  r e c ei v e a  fi nit e 
i n cr e m e nt 

w h e n  i is c h a n g e d  t o i +  1 ; w hil e  t h es e c osi n es  ar e  m ulti pli e d  b y  f u n cti o ns w hi c h  r e c ei v e, b y

w w w.r ci n. or g. pl



478 XIX. VIBRATION AND THEORY OF LIGHT [47, 48

the same change of i, only infinitely small alterations, except near the critical value iφ = kφ. 
It is therefore permitted to reject all values of i which do not render gφ = iφ — kφ smaU; and the 
limit of this smallness is 0. We may therefore, after employing the transformation indicated in 
article 32, change i into k, or θ into α, except in 

which may be reduced to

It remains therefore to calculate the sum 

for we shall have

< 27γ; therefore, by a known theorem.

accurately; we may therefore write, for this sum, we have for that part of

∑(i) (ι~^ + ⅛+ι) (observe this notation) which depends onj + Z, the expression

And since sin 21olcos {2atsinα — we have, upon the whole,

y^^ = sin 2lot. cos (2αZ sin α — β^) 

an expression which coincides with that marked (26) in article 44.

48. The analysis of the foregoing article shows, at the same time, by what steps we may pass 
back from this expression (27) or (26) to that marked (18) in article 30; that is, from the 
supposition of n infinite to that of n finite. In this return, we are 1≡*  to restore for α its value 

to change - J dθF {θ) to

integration, namely ⅜R⅛ sin 2Zα cos {2at sin α — (cn. retaining for abridgement its meaning just
Λ j

recited,) to resolve the factor ∣ into two parts which are nearly - and ∣ — - ; or, more precisely, 

to substitute for this part free of the sign ∫ the sum of the two following functions:
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and 

in which

49. With respect to the physical meaning of this last resolution of the factor ⅜ into the two 

parts - and ⅜ — -, the foregoing analysis shows that the part - corresponds to the immediate 
7i*  72*  72*

effect of the initial state, namely 

according as I > or > j, in producing the part 

for all values of I (from 1 to n} Qι, more precisely (when n is finite) the part

*7r 2ocwith the same periodic time - cosec α, & the same number of venters k =— (w+ 1), as there
(X/ ΊΤ

would be in the initial state, if that were extended to aU values of I and t. In such a manner that 
if one third part only of the system (supposed numerous) be originally agitated so as to correspond 
with a given simple mode of vibration, or with a given value of k, then the whole system becomes 
agitated with aU possible simple modes superposed upon each other, corresponding to all 
possible values of i (from 1 to n), but the amplitude of the k^^ mode is ∣ of the initial amplitude. 
And the modes for which i is nearly equal to k, or more precisely for which θ is nearly equal to α,

7Γ TTso that their periodic times - cosec θ are only a little less or a little greater than - cosec α, 

besides producing the effect expressed by the definite integral in the formula (27) or (26), 
produce also a resultant mode which (if n be large) coincides nearly with the simple initial 

mode k & has an amplitude which bears to the initial amplitude the ratio of ∣ — to 1. Thus, when 

(as in the case just now mentioned) the initial agitation occupied only the third part of the 

(numerous) system, so that - = ⅜, we have ⅛ — - = ⅜, and the indirect effect (extending to the 
72*  72*

whole system) increases by ⅜ of the initial amplitude the immediate or direct effect which had 
been found to amount to ∣. This indirect effect is produced in an indefinitely short time i, and then 
is permanent; so that if n be very large, there is at once produced for the whole system a per­
manent mode of vibration which coincides with the initial simple mode in all respects except 
that of having an amplitude only half as great; which ratio does not require for its estabhsh- 
ment that the part originally agitated should be exactly or nearly half of the whole system. The 
remaining effect, expressed by the definite integral, corresponds to a complex mode of vibration 
formed by the superposition of infinitely many simple modes; but when the time elapsed is very
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480 XIX. VIBRATION AND THEORY OF LIGHT [49-51

small, it reduces itself sensibly to a single mode, namely the initial mode k  or rather to two 
coexisting movements with the initial period & epoch, but with amphtudes which bear to the 
initial amphtude the ratios of ⅜ and —1, according as Z is < or > J, and so reproduce the given 
initial discontinuity. We shall soon consider whether any and what reduction of the same sort 
takes place when the time elapsed is large.

50. The definite integral in (26) or (27) maybe transformed by observing that of the two parts 
sin {θ + α) cos{(2j -2l+l)θ~(2j+l) α} and — sin {θ — α) cos{{2j — 21 + 1) θ + {2j + 1) α}, 

into which (as was remarked in article 32) the numerator
cos 2 (Z — j) θ. sin 2 {j + 1) α — cos 2 {l —j -l}θ. sin 2j<x,

may be decomposed, the second results from the first by changing θ to π — while cos 2θ in the 
denominator & sin θ do not alter by such change. In this manner we find that the formula (27) 
may be thus written:

2//, / = ⅛-B*  sin 2Zα cos (2αZ sin α — β^)

-- y --- f ----- /
(As this is a decided simphfication of the integral (27), it will be interesting to inquire whether 
we cannot find a similar simphfication of the sum (18).)

51. Under this last form, as under those found before, we see clearly that the function 
yn satisfies the indefinite equation in mixed differences; and to show that it satisfies also the 
initial conditions, we ought to be able to show that

according as 2A — 1 is 0. This discontinuous equation appears to resolve itself into the two 
following:

for ah integer values of h; and

according as the integer h is > or > 0. Accordingly

according as h is or = 0; so that it only remains to prove that and this

integral

by article 38.* * [See note, p. 469.J
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52. It is evident also from inspection of the integral in (28) that this integral reduces itself 
to — ∣R⅛ sin 2Zα cos (2αZ sin α — β^), that is to the part free from the sign ∫, taken negatively, (so 
that the one part of the formula destroys the other,) if we take J = — ∞, or A = Z — J = ∞. A result 
which might have been expected, because, by throwing indefinitely far back in the system the 
origin of the disturbance we must render the efiect of that disturbance insensible for any finite 
values of Z and t. And we have thus a new explanation of the term independent of integration; 
namely that it is the negative of the value of the integral term for J = — oo. We may therefore 
write the formula (28) as follows:

(29)

in which = — ∞. And if we treat J, as finite, we may then consider this last formula as express­
ing the solution of the question:

To find a function yn which shall satisfy the indefinite equation in mixed differences (1), and 
also the initial conditions

2∕∕,^=R⅛sin2Zαcos(2αsinαiZZ-)3⅛), or =0,
according as Z is, or is not, one of the J —J, + 1 successive integers J,, + 1, ∙∙^j~ 1, J.

53. This question might have been resolved by the help of the formula (12), which, when 
applied to it, becomes

(30)

in which 

so that the formula (30) reduces itself to (29). And because the formula (12) admits of a very easy 
proof, and may almost be said to be obviously true, it might have been a better or at least a 
more elementary mode of proceeding to have begun by deducing (30) from it & to have then 
transformed (30) into (29) in the manner just now indicated; after which it would have been 
easy to pass to (28) as the limit corresponding to the supposition j  = — oo.

54. The formula (29) may be thus written;

(31)

in which we may remember that J —J, + 1 is the number of particles Pj ,... originally agitated;
HMPII 6l
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and I — is the distance of the particle P{ from the middle of the initial agitation. If j, =j, 

that is, if there be but one particle originally agitated, this last expression becomes

(2αisin0)

ι∣ (2αisin0),

as it ought to do.

55. Article 32 and all the subsequent articles have had reference chiefly to the case of a 
system or series of particles extending indeflnitely in both directions from the particle of 
which the motion is to be examined; but it is easy to deduce analogous results for the case 
considered in article 31, in which the system is indefinite in one direction only, the particle Pθ 
being fixed. The formula (19) for this last mentioned case may be thus written:

and might have been obtained from (10) under the form

(32)

(33)

And if, instead of ∑^y)i, we take , that is, if we suppose only the J — J, + 1 consecutive particles
Py , ... Py to be originally agitated, we have then

(34)

If only one particle Py be originally agitated, then = J, and the last formula becomes

(2αZ sin θ}

i(2at sinθ),

agreeing evidently with (10).

56. It is worth observing that the formula (32) may be obtained from (31) by changing j
to —j. And it is easy to explain this circumstance. In fact, instead of supposing Pθ fixed by any 
external cause, we may suppose it to be originally at rest, and to remain so because y_/,o = — i∕ι,o 
and y'-∕,o= ~Ko’ remarked in article 19. But in this view we must suppose, in the
question of articles 31 and 55, that the 2j + 1 particles P_y, ... Py are all originally agitated 
according to the law P⅛sin2Zαcos(2αsinαdi-^^); except the particle Pθ, which fulfils this 
law by being undisturbed, & any others which in like manner have sin 2Zα = 0.

57. An analogous reasoning may be employed to deduce the solution of the 1≡^ Problem 
from the formula (12), or the laws of vibration of a finite from those of an infinite system. To
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illustrate this transition, let us begin by considering the case where, for aU values of J, positive & 
negative, 

so that

The formula (12) may in general be thus written:

(35)

& in the present case it becomes

sin 2lθ cos {2at sin θ);

in which 

therefore
■ sin 2lθ cos {2at sin θ)

as found in the example, article 11, for the case of a single moveable particle. Indeed, we 
there considered, on the one hand, only the value Z = 1; &, on the other hand, supposed Q not 
to vanish. But with respect to this last part of the conditions of article 11, if we now suppose

= we get, by the analysis of the present article, the additional term

dZcos (2αZsin0)

which completes the agreement with the results of the l≡t example. In fact 

if the function F {θ} remain finite for the whole extent of the integral.
6i-2
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58. We might even have considered it as evident a priori that the indefinite integration of 
the equation in mixed differences

(2)

combined with the initial conditions 

if these be supposed to hold good for all values of the integer I, from a large negative to a large 
positive value, must conduct nearly, and more and more nearly as these initial conditions hold 
good for a greater extent of I, to an expression of the form 

in which is a function determined by the differential equation 

and therefore that the integral of this equation, namely

v7twhen multiplied by sin—, must express the limit to which the expression 

tends as h increases without limit. And since the sum

A ⅞ I 1in which λ = - or according as h is even or odd, we might thus be led by the consideration of

the differential equations to discover the following limiting values of definite integrals:

59. In like manner, if the initial conditions be
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and if we use the formula (35) of article 57, we have the expression

in which ; and, by article 24,

therefore

cos {2at sin θ),

in which α = ∣ j > so that α is > 0 & < ^, if ⅛ > 0, < n ÷ 1. We may therefore neglect the part

depending on the rapidly fluctuating term sin {2j + 1) {θ + α) as being rigorously null at the limit 
J = ∞; and in the part depending on sin (2j + 1) (0 — α) may confine ourselves to the consideration 
of infinitely small values, positive or negative, of Θ — α. We find therefore, as the limit sought.

the initial conditions being, for all integer values of J, 

and thus the formula of the 4^ħ corollary, article 6, for the case of a finite number of particles 
is deduced from that of an infinite number. And hence by reasoning similar to that of 
article 7, we may infer, for an infinite system, that if the initial conditions be, for all integer 
values of j, 

which require only that (if i be integer) we should have the kind & degree of initial 
periodicity expressed by the formula 

we shall then have, for aU integer values of Z & for all values of t, the same kind & degree of 
periodicity, which may be expressed as follows:

(8)

Thus the theory of a finite system is included in that of an infinite system, since the formula 
(8) has been deduced from the formula (12).

60. The reasoning of the foregoing article shows also that if the initial conditions be, for 
the whole extent of an infinite system, or for all integer values of J,

2∕j,o = ’Za sin ¾'α, Z∕j,o = ’?« ≡in 2Jα,
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α being any real arc between 0 and —, (and therefore also if α be any real arc), we shall have, for 

the whole extent of the same system at any time t,

In fact it has been shown, & is evident, that this expression satisfies the indefinite equation 
in mixed differences, whatever α may be. And here we might commence, from a new point of view, 
reasonings analogous to those of article 23; but it seems desirable to pass on to other things.

61. By a transformation analogous to that of article 50, we may simplify the formula (18) 
of article 30. For if, in that formula, we extend the summation relatively to % as far as the 
value ι = 2n+l, we merely double the whole expression, because {2n+2-i)φ = π-iφ, and 
the value i = n+l gives sin 2iZ<∕) = sinZ7r = 0; & the two lines of the last expression in the 1≡*  
sentence of article 32 are changed each into the other by changing θ to π — Θ; so that by confining 
ourselves to one alone we again halve the expression. In this manner we find that the formula 
(18) mav be thus written:

(36)

in which θ It is evident that this expression for satisfies the equation

in differences, & gives 2∕o,<=0, ‰+ι,∕= θ5 it ought also to give

= 2a sin α R⅛ sin sin 2Zα,

n. We ought therefore to find thatif I be 1, 2, ...j

according as I is not greater, or greater, than J; I and j being integers which are each > 0 and
< n + 1; and θ, α having their recent values. In fact

& making θ = iφ, we have

unless denominator = 0; therefore

unless j = l, if j & I be each >0, < n + 1; but when j ≈ I, this sum becomes (2n + 2) sin 2Zα.
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62. Another mode of verifying, and indeed proving the formula (36), is to show that the 
expression of which it is (relatively to j) the sum, namely 

corresponds to the case of only one particle initially disturbed.

Accordingly the last expression for may be thus written: 

and under this form it agrees with (7). Reciprocally, in (7), if we suppress the sign of summation 
Σ(’5)ΐ so as to attend only to the effect of the initial state of a single particle Py, & if we represent 
this state by the formulae 

we may write

Interchanging i & k to conform more closely to the notation of article 28, and summing 
relatively to J from 1 to J, we get this other formula, equivalent to (18) or (36):

(37)

And if we sum, instead, from J, to J, we get this transformation of (17) & therefore this other form 
of the solution of Problem II:

(38)

in which, as in many former equations, θ = , α = --- ,. It is evident that this includes the
formula (34). +

Problem III.

63. It is proposed to determine the consequences of the supposition that the initial states 
of some number of successive particles correspond to one of the two conjugate components of 
a simple movement, (considered in article 20,) that is to the uniform transmission of phase in 
one direction.

64. Before passing to this determination, it will be convenient to review & recapitulate the 
chief results already obtained.
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(I).  The number n of moveable particles being∕rπz7e, so that the differential equations to be 
satisfied are n in number, namely 

we found that we might satisfy these equations, & therefore also the dynamical conditions of 
the question, by supposing all the displacements to correspond to that simple mode of vibration, 
which is expressed by the formula

in which = - ------, and , η[ are constants. In this mode, the n moveable or intermediate and

the two fixed or extreme particles are, at any moment t, arranged all upon the i alternate branches 
of a sinusoid, which has 2 extreme & i— 1 intermediate nodes and i venters. This sinusoid 
varies with the time, & oscillates between two extreme positions determined by those of the 
first venter. The sinusoidal form is expressed by the factor sin 2∕α^, and the oscillation of the 
first venter by the factor

{2at sin α^) = cos + sin) if = 2a sin .

The greatest positive excursion of the venter is attained at those moments, I succeeding each 
other after equal intervals or periods of time, each period being ' 

when

and this greatest positive excursion = = Vη^ + . The greatest negative excursion ≈ — Bi,
is attained at moments which follow or precede, by exactly half the periodic time , the 

moments of greatest positive excursion; so that if these last be of the form + vTi, in which 
V is any integer, positive, negative or null, while is such that

the moments of greatest negative excursion are expressed by the formula ∈i + (v + ∣) Ι . The 
intermediate moments + + are such that in them the sinusoid reduces itself to a
straight line, the displacements of the particles all vanishing; in such a manner that y∕,∕= 0, if 

7Γt = €i + {V +1) Ti. In fact we have then tTi = Tiei- - 2pτr + -; therefore

cos tTi = + sin Ti Ci, sin tTi = + cos Ti €i, {ηi cos + η'i sin) {tTi} == 0.
The variable velocity y  ( is expressed as follows, in this simple mode of vibration, for 

any particle :
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in which the first factor sin2∕αy corresponds to the sinusoidal relation between the several 
particles, & the other factor

expresses the velocity of the first venter. This velocity vanishes when t = e^+ vT^ and when 
t = Cf + {v +1) , that is, at the moments of greatest positive or negative excursion; but at the

7Γmoments when t==e^ + (v±^) T^, & when therefore tr^ =:τ^€^ + 2vττ + -, the velocity of the venter 

becomes = + it attains therefore at these moments a negative or positive
maximum of amount & this greatest velocity is equal to V+ rlηl≈ + multiplied by
the coefficient r^∙ which multiplies the time t under the signs of periodicity. (In former articles 

has been called

(II).  The foregoing being ά possible permanent mode of vibration of the system, it follows that 
if at any one moment, such as the moment i = 0, the displacements y, θ & the velocities y  θ are 
all such as to agree with it, then, at all subsequent moments t, the displacements & velocities 
2//,/ Vι,t will still agree with the same simple mode. In other words, if the particles are all 
arranged on a sinusoidal curve of the form θ = Fθ sin at the moment 0 & also on another 
such curve at the infinitely near moment dt, the coefficient being still

= cy tfic Coefficients Fθ and Y representing for these two near moments 0 and dt the
ZiYii "4“

for which x = — = —then at any subsequent moment t 

the particles will all be arranged on a curve of the same kind, namely y^i = F<sin 2a;a^; in which 
the coefficient Yf represents the displacement of the venter and satisfies the differential equation 
of the second order Yf + r^Y(= 0, so that it may be deduced from Fθ & from Yaι= Fq÷ Y'^dt 
by the formula .

(III).  By the linear form of the differential equations of the question, it is permitted to add 
together any number of particular integrals or to superpose any number of small motions of 
which each is separately possible. On the other hand, any single initial displacement yj q, of 
any one particle Py, may be considered as the sum or resultant of n different initial sinusoidal 
displacements of the form y^ θ = sin 2∕α^, of which each separately extends to all the par­
ticles Pl, but which destroy each other by interference or superposition for all the particles 
except Pj. For we may write y^ θ = ∑(¾ιηysin2jαy, if we so choose the n coefficients as to 

have = y^ Q sin 2j(x,ι; because (sin 2ja.i)^ = Σ(¾ i sin j = —. And with the same

choice of the coefficients we shall have as the resultant initial displacement of any other 
particle P∕ the null expression

2
2//, 0 = ∑w 1 m sin 2Zαy = y^^ i sin 2ja.i sin 2Zα^ = 0,7c∕ “Γ X

I being different from j. The effect of a single initial displacement i/y.o θf any single particle Pj
HMPII 62
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is t o pr o d u c e,  at  t h e ti m e t, a  s yst e m of  dis pl a c e m e nts,  or  a  c o m pl e x  m o d e  of  vi br ati o n,  r e pr e- 
2

s e nt e d b y  t h e f or m ul a , < = ----- - θ  Σ( ¾ si n si n  2 Z α ^  c os  tr ^. I n f a ct t his c o m pl e x  m o d e  is a

p ossi bl e  p er m a n e nt  m o d e,  b e c a us e  it is t h e s u m of  n  si m pl e p ossi bl e  &  p er m a n e nt  m o d es;  &  it 

r e pr o d u c es t h e i niti al c o n diti o ns,  gi vi n g  yi  Q  =  0  or  =  ι∕ y, θ a c c or di n g  as  I ( b ei n g i nt e g er) is diff er e nt  

fr o m or  e q u al  t o &  gi vi n g  2∕ z, o  =  θ  v al u es  of  I. I n li k e m a n n er  t h e eff e ct  of  a n y  si n gl e
i niti al v el o cit y  ι∕'∙, θ is t o pr o d u c e  t h e c o m pl e x  m o d e  of  vi br ati o n  r e pr es e nt e d as  f oll o ws:

A n d  t h er ef or e t h e eff e ct  of  a n y  ar bitr ar y  i niti al st at e, or  t h e c o m pl et e  s ol uti o n  of  Pr o bl e m  I, m a y  

b e  e x pr ess e d  t h us:
Λ  / ∕∙ / ∖

i n w hi c h  it is i m p ort a nt t o o bs er v e  t h at t h e p art  of  t h e st at e of  a n y  p arti cl e  P;  at  t h e ti m e t, 

w hi c h  c orr es p o n ds  t o a  gi v e n  v al u e  of  i a n d  t o a n y  gi v e n  i niti al dis pl a c e m e nt  or  v el o cit y  of  a n y  

ot h er  p arti cl e  Pj , is e q u al  t o t h at p art  of  t h e st at e of  t h e l att er p arti cl e at  t h e s a m e ti m e i, 

w hi c h  c orr es p o n ds  t o t h e s a m e  v al u e  of  i ( or t o t h e s a m e  m o d e  of  c o m p o n e nt  &  si m pl e  vi br ati o n),  

a n d  t o a n  e q u al  i niti al dis pl a c e m e nt  or  v el o cit y  of  t h e f or m er p arti cl e  Pf,  b e c a us e  t h e pr o d u ct  

si n  2j αj  si n  2 Z α ^  is s y m m etri c r el ati v el y t o j a n d  Z.*

(I V).  T o  p ass  t o Pr o bl e m  II, w e  ar e  t o s u p p os e  t h at t h e i niti al st at es of  s o m e o n e  or  m or e  

s u c c essi v e p arti cl es  c orr es p o n d  t o t h e m o d e  of  si m pl e vi br ati o n,  s o t h at f or o n e  or  m or e  

s u c c essi v e v al u es  of  j w e  h a v e

b ut  t h at, f or all  t h e ot h er  v al u es  of  j, y ^  Q  a n d  ι∕'∙ θ v a nis h.  A n d  it n o w  is n e c ess ar y  t o s u m t h e 

pr o d u ct  si n  2j αf  si n  2j α ⅛  b et w e e n  s o m e  gi v e n  li mits of  J ; or  at  l e ast t his is t h e o p er ati o n  w hi c h  first 

pr es e nts  its elf. B ut  b e c a us e  w e  h a v e  aft er w ar ds  t o m ulti pl y  b y  si n  2 Z α ^  a n d  t o s u m  r el ati v el y t o 

i, a n d  b e c a us e  =  ∞ θ- y  s u bstit ut e c os 2j( α ^- α ⅛) f or si n 2j α ^ si n  2J α ⅛ ,

if w e  aft er w ar ds  c h a n g e  2  ∑( ¾j  t o I n t his m a n n er  w e  fi n d, if j b e  c o nfi n e d  t o o n e  v al u e,

t h e e x pr essi o n  

a n d  if w e  ar e  t o s u m r el ati v el y t o j fr o m j, t o j, t h e n w e  fi n d 

a n  e x pr essi o n  w hi c h  is t h e c o m pl et e  s ol uti o n of  t h e II“ <*  Pr o bl e m.

♦  [ R a yl ei g h, T h e o r y  of  S o u n d,  I, p p.  1 5 0- 1 5 7.]
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When all the J first particles are originally in the k^^ mode of vibration and all the others are 
originally without displacement or velocity, so that i = 1, we may write more simply

(V). The number n of moveable particles being still supposed finite, the most general mode 
of motion of the system may be considered (as we have seen) as the resultant of n simple 
modes, of the kind lately described: so that we may write generally

And because we may write

if we assume
With these last assumptions, we may therefore write also

and consequently, (¾+ι being = 0), may consider the general mode of complex vibration as 
the sum of n pairs of component vibrations, of which each pair might separately continue to 
exist, but not (in general) each component semi-mode of vibration itself, if taken without its 
conjugate semi-mode, which has the same periodic time for the vibration of any single particle.

Those n component semi-modes for which i<n+l would correspond, if the system were 
indefinite, to a continual transmission of phase in the forward or positive direction with a velocity 

(for the i^^ mode) = = a------and those n other component semi-modes for which i > n + 1

would correspond, if the system were indefinite, to a continual transmission of phase in the back­
ward or negative direction with a velocity which, for the semi-mode conjugate to the i^^, is 

= — and is therefore equal in amount (though different in sign) to that just now deter-

mined for the semi-mode itself. In fact, the parts of y^ corresponding to these two conjugate 
semi-modes are

Their resultant vanishes for the extreme particles Pθ and Pn+i > whatever t may be; & for any 
intermediate particle P^, it is, as before.

In general, whatever may be the arbitrary initial state of the system, we may represent its 
state at the time t by the formula

if we assume thai and therefore that j∙ being

And we shall still have, in this last formula for y^, as in others.

62-2
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Thus, generally, we have the expression

in which is still = 2α sin , and is still = ,.
2iTb + 2ι

Accordingly it is easy to prove ⅛ posteriori the truth of this last expression for . And if 
in it we make ‰o= C'ιjcosyι,p i∙ι%o= C',∙jsinyij, so that .i = ,j and γ2n+2-i,i≈Υi.i>
we shall have

But this last transformation does not seem to be attended with any advantage.

65. The foregoing article contains a recapitulation of the chief results obtained already in 
this manuscript for the case of a finite system. If the system be unlimited in one direction, 
so that only the condition i∕o,∕ = θ but not the condition 2∕w+ι,∕ = θ is to be attended to, we have 
then the following results:

(I)'.  The differential equations to be satisfied are now infinite in number; they need involve 
only positive values of Z, but I may be taken as great as we please; they may be written thus:

A particular integral, or possible permanent mode of motion of the system, which may also 
be considered as a simple mode, is expressed by the formula

in which α is any real arc & are any arbitrary real functions thereof. This formula in­
dicates an arrangement of all the particles on a sinusoidal curve, containing indefinitely many 
alternate branches and varying with the time, but so that a first node is always at the fixed 

particle Pθ & a first venter at a distance, as measured on the axis of the system, = —. The 

whole space-period, or interval between two similar modes, is = -; the whole time-period, or 

periodic time of vibration of any one particle, is connected therewith, being =-cosec α.Ci
The positive maximum of excursion of the first venter is = ψ r ~ in which = 2α sin α;

and is attained when Z = e q-vT^, v being any integer & being such that cosr^e =-^, 

r~¼'sin = negative maximum of excursion of the same venter is = — , &, is attained
“θα

when Z = -b (p +1) T(χ. At both these two sets of moments, the velocity of the venter vanishes 
(& so do therefore the velocities of all the particles); while, on the contrary, the velocity of the 
venter attains the negative or positive maximum +r^B^ at the intermediate moments 
when Z = €j^ + (i/ +I) & at these last mentioned moments the displacements all vanish, 
or the particles are all in the axis.
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(II)'. A mode of vibration, such as has been just now described, if once established, will 
persist; if then, at each of any two near moments 0 & di, we have

2∕z,o = ^7αSin2Zα and +η^dt) sin 2l(x.,

we shall have, for all subsequent moments.

that is.

(III)'. The sum or integral of any number of such simple vibrations, that is the resultant of 
the superposition of any finite or infinite number of them, if once established, will persist; but 
any single initial displacement yj θ may be expressed by such an integral as follows:

because this integral becomes =yj^Q or =0, according as the positive integer i is equal to or 
different from J; the effect of any single initial displacement y^ ^ is therefore to produce, at the 
time i, the system of displacements represented by the formula

In like manner the effect of any single initial velocity y),o is i^θ produce, at the time t, the system 
of displacements

and therefore the effect of any arbitrary initial state of the indefinite system of particles , 
P^, ... is to produce, at the time t, a state which may be thus expressed:

This result may be connected with the corresponding one in the subdivision (III) of article 64 
for the case of a finite system; & the same remark respecting the symmetry of sin2jαsin2Zα 
applies.

(IV)'. If, for some set of successive values of J, from j=j, to j=J, we have the initial con­
ditions y^ θ = τ7(χSin 2jα, y'^ θ = 17^sin 2Jα, while y^ Q and y'j^θ vanish for aU other (positive) values

of J, we have then, by changing ; summing cos 2J {θ — α) relatively to J,
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and if in particular J, = 1, so that the first j particles all satisfy the foregoing initial conditions, 
then

(V)'.  The most general mode of vibration of the present system may be expressed as follows: 

in which ηg and ηρ are connected with the initial state of the system by the relations 

so that, by what was lately shown (section (HI)'), we have

If we extend these last expressions to all values of θ from 0 to τr, we shall have 

and

And this expression again may be put under the form 

or, substituting for ηβ and ηg their values.

The general expression for the mode of vibration or complex motion of a system indefinite 
in one direction may therefore be considered as the sum of an infinite number of pairs of con­
jugate component motions, in each of which there is a continual & uniform transmission of 
phase in one of two opposite directions. In any one such component motion, corresponding to 
θ = α, if α > 0, < ^, there is as above a space-period S^ = -, and a time-period T^ = -= - cosec α; 

and the velocity of transmission is ^ = a^^. In the conjugate component motion, corre- 

spending to θ = π — α, we have the same length of space-period & of time-period, but the velocity 

of transmission is negative and may be represented by — α . The combination of the two 

is necessary in order to preserve the fixity of Pq .

66. To recapitulate in like manner the results already obtained relative to a system which 
extends indefinitely in two opposite directions, without any condition of fixity, we may 
observe that:
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(I) ". T h e  diff er e nti al  e q u ati o ns  ar e  n o w  all  t h os e i n cl u d e d i n t h e f or m ul a

I r e c ei vi n g all  i nt e g er v al u es.  A  p arti c ul ar  i nt e gr al is

∖  V  υ /

i n w hi c h  α  is a n  ar bitr ar y  r e al q u a ntit y, =  2 α  si n  α,  a n d > '' 7 α 5 7 « ar bitr ar y  r e al f u n cti o ns 

of  α.  T h e  f u n cti o n is i ntr o d u c e d, i nst e a d of  t h e c o nst a nt  - w hi c h  o c c u pi e d  its pl a c e  i n (I) 

a n d  (I)', b e c a us e  w e  d o  n ot  n o w  s u p p os e t o v a nis h,  &  t h er ef or e r et ai n t h e c osi n es  as  w ell  

as  t h e si n es  of  2 Z α.  T his  si m pl e  m o d e  of  vi br ati o n  is still  si n us oi d al,  b ut  t h e p arti cl e  P θ  is n ot  n o w  

n e c ess aril y  a  n o d e.  Wit h  t his e x c e pti o n  t h e r e m ar ks of  (I)' a p pl y  t o it.

(II)".  I n t his i n d efi nit e s yst e m  als o  a  si n us oi d al  m o d e  of  vi br ati o n,  if o n c e  est a blis h e d,  will  

b e  p er m a n e nt.  A  n o d e  a n d  v e nt er  m a y  b e  ass u m e d  at  pl e as ur e,  b ut  w h e n  t h e s p a c e- p eri o d is 
7 Γ

t h us d et er mi n e d,  t h e ti m e- p eri o d is s o t o o. B y  m a ki n g  7 α = o  +  2 α λ( χ, i n w hi c h is a  n e w  

ar bitr ar y  b ut  r e al f u n cti o n of  α,  n a m el y  t h e a bs ciss a  of  a  n o d e,  w e  m a y  writ e  f or a n y  o n e  m o d e  

of  t his s ort

(III)".  T h e  s u m or  i nt e gr al of  a n y  n u m b er  of  s u c h vi br ati o ns  will  b e  p er m a n e nt;  t h er ef or e 

t h e eff e ct  of  a n y  si n gl e i niti al dis pl a c e m e nt  ι∕ y, θ is 

a n d  t h e eff e ct  of  a n y  si n gl e i niti al v el o cit y  y'j  ̂  is

"  √  0 √  0

T h e  efi e ct  t h er ef or e of  a n  i niti al ar bitr ar y  st at e of  t h e s yst e m is, at  t h e ti m e t, e x pr ess e d  b y  

t h e f or m ul a

B y  s u p p osi n g y-j, Q  =  ~ yj, Q  a n d θ =  — y'j ^ Q, w e  c a n  r e d u c e t his g e n er al  e x pr essi o n  f or a  

s yst e m i n d efi nit e i n b ot h  dir e cti o ns  t o t h e c orr es p o n di n g e x pr essi o n i n (III)' f or a  s yst e m 

w hi c h  is i n d efi nit e i n o n e  dir e cti o n  o nl y,  t h e p arti cl e  P θ  b ei n g  fi x e d. It is als o  p ossi bl e,  b y  c o n ­

si d er ati o n  of  li mits, t o c o n n e ct  t h e e x pr essi o n  f or a  d o u bl y  i nfi nit e wit h  t h at f or a  d o u bl y  fi nit e 

s yst e m,  s o as  t o d e d u c e  e a c h  fr o m t h e ot h er.  I n d e d u ci n g  t h e i nfi nit e fr o m t h e fi nit e, w e  s u p p os e  

J, I, n  t o i n cr e as e i n d efi nit el y t o g et h er, pr es er vi n g  fi nit e r ati os; i n d e d u ci n g  t h e fi nit e fr o m t h e 

i nfi nit e, w e  s u p p os e a  c ert ai n p eri o di cit y  of  i niti al st at e, f or gr e at er  a n d  gr e at er  dist a n c es  

fr o m t h e ori gi n  P θ,  i n e a c h  of  t w o o p p osit e  dir e cti o ns.

(I V)".  I n t h e r e c e nt e x pr essi o n  f or y ^  w e  m a y  c h a n g e  2  I t o ∣ ; &  t h e n, if
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we may change 

in which it is remarkable that we may take at pleasure the upper or the lower signs. Summing 
relatively to i, we find 

as the effect, at the time t, of an initial state in which all the particles from to Pj inclusive 
are disturbed according to the simple mode (I)", so as to have 

and all the other particles are originally undisturbed.
7Γ

In the particular case when γ= -, the recent expression for reduces itself to (2 9) or (31),

in articles 52, 54; the initial conditions being then

π I be > J, — 1 but < J + 1, & 2∕∕,o = θ> 2∕∕,o = θ> other integer values oi I. By assuming also the
relations ~Vi,q> y'-ι,Q= "~Vι,Qy θθ-ιι from the case of a doubly infinite to that of a
singly infinite system. And by consideration of limits, the cases of a doubly infinite and of a 
doubly finite system may be connected so as to deduce each from the other. The consideration 
of limits shows also that if j, = — ∞, so that, in the doubly infinite system, the particle P^ & 

all behind it are initially disturbed according to the law —= cos(2Zα-ywhile all
Va. 'Qol

beyond it have neither initial displacement nor velocity, the state of the system at the time t is 
expressed as follows (at least if α be between 0 & τr, or more generally if sin α be different from 0);

7ΓBy making y» = ό»this reduces itself to the formula (28) of the 50^∙ι article.

(V)".  The general formula for the doubly indefinite system may be thus written:

This most general mode of motion of this system may therefore be considered as the resultant 
of an infinite number of component motions, of which each separately corresponds to the 
continual and uniform transmission of phase in one of two opposite directions. Nor is it neces­
sary now to compound or conjugate two opposite transmissions of this sort, in order to obtain 
a particular integral; we may employ either singly, & shall stiff obtain thereby a possible 
permanent mode of motion of the system.
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67. The three preceding articles, 64, 65, 66, contain a recapitulation of the chief results
obtained in the earher articles of this manuscript. A few remarks may however be usefully made 
here, before passing to the solution of Problem III. In particular, it seems useful to observe 
that the particular integrals hitherto considered correspond either to oscillating or to travelling 
sinusoids. The oscillating are those which have fixed nodes, but oscillating venters; the travelling 
are those which have neither nodes nor venters fixed, but which, instead of oscillating & thereby 
changing form, change place by moving uniformly & continually either in the positive or in the 
negative direction. When any particle is fixed, this condition of fixity obliges us either to suppose 
a node to be fixed thereat, & therefore the sinusoid to oscillate, or else two oppositely travelling 
but otherwise similar sinusoids to be always conjugated together. But when the system is doubly 
infinite, this conjugation is not necessary & we may suppose a doubly indefinite sinusoid to 
travel continually in one direction, without being accompanied by any other traveUing in 
the direction opposite. Even if the system be finite, we may suppose the sinusoids, whether 
oscillating or traveUing, to be infinite. FinaUy, in the case of a finite system & finite sinusoid, 
we may suppose the number of venters to exceed the number of particles; but this wiU lead 
to no essentially new law of arrangement or vibration of the particles themselves. Thus, in 
the case of a single vibrating particle, we may treat that particle as a ... venter; but its
motion wiU be the same as when it was treated as the 1≡⅛.

68. Returning now to Problem III, article 63, we are to suppose that the initial states of 
some finite number of successive particles correspond to some one traveUing sinusoid, while 
the other particles are initially undisturbed; & are to investigate the consequences of this 
supposition.

69. For the case of a finite system, we have found (see page 492)

in which = -—--- and r^ = 2αsinα^. And we are now to suppose that for certain successive Z∣7l "T“
values of j, namely from to j, we have 

k being an integer which is less or greater than n-hl, according as the initial sinusoid is travelling 
forward or backward.

Instead of sin sin (2Zα^ — trj we may write
∑(2^ι^^ sin 2jα⅛ sin 2Zα^∙ cos , & we have 0 = cos 2jα^ sin 2Zα^ cos tr^;

we may therefore change, under the signs of summation, the product
sin 2χ sin (2Jα*  + βj,) to cos {2j (α^ - α*)  - βj,},

& in like manner 

therefore
7/. ,=

HMPΠ 63
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70. This is the general expression for in the present question; if J, = 1, that is, if aU the 
first J particles are originally disturbed in the way supposed, we have

Making both j, = 1 and j = n, that is, supposing all the n particles to be originally disturbed 
in the way already mentioned, we find 

the first part vamshes or is equal to 2n + 2, according as t is different from or equal to A;; & the 
second part disappears in the summation; in like manner 

therefore the expression for the state of the system at the time t is

In this expression the first part corresponds to a possible and permanent mode of simple 
vibration; & the second part must correspond to an initial state in which the displacements 
and velocities of all the particles are represented by the formulae

Accordingly, the effect of such an initial state of any single particle is 

and

This last expression becomes = 0 when i — k is any even integer (zero mcluded); if therefore k be 
odd, of the form 2κ — 1, we must take i even, of the form 2t, & we have, as the corresponding value 
of the formula of the last article.

but if k be of the form 2κ, we must take i of the form 2i — 1, and
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71. For example, if w = 2 and k = 1, so that the system contains only two moveable particles 
and that these are originallv in the state of the travelling sinusoid

7Γin which α, = - and r, = a; so that
*̂∙ ■*·

7τrthen the parts proportional to sin —, namely the initial partial displacements o

& the initial partial velocities 

will produce the permanent partial vibration corresponding to a fixed sinusoid with one venter, 
and represented by the partial formula

7τrand the parts proportional to cos —, namely the initial partial displacements o

or more fully 

& the initial partial velocities 

or more fully 

wiU produce another partial vibration at the time t, which may be thus represented.

in which

also

Accordingly this also is a possible permanent mode of vibration of the system of two par­
ticles, & satisfies the initial conditions.

63-2
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72. Again, if n = 2 & if the initial conditions be

we find by the formula for k even

Also

Accordingly this gives

73. Next let the system be infinite in one direction, so that the condition = 0 but not the 
condition yn+u = 0 is to be attended to. We have now to suppose that for all values of J, from J, 
to j, the initial state is represented by the formulae

but, because we already know the effect of the initial state

it is sufficient now to calculate the effect of

Using for this purpose the formula

& changing under the sign of summation sin 2jθ cos 2jα to sin 2j {θ — oc.), we get, as the new part 
of the final state of the system.

The old part was (see page 493)

therefore the sum of these two parts, or the solution of the question proposed in the present 
article, is

It might have been deduced from that of article 69 by changing to to θ, to α,
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It may also be thus written:

74. The function Φ introduced at the end of the last article is such that 

this, therefore, with its sign changed, is to be added to Φ (2J + 1), in order to obtain the effect of 
the initial disturbance of the first J particles of this singly indefinite system. On the other hand, 
if we seek the effect of the initial disturbance of the and aU following particles, we are to 
suppose j = ∞, & to calculate Φ (∞); which is

We have therefore, for the effect of an initial disturbance of the kind supposed, but extending 
to the whole system, the expression

& the second part of this expression, namely — Φ (1), must be the effect of that part of the initial 
state of the whole system which is represented by the formula R^cos 2jαsin
or by yy θ = R(χCθs2jαsin)3(χ, 2∕j,o= ~ -^α θθ® ¾'α cos . Accordingly it is easy to verify and
rededuce this result by making j, = l & j = ∞ in the formula given near the middle of the 
preceding page. We may also easily deduce the present result, as the hniit of either of those 
given at the end of article 70 for the case of a finite system.

7Γ75. As an example we may take the case α = -, in which the initial state of the system 

corresponds to a travelling sinusoid of the form yj^^= J5sin (Jτr + ^- 2αdi), so that

In this case, the permanent part, free from the sign of integration, disappears, & we find

Accordingly 

if I, being integer, is > 0; so that
1

if Z is > 0, and the initial conditions are satisfied. These initial conditions correspond to an
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alternate arrangement of the particles both in displacement and in velocity; & as long as Z is 
much greater than t, the arrangement ought to remain nearly alternate; that is, the above 
expression ought to give, nearly,

yn=Bsin {lιτ + β- 2at) = BcosΙττsin {β — 2at),

if I be much greater than t. Accordingly this result is obtained by integrating from — — δθ to 

7Γ- + 8θ. On the contrary, if t be much greater than I, we have nearly But the consequences

of supposing t large, or the state of a system after a very long time, shall be the object of a full 
examination hereafter.

76. Finally if the system be indefinite in both directions, and if for some set of successive 
particles, ... Pj, the initial state is represented by the formula 

that is, more fuUy, by 

we may resolve this travelling sinusoid into two fixed sinusoids, namely.

and
The effect of the first is, by page 496, (making γ^ = 0), 

and the effect of the 2“^ part is, by the same page, ∣

therefore the whole effect, or the solution of the present problem, is

It may also be thus written.

77. In this expression the function Ψ is such that
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if therefore all the particles as far as Pj inclusive are originally disturbed in the way supposed 
in the last article, we have, at the time t, a state which is thus expressed.

The part involving the sign ∫ must therefore express the effect of an initial state in which all 
the particles as far as Pj inclusive are agitated according to the formula 

& all the particles beyond Pj according to

We ought therefore to have 

the upper signs to be taken if I be not greater than j: that is, we ought to have 

according as I is > or > j; and

And it is easy to prove, in fact, that these equations are true. (See article 51.)

Problem IV.
78. It is now required to determine the approximate or limiting forms to which the solution 

of the foregoing problem tends, when the system is numerous & the time elapsed is large.

79. Beginning with the case when the system extends indefinitely in both directions, and 
when aU the particles as far as Pj inclusive are originally agitated according to the formula

yj∙,^i=Rsin(j8+2Jα- r(^ = 2αsinα, α>0, <π,
but all beyond Pj are originally undisturbed, we have to discuss the formula of article 77, on 
the supposition that t is very great. In this manner we obtain, approximately, attending only 
to values of θ nearly equal to α, 

in which = 2a cos α. If therefore I be considerably less than j + ^ + at cos α, then we have nearly 
yu≈B sin (β + 2Zα — tr ; but if I be considerably greater than j + ^ + at cos α, then, nearly, yif=Q. 
And these conclusions hold good, whether t be large or small, & even for negative values of i; we 
may therefore consider the initial state of the system as having been and as continuing to be
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dynamically propagated, forwards or backwards according as cos α is > or < 0, and with a 
velocity = αcosα. τr ∙80. Let us consider particularly the case α==^> for which this velocity vanishes. The 

Zi
rigorous formula of article 77 becomes in this case 

which may also be rigorously thus expressed:

ΛΛU J y σxxι

Now, while Θg = (2j + 1 — 21) θ — β — 2at sin θ receives a small but finite increment, θ in general 
ΔΘreceives, nearlv, the increment ,-------λ = ΔΘ; if then I be considerably different2j+ -2l-2atG03θ

from j--at cos θ, the factor sin {{2j+l-2l)θ-β- 2at sin 0} will fiuctuate often between its

extreme values, + 1, while the other factor - will vary little, unless θ be nearly =0sin 2θ'^
or ττ', thus, in calculating the 2≡<*  definite integral, we may in general attend only to these 
particular values of θ. But for these values, we must combine the corresponding parts of the 
1≡*  definite integral, and to do this we may write the 2≡<*  integral as follows: 

the whole expression for yu may therefore rigorously be thus written,*  

so that if I be considerably greater or less than both j +1 + αJ and j + ^-at, the sum of the parts 
corresponding to θ nearly = 0 and θ nearly = τr is insensible; but if I be considerably greater than 
j+ ^-at and at the same time considerably less than J + ⅜ + at, {t being large and positive,) then* [Accepting Hamilton’s method of treating the integrals, it is a question of finding the value of the integral 
between the limits 0, e and ττ — η, ττ, where c, η are small and 2J +1 — 2Z + 2α∕, 2j +1 — 2Z — 2at are large positive or negative numbers. We get then, easily.

√ U ''If €, ∙η are such that ∣ (2j +1 — 2Z + 2at) c ∣, ∣ (2j +1 — 2f — 2α<) η ∣ are large, the results follow as above.]
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t his s u m of  p arts  is s e nsi bl y =  —  ⅜  (—  l)’\ B c os β; &  c o ns e q u e ntl y,  a  dist ur b a n c e  or  dis pl a c e ­

m e nt,  r e pr es e nt e d t h us a n d  d u e  t o t h e i niti al v el o citi es,  s pr e a ds wit h  t w o e q u al  a n d  o p p osit e  

v el o citi es  +  α  o n  t h e t w o si d es of  t h e p arti cl e w hi c h  t er mi n at e d t h e i niti al dist ur b a n c e,  or  

r at h er o n  b ot h  si d es of  t h e p oi nt  J  + a n d  t his c o nst a nt  a m o u nt  of  r es ult a nt dis pl a c e m e nt  is 
=  i aιj', „ . If wfi  h a  v e  e x a, πt,l v  Z  =  i 4-  ί 4-  α Z. if Z  b e  l a,r σ e. w e  h a v e  t o c o nsi d er  

of  w hi c h  t w o i nt e gr als t h e s e c o n d m a y  b e  n e gl e ct e d,  s o f ar as  d e p e n ds  o n  v al u es  of  θ  n e ar  t o 0  

or  7r,  b ut  t h e first gi v es,  f or t h e p arts  d e p e n di n g  o n  t h os e v al u es.

7 Γ
2 at  b ei n g  h er e  a n  o d d  i nt e g er; s o t h at t h e s u m is —  - , a n d  t h e r es ult a nt dis pl a c e m e nt  is

If I e x a ctl y  e q u als  J  + 1  —  α Z,  Z  >  0,  t h e n 2 at  is still  a  l ar g e o d d  i nt e g er a n d  t h e p arts  c o nsi d er e d  ar e  

gi vi n g  still t h e s a m e s u m

A n d  it s e e ms li k el y t h at if I b e  t h e n e ar est  i nt e g er eit h er  t o j +  ⅜  +  at  or  t o j +  ⅜  —  at,  w h e n  t is 

l ar g e, w e  s h all  still  h a v e  n e arl y  t his s a m e  dis pl a c e m e nt  ̂ 2∕j∙, o  g e n er al  e x pr es-

7 7

si o n w hi c h  c orr es p o n ds  t o v al u es  of  θ  n e ar  t o 0  a n d  τr. As  t o t h e v al u es  of  θ  n e ar  - , w e  m a y  us e  

t h e l ≡t d efi nit e  i nt e gr al i n t h e s e c o n d f or m ul a of  t h e pr es e nt  arti cl e,  w hi c h,  f or t his p ur p os e,  

m a y  b e  p ut  u n d er  t h e f or m

If 2j  +  1  —  2 1  b e  > 0  a n d  l ar g e, a n d  if w e  p ut  ( 2J +  1  —  2 Z)  0,  =  Θ, , w e  m a y  s u p p os e Θ,  l ar g e 

e n o u g h  t o all o w  of  o ur  c h a n gi n g,  wit h  a  s uffi ci e nt a p pr o xi m ati o n,  t his i nt e gr al t o t h e f or m

∖  2 0 2

2  si n j is v er y  s m all, b ei n g  n e arl y  =  ' i nt e gr al

H  M  PII  6 4
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becomes ⅜(-l∕Rsin(β-2αi). In like manner if 2j÷l-21 be large but negative, so that

, is still extremely small, this integral becomes — ⅜ (— 1/ B sin — 2at}.

Hence, adding the term free from the sign ∫ at the beginning of page 504, we find the following 
results, as consequences of the initial state expressed by the formula

(a)... If Z be much greater than J + ⅜ + αZ, ≈ 0;

{b)... If Z be much less (algebraically) than j +1 — at,

21 - 21 — 1
(c)... If Z be much less than J + ⅜ + αZ but much greater than j +1, and if-----— be much

vαZ
greater than a certain large number Θ,, then

2j+ 1 —2Z(d)... If Z be much greater than J +1 — αZ but much less than j + ⅜, and if ——— be much 
vat

greater than the same large number Θ,, then

but peculiar calculations are required near the critical values Z ≈j + ⅜, I = j +1 + at. Thus, if 

I =j, & if we wish to calculate the part depending on values of θ near -, we have, by the last 

page, for this part, the expression (if t be large) 

which is insensible.

And generally if 2Z — 2j — 1 be small (whether positive or negative) in comparison with Vai, 
so that 2at Neτe θ, may attain a considerable value while (2Z — 2j — 1) θ, is very small, we have 
then, by the last page, to consider the part*  

which corresponds to a vibration, but with diminished amplitude, and with a change of phase·, 
to which is to be added the constant displacement,

* [The integral is of the form
where since Θ, is small we may put 0 = sin θ. Putting θi= 8®^ ^^® form.]
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8 1 . T h e  c orr es p o n di n g  c o nst a nt  p art  h as  n ot  y et  b e e n  c al c ul at e d  i n t h e pr o bl e m  of  arti cl e  7 9 . 

T o  d o  s o, w e  m ust  r es u m e t h e f or m ul a of  arti cl e  7 7,  att e n di n g  t o t h e f a ct or &  t o t h e v al u es  of  

θ  w hi c h  ar e  n e ar  t o 0  &  τr.

T h e  p art  d e p e n di n g  o n  t h es e v al u es  of  θ  is

it v a nis h es  or  is i ns e nsi bl e if j a n d  J  +  ⅜  —  I +  at  ar e  b ot h  l ar g e a n d  h a v e  t h e s a m e  si g n,

t h at is, if I b e  m u c h  gr e at er  t h a n J  +  ⅜  +  at  or  m u c h  l ess t h a n J  +  ⅜  —  at ’, b ut  if I b e  m u c h  l ess t h a n 

j + 1  +  at  a n d  y et  m u c h  gr e at er  t h a n J  +  ⅜  —  at,  s o  t h at 2j  +  1  —  2 1  —  2 at  is l ar g e. a n d n e g ati v e  w hil e  

2j  +  1  —  2 1  +  2 at  is l ar g e a n d  p ositi v e,  t h e n t h e a b o v e  p art  b e c o m es,  n e arl y.

W h e n  α  =  -, t his r e d u c es its elf t o t h e v al u e  f o u n d i n arti cl e  8 0,  n a m el y,  —  ⅜  (—  1) ^- B  c os I n 

g e n er al  it m a y  b e  r e pr es e nt e d b y  —  ⅛ 2∕j + ⅜, 0  5 if fiι θ i niti al f or m ul a θ  =  Rsi n( 2j α  +  ) 3) b e  c o n ­
c ei v e d  t o e xt e n d  as  f ar as  t h e p oi nt  j + 1,  or  t o t h e mi d dl e  p oi nt  b et w e e n  t h e p arti cl es a n d

It m a y  als o  b e  t h us writt e n,
4:

8 2.  If it h a p p e n  t h at J  +  ⅜- at  is a n  i nt e g er a n d if w e  t a k e Z e q u al h er et o,  s o t h at 

2 at  = 2j +l- 2l  =  Α  l ar g e p ositi v e  o d d  i nt e g er n u m b er,  t h e f or m ul a of  t h e l ast arti cl e  c o n d u cts  

us  t o c al c ul at e  t h e i nt e gr als

w hi c h  ar e  t h eir s u m is t h er ef or e = a n d  t h e c orr es p o n di n g  dis pl a c e m e nt  is
O  Δ  t >

A n d  t h e s a m e r es ult is o bt ai n e d  b y  s u p p osi n g Z =J  +  ⅜  +  α Z. At  t h es e criti c al  p ositi o ns,  t h e 

c o nst a nt  dis pl a c e m e nt  is t h er ef or e o nl y  o n e  t hir d p art  of  t h e v al u e  w hi c h  it h as  f or p arti cl es  

n e ar er  t o .

8 3.  If 2j + 1  —  2 1  —  2 at  is o nl y  s m all i n c o m p aris o n  wit h at  b ut  n ot  e x a ctl y =  0,  w e  m a y  

sti U r e d u c e t h e i nt e gr al

7 Γ
t o - , b ut  t h e i nt e gr al

∖

ass u m es  t h e f or m

6 4- 2
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in which the second part within the brackets now predominates; 2αi {θ — sin θ) being able now 
to attain a considerable magnitude, while not only θ is small but also (2J + 1 — 2l-2at) θ, this 
latter being nearly equal to

Also
√ υ '' ×'

2j + 1 — 21 2dtat being very large; we have therefore only to calculate ———τ----- dθco3 (0≡). Now (see
y J 0

Blank Book of the present year, 1839, page 65, left hand & the references there made)*.

* [There is no trace of this book among the manuscripts.]

therefore

Γ being the celebrated function tabulated by Legendre, and r, v being connected with a, b by 
the relations a = r cos v {>Q),b = r sin υ. These theorems hold however near a vaay be to 0; they 
hold even at that limit, and thereby give I making v = ^,α = 0, r = 0∣

1
Making 6=1 and x = θ'^, these become 

or, changing n to —, and observing that w Γ (n) = Γ (n + 1),

∫υυ i'<Λj

dθcos 0 = 0, iZ0sin 0=1; (to be integrated as hmiting results;)
0 Jo

and finally, returning to the present question, j dθ cos (0≡) = — Γ j; in which, by Legendre’s 

Table, at the end of the 2“^ Part of his Exercises, we have Γ (∣) = lθι.≡∞84i4 _ θ,892979. Thus, in 
the question of the present article, we have, because Γ (∣) = ⅜ Γ (∣),
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and the expression at the beginning of article 81 becomes

84. In Uke manner, if 2j + 1 — 2Z + 2αi be small in comparison with at, the same expression 
becomes

so that if I be as much less than J + ⅛ + at, in this last result, as it was greater than j + ⅜ — at, in 
the result immediately preceding, or vice vers⅛, these two results (of the present & the former 
articles) wiU coincide; or in other words the amount of disturbance, as distinct from vibration, 
increases very nearly according to the same law as we advance inward from both extremities 
towards the middle of its extent = 2αi, for the greater part of which extent it is nearly constant, 
but is reduced to one third of this constant amount at each extremity.

85. If I be nearly = J + ⅜ + at cos α, the integral of article 79 wiU take another form. In this 
case, because

and
2at {sin θ — sin α — {θ — α) cos α} = -at{θ- α)^ sin α, 

nearlv ία > 0. < π), we mav write

• the change of phase presenting itself stiU, as at the end of article 80. But we must add the 
constant part and also the part· free from the sign J; & thus we find that if I be nearly 
=J + ⅜ + at cos α, we have, nearly,*

υ,. = IB sin (j8 + 2Zα — 2at sin α) — ⅜R sin (β + 27α + (x}

86. We see, then, that although a disturbance, distinct from vibration, spreads, with two 
equal but opposite velocities, +a, and with a certain constant amount =ξ2/;,ο~“^“2/ί,ο> 

both directions, from the point intermediate between the particles Pj and accompanied 
by two terminal diffusions, which are similar to each other, and are nearly proportional in 
longitudinal extent to the cube-root of the time t elapsed from the original state of the system;* [The general term in the asymptotic expansion of the Bessel Pιmction was first given, without proof, by Hamilton, B.I.A. Trans. Vol. xix (1843), p. 313. See Watson, Theory of Bessel Functions, p. 12.]
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there is also a real spreading or dynamical propagation of the initial mode of vibration, preserving 
the same constants of amplitude and phase, and accompanied by a terminal diffusion which is 
nearly proportional, in longitudinal extent, to the square-root of the time i; and the velocity of

77 77this forward spreading of the vibration is represented by αcosα, if α> 0, < - . If α = -, there 

is only terminal diffusion and spreading of a constant disturbance, but no proper propagation
77of vibration. And if α > -, < π, there is a backward propagation of vibration, or an uniform rate 

of abandonment of particles originally occupied by that vibration, the negative velocity of 
this propagation being still represented by a cos α.

87. It is remarkable that this velocity of propagation, a cos α, is the algebraical sum of all the 
velocities of transmission of phase, 

these several velocities corresponding to the several ways in which the phase may be expressed, 
namely

In fact 

therefore

τr π
For example, if α = ^, the series + &c. becomes

3 α

which may also be thus written

But it is not obvious what dynamical interpretation ought to be put upon this theorem of 
summation, as apphed to the present question; or in other words, it is not clear, a priori, why 
the actual velocity of propagation of vibration ought to be the sum of all the possible velocities 
of transmission of phase.

88. It is evident that the solution of the case of Problem IV, proposed for consideration in 
article 79, includes the solution of that other case of the same Problem, in which the initial 
disturbance is confined to a limited number of successive particles; since this finite number may 
be regarded as the difference of two infinities. Thus, for this latter case also, analogous results 
hold good; & we have still a propagation of vibration in one direction & with one velocity 
expressed still by a cos α. It seems then that even a single undulation tends to propagate itself 
with this velocity.

To illustrate this subject, let us consider the following Problem.
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Problem V.

89. A single particle Pθ of a doubly indefinite system being compelled to vibrate according 
to a known law, it is required to determine the motion of the system which will ensue in 
consequence of this vibration of this particle.

90. Suppose, first, that the particle Pθ is obliged to remain fixed from the time 0 to the time 
t, so that 2Zo√ is J during this interval of time, constant & =yθ θ. We may now consider ourselves 
as falhng back on the case of a singly indefinite system, and may employ a modification of the 
formula (10) of article 17, namely the following, in which Z > 0,

In fact this reduces itself to yi θ when t = 0; it gives also an expression for yι ^ which reduces itself 
to when Z = 0; & it gives y^i=a^ {yι+x,t- ,t + yι-ι,t)  if be any integer >0. Had we sup­
pressed the terms proportional to yθ, θ, we should have had <=(y 2. < ~ '^y‰ <), instead of having 
y'it = (^^ {y2,t~^yι,t + yo,Q}' The part proportional to yθ,θ is 

it is the effect of the displacement τ/ο,ο θf -^o> continued forcibly constant throughout the 
interval of time Z, the system being supposed to extend only in the positive direction.

Instead of ∑(^)γsin 2jθ, wq may write lim ∑(^∙)]^sin 2jθ, that is.

COS θ&> at the fimit we may reduce this to the term = ⅜ cotan θ, on account of the integration ∫. *

Thus, the solution of the question of the present article may be expressed as follows.

dθ sin 2jθ sin 2lθ cos -{2αZ sin θ}
I

the first line being only the old expression (10) for the effect of an arbitrary initial state of a 
singly indefinite system, the particle Pθ being fixed at the origin of coordinates; and the second 
line being that new part which results from the fixing of that particle Pθ in the displaced position 
yQ Q during the time t.

91. Imagine next, that after being thus displaced during an interval of time =τ, the 
particle Pθ is suddenly removed to a new position & is retained there during some subsequent* [The terms which vanish are
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interval Δτ; & let us inquire what will be the state of the system at the end of the time τ + ∆τ. 
The immediate effect of the displacement continued during the time ∆τ, is

π

but we have to consider also the effect of the initial displacements & velocities yi Q, y^ Q, 
expressed still by the first line of the formula at the end of the previous page, or by the old 
expression (10), in which t≈τ + Δτ; we have also to consider the effect of the new displacements 
and velocities.

which result, at the end of the interval τ, from the first fixed displacement yQ Q. The effect of 
these is

in which the part of independent of J, namely the term yθ θ, gives, as its part of the effect.

the element----- ^cos (2ατsinα), in the expression for y√,., produces the effect
7r ’ tan α

4C3t Cv(X,and the element ------‰ θcosαsin2jαsin (2ατsinα), in the expression for produces the
ττ ‘

effect

so that the joint effect of these two elements is — y^ o cos {2at sin a), in which t=τ+7r ’ tan oc
The state of the system at the end of the time t is therefore expressed by the formula*

dθ sin 2jθ sin 2lθ cos {2cΛ sin 0)

2
dθ cotan θ sin 2lθ cos {2α {t — τ) sin

JO* [This could, of course, have been inferred from article 90 by taking the displacement y,,, g from 0 to i and 
yt^,r-yo.o frθ∞ -r to <∙]
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Accordingly this expression gives, if I > 0,

dθ sin 2jθ sin 2lθ cos (2αi sin 0)
1

dθ cotan θ sin 2Z0 cos {2ar sin θ) ,

dθ sin 2jθ sin 2lθ cos {2aτ sin θ)

dθ cos θ sin 2lθ sin {2aτ sin θ},

so that it reproduces the known state of the system at the end of the first interval t; it gives 
also, for any moment of the 2^^^1 interval ∆τ, that is, for any value of t from τ to τ + ∆τ, {l being 
still >0,) 

including the equation 

& therefore it satisfies the differential equations of vibration, on the hypothesis of yθbeing, 
throughout the whole of this second interval, constant & = 2∕o,τ ∙

92. In the next place, if there be three successive displacements 2∕o,q, lasting for 
the successive intervals τχ, Tg, T3, we must suppose that at the moment Zg = Λ + the dis­
placements and velocities are represented thus:

dθ sin 2jθ sin 2lθ cos {2at2 sin θ)

and the function yι ι, in which Z > 0 and Z = Zg + ”^3»1≡ to satisfy the differential equations of the 
form ylt=a^{yι+χ,t-^iyι,t + yι-γ,t}^ including the equation 2∕i.i = tt2(y2,<-⅜ι.< + ‰,fa)i l^l^θ ^nal 
effect is therefore expressed by the following formula:

HMPII 65
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which may also be thus written,

93. It is easy to see that this law continues; and that it gives, as the solution of Problem V 
in article 89, the expression

ir

Accordingly this expression gives
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so that yu and ↑fj ι reduce themselves when i = 0 to the given initial values, and also the dif­
ferential equations of the form 2∕(∕=α2(2Z∕+ι,<-¾∕ + 2∕z-ι√) are satisfied if Z>0, including the 
equation y"ι^t = a^ + which the function is arbitrary. As a verification we
may observe that if this function reduce itself to the constant yθ θ, we have 

so that if the initial displacements and velocities yi θ and y  θ vanish, we have
7Γ τr

as found in article 90.

94. The effect of the vibration y^^ of the particle Pq being thus found to be

let us suppose that 2∕o.τ = ~V ≡iιι a —β), oc. being >0, < -.

Multiplying this by 2 sin {2α (t — τ} sin θ}, we get
η cos {2αi sin θ — β — 2aτ (sin θ — sin α)} — η cos {2αi sin 0 + )θ — 2ar (sin θ + sin a)}; 

and multiplying again by 2 sin 2lθ, we get

η sin {2at sin Θ — β + 2lθ — 2aτ (sin θ — sin <x,}}-η sin {2αi sin θ + β + 2lθ- 2aτ (sin θ + sin α)}
— η sin {2αi sinO — β- 2lθ — 2aτ (sin θ — sin α)} + η sin {2αZ sin 0 + )S — 2lθ — 2aτ (sin θ -+- sin α)},

which is to be multiplied by - cos θ, &, integrated relatively to τ from 0 to i and relatively to θ 
7T

TTfrom. 0 to -. In this manner we obtain*

* [The expression for be written

The first integral may,,obviously, be written 

or
65-2
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{cos (2αi sin α — )3 + 2lθ) — cos {2at βinθ-β + 2lθ)

— cos {2at 3\ηϋ. — β — 2lθ) + cos {2at einO — β- 2lθ)}

- {cos (— 2at sin α + β + 2lθ} — cos {2at sin + )S + 2Z0)

— cos (— 2αisinα + )S — 2lθ) + cos {2at8inθ + β- 2lθ)}

{cos {2at8\Άα. — β·}- 2lθ) — cos (2atsaιΘ-β+ 2lθ)

— cos (2at8intx,- β-2lθ) + cos {2at 8Wtθ-β-2lθ)}

{sin {2at sin θ-β}- sin {2at sin α — β)}

η cos 2l<x, sin {2at sin (x. — β),

observing that by article 39 we have, if I be any integer > 0,

As a verification, the effect calculated in the present article ought to vanish when I becomes 
infinite, t remaining finite. Now

sin 2lθsin {2atsin θ-β) = ^cos {2lθ + β- 2atsin0) — ⅜cos {2lθ- β + 2atsinθ);

& the first of these two terms gives, at the limit, — sin (2iα+ )8- 2αZsinα), while the second 

gives + ^sin (2Zα-)3 +2α∕sin a); their sum gives therefore + ηcos2Zαsin(2αisinα — )3), as it 

ought to do.

95. We find therefore that, in the singly indefinite system, extending only in the positive 
direction, the effect of the vibration yo,∕ = ’? (~ sin α + β} I in which α > 0, < ^! of the first

because
The second line gives -η cos 2kι sin {2ai sin a — )3).We thus arrive at the final form given for the integral to be interpreted as this special Cauchy value. The case sin 2∕α = 0 is exceptional. Here the Cauchy value is unnecessary.]

www.rcin.org.pl



95, 96] XIX. VIBRATION AND THEORY OF LIGHT 517

particle Pθ is represented by the formula

If I be much larger than at cos α, this effect is insensible; but if, on the contrary, at cos α be much 
larger than I, the effect is nearly represented thus,

= η{∣sin (2Zα + β- 2atsinα) + ⅜sin — β + ^atsinα) — cos 2l(x,sin {2atsinα — β}}

= η {sin 2Zα cos (2αZ sin oi-β)- cos 2Zα sin {2at sin α — β)}

= η sin (2Zα + β- 2at sin a).

Thus it is true, in a certain sense, that even the vibration of a single particle Pθ, with a periodic 
7T i 7r

time = - cosec α, I in which α is any real arc > 0, but < 2 I ’ P^*θduces  vibration, with the same 

periodic time, in all the other particles; the transmission of phase having a velocity = ,
(X.

’ ■ but the propagation of vibration having a somewhat less velocity, namely a cos α.

7Γ96. If α = -, so that the vibration of Pθ is

then the same analysis shows that the effect of this continued vibration of this single particle is

now

therefore in the present case.

7ΓChanging θ to - — θ, this becomes
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This is insensible, if I be much greater than Vat·, but if, on the contrary, I be much less than Vai, 
it becomes, making 2 Vat sin θ = θ,,

97. We might suppose 2∕θj=τysin ()3 —2α√4i), j4>1; & the analysis of article 94 would 
then give

but whether I be large or small in comparison with t, if both be very great, this function will 
become insensible, because the denominator A — sin θ cannot now vanish. Thus a vibration of

7Tshorter periodic time than the minimum - cannot sensibly propagate itself far.Ctf
However, when t is very great, we have nearly

in which*

2 
= a function such that

according as I, being > 0, is > 1 or = 1. Also

in which

therefore

also

♦ ^If A = cosh α, cos 0∕(√4 - sin θ) = , e~"≈ sin ^ ∙ J
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and

therefore 

and

and generally

I being any integer > 0.

Hence in the present question, if t be great, we have

The amplitudes therefore, in this case, decrease in geometrical proportion, being proportional

to the power of the fraction ∙

98. This result, on the analytic side, bears sorne analogy to the well-known theorems

in which x is any real quantity > 0, & of which the former includes the latter and may be proved 
by observing that if we put

which gives X" = X^. if x be > 0; therefore X^ = + be~^ = be~^ because X oo = 0; and although the 
differential equation X" = X^. does not hold good for the particular value τ = 0, yet the coefficient 

b must be = the limit to which e,^Xχ tends as x decreases to 0, & must therefore be equal to -.

Laplace, in the Analytic Theory of Probabilities, Article 26, deduces the theorem from the 
consideration of a double definite integral, as follows:
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And he remarks that by pursuing a similar analysis, the following theorems may be deduced:

and ultimately the values of the definite integrals

in which M and N are rational and integral polynomes, such that the degree of M (relatively 
to x} is less than that of N, and the roots of N = 0 are all imaginary. The two last theorems may 
thus be written.

& under this form they follow easily from those first cited in this article.
99. In the foregoing investigations, we have, expressly or tacitly, employed often the 

principle that if any finite function of a real variable be multiplied by the sine or cosine of an 
infinitely great multiple of that variable, & integrated within any finite limits, (or even, in most 
cases, between negative and positive infinity,) the result is evanescent; & therefore that if the 
function be not constantly finite, we need attend only to those values of the variable which differ 
infinitely little from the values which make the function infinite.*  And in some cases of a con- 

COS θ 1stantly finite fxmction, such as F {θ) = , {A > 1), in article 97, or F {q) = article

98, we have been able to assign the law according to which the integral tends to become in­
finitely small as the multiplier of the variable under the sign sine or cosine in the rapidly 
fluctuating factor tends to become infinitely great; namely, in these cases, the exponential law 
expressed by the formulae

A being any real quantity > 1, and I being any integer number > 1; and

X being any real quantity < 0.
It seems that in most cases of this last kind, that is, in most cases of a constantly finite 

function F {q) multiplied by the cosine of a large multiple qx of the variable q & integrated from 
— ∞ to + ∞, (F ( + ∞) being supposed = 0), we must have, nearly, the expression!

X being large.* [This is Hamilton’s principle of fluctuation, which he [later developed at length in a memoir on fluctuating functions. Trans. B.I.A. (1843) xιx, pp. 264-321.]
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It wiU however be probably in general more exact to substitute, in this expression, instead 
of the middle ordinate F j θf f^e curve in which q is abscissa and F {q} ordinate, taken 

between the limits q the average ordinate of this curve between these hmits, namely

; & thus we find

X being large. It will be useful to test these formulae by some examples.

100. Let jF(g') = cosg'; then 2cosgcosgx = cos (qx + q) + cos {qx-q}', 8c since this function 
F does not vanish when g = ∞, we shall take finite limits of integration, such as 0 and ττ, & employ 
the approximate formula

X being now some large and positive integer. Applying this to the case F (g) = cos g, the first 
member vanishes, & the 2“^ member ought to be found to be nearly = 0. We ought therefore to 

have, nearly, ∑fn^)i (~ 1)” θθs ~ = —-, if x be a large positive integer. Now

„ τr / τr 2τr 3π W7r  τr ίτηττ ττ2cos — I — cos - + cos----- cos---- l·... + cosmττcos — = — cos — + cosιmτcos------Ft?- ;2x  X X X X J 2x  X 2x J

making therefore 'm = x- ,vfQ have

in this case therefore the theorem is rigorously true. If we had employed average instead of 
middle ordinates, we should have had

X being still a large and positive integer. Making F (g) = cos g, we ought to find nearly

& in fact this also is rigorously true. But we cannot expect to find so perfect an agreement, in 
general, between the equated expressions.

101. Let F {q} = e-e’; then

HMPII 66
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2
is this then nearly = — Σ(®)_οο (— l)”e ≈≈*  ? In general, we have, rigorously,

'cos tττ + cos 3iτr + cos 5iπ +

We ought therefore to have, nearly, in general, if a; be large.

(cos tπ + cos 3iπ + cos 5iτr + &c.)

(cos qx + cos ^qx + cos + &c.).

But in the case F {q) = e~^^, this would give

& the second member is greater than the first, if x be large, in the ratio nearly of 4 to τr. There 
can be no doubt but that this arises chiefly from the circumstance that the definite integral

and generally from the inequality of

such inequalities though small being numerous & giving an accumulated result, which bears a 
sensible ratio (4 — π to π) to the small value of the integral in question, when x is very great. To 
allow for these inequalities, at least nearly, we might make

103. Returning to the investigation of article 97, & to the first expression there given for 
yι ι, that is for the transversal displacement of the particle at the time t, I being any integer 
> 0, and the particle Pθ being obliged to vibrate according to the law yQj=η sin {β — 2aAt), in 
which A >1, while 2//o = 0, t/J θ = 0; we see that, in order to develope this expression according 
to the powers of t, it is sufficient to calculate generally

or simply
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since //, ji+i = -^fι, 2< ∙ And we have already found that

if l>O;fa n = 0∙ Now

we are therefore to calculate

and it is convenient to suppose at first l>l, reserving the case I ==1 for separate study.

hence, coefficient of cos{2Z^-2θ}, if l>l, is 2(∣)*'[2½]2*' (—and 
coefficient of cos(2lθ + 2θ) is 2(∣)*[2½]2*(- therefore = of 
(former — latter) coefficient, if I > 1,

* [[n]"∙=»!/(» —to)!; [O]~*" = 1∕(to !); this is Vandermonde’s notation. See Vol. i, p. 468.]

ifZ>l. And

so that the formula just now found for gi )^ holds even when l=l,

104. Hence in the expression of article 97,

66-2
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we have gi θ = (— [0]-U+0 [0]-<≡∙- ∙ gι,o = ⅛> and gr, θ = 0 if I > 1; so that the part of which*
involves and vanishes for all the particles beyond , but becomes, for that particle.

In fact, the differential equations are, in the present question,

if I > 1; also v, ∩ = υ'ι ∏ = 0, if I > 0: and these conditions are satisfied if we neglect in υ,, ,'or in

For the parts involving and we are to suppose i≈2, & to calculate

in which we already know θ and in which

these parts therefore vanish for all particles beyond ; they are, for

and, for P^,

Accordingly, if we suppose

and neglect t*  in y^n, we shall have

so that the differential equations are as well satisfied as they ought to be.

105. No power of t being neglected, the displacement of the particle P^ is

in which

We may order y^ according to the ascending powers of A; & the coefficient of ∠4θ is

which latter series can be summed, if we can sum 1 &c. Now this
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1 Γπ ^τr
last sum =- dr cos (2a; sin r), because — dr sin r^^ = {(see page 523); therefore,

7rjo J 0
differentiating relatively to x, 

'.∙ coefficient of A® in i is - η sin β,iι x≈ at. In fact

the coefficient of A® in i is therefore

& accordingly if we make A = 0,1 = 1, in the expression of 97 or 104 for yι ι, we get

But it is probably improper, or at least disadvantageous, to develope according to ascending 
powers of A, when A is >1.

106. It may be convenient to make A — VA^-1 = B, and therefore

× sin {β — 2at cos θ) dθ.
Accordingly it is evident that this last expression for yι ^ satisfies the equation in mixed differ­
ences y'it = c(,^{yι+χ,t-^yι,t+yι-ι t}> because R2 + R~2 + 2 = 4A2; also yQ f = ηshi(β-2atA), & 
yι,Q≈y'ι,Q = ^ if ∕>0.

We may therefore write

)os (2lθ -F 2nG} — cos {2lθ — 2nθ)) cos {2at cos θ}

{cos {21Θ + 2nθ -θ)- cos (2lθ — 2nθ + 0)} sin {2at cos θ}.

And we see that it remains to calculate the values of the definite integrals
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or simply of the former. We may even deduce all, by differentiation, from the function

Or we may consider the question as being now to determine, at least approximately & for 
integer values of m much larger than i, the definite integrals

dθ cos 2mθ cos (2at cos θ) = ,

dθ cos (2mθ — θ) sin {2at cos θ) = .

107. Adopting this last view, & integrating by parts, so as to develope according to 
descending powers of m, we find

If then we employ the symbols and as defined in the last article, we have*

[Manuscript ends.]

www.rcin.org.pl




