[451]

XIX.

RESEARCHES RESPECTING VIBRATION CONNECTED
WITH THE THEORY OF LIGHT

[1839.]
[Note Book 52.]

[The dynamical system consists of a number (n+2) of particles (P,, Py, ... P,,,) each of unit mass
and in equilibrium, spaced at unit distances along a straight line. The end particles are fixed and
each particle is attracted by a force (a?) by the one immediately before and immediately after. The
system executes small transverse vibrations and these are studied in five Problems. Each Problem
is worked out in great detail with examples and Hamilton is led to various results, some of which
must have been independent discoveries such as sequence equations and asymptotic values of Bessel
Functions and others were many years ahead of their time such as the Reciprocal Theorem in
Dynamics and the distinction between Phase-velocity and other types of velocity. The idea of a
“fluctuating” function is first mentioned also here.

Problem I (pp. 451-463). P,, P,,, fixed, P,, P,, ... P, having any assigned initial displacements
and velocities.

Problem II (pp. 463-487). All initial displacements and velocities zero except for P;,, P, ., ...
P;_,, P; and their displacements and velocities to correspond to the ith mode of vibration.

Problem IIT (pp. 487-503). The initial displacements and velocities of a number of particles to
correspond to those of a progressive sinusoidal wave.

Problem IV (pp. 503-510). Discussion of previous case for large values of .

Problem V (pp. 511-526). A single particle is constrained to move in an assigned manner.]

Problem 1.

1. A finite number (n + 2) of equal particles (P, Py, ... P;, ... P,, P, ;) being supposed
to be arranged in one plane, and nearly in one straight line, at finite and very nearly equal
intervals (each = 1); the two extreme particles (P, and P, ,,) being also supposed to be fixed and
each of the (n) intermediate particles (as P;) to be acted on only by the attractions (each =a?2) of
the two (P,_; & P,,,) which immediately precede and follow it in the series; it is required to
determine the laws of the transversal vibrations of the system: that is, to express the transversal
displacement (y, ), at any time (#), of any intermediate and moveable particle (7)) from the right
line or axis (of ) connecting the two extreme and fixed particles (P, and P, ), for any given
but arbitrary set of (n) small initial transversal displacements (y, o), and of (n) small initial

transversal velocities (¥} o).
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452 XIX. VIBRATION AND THEORY OF LIGHT 2,3

2. (Solution.) This problem is equivalent to that of integrating generally a system of »
simultaneous differential equations, of the second order, and of the form

Y= Ypia,0— 2Y10+ Y1) (1)
a®A}
or (D% 1+A)yu (2)

the integer / taking in succession all values from 1 to n; and y, 4, ¥, being supposed to be
each equal to zero. It is easy to effect this integration by the known methods. We have only
to assume

klm
Ly, =s8in——
Lk 8 +1:
km
=2
7= 2a8in =—— e

Yio=LywY e+ oo+ Loty o+ oo+ Ly 1Y i

k being an integer which takes in succession all values from 1 to n; and to observe that these
assumptions give
=1t Ly =0 Ly 5 — 2Ly 5+ Ly_y ),
LO =0, Ln+1,k =0,

2
n+1
For thus we easily transform the differential system (1) into another, which may be thus
denoted,

N Ly Yo+ oo+ Ly Yy o+ .+ L Y ).

Y+ ri ¥y, =0, (3)
and which gives, by integration,
Y=Yy oco8tr,+ Yy oritsintry; (4)
so that the sought expression for y, , may be thus written
3 Ly, Y, gcostry+ ...+ Ly Yy gcostry+ ...+ Ly, ¥, gcositr,
y,,,=m +L“Y10s1ntr1 ey g 5 osmtrk Poihe & i 8 smtrn §91(6)
ﬂ
or, more concisely,
2
. heg — = Ziy1 Ly (Y o costry+ Y oritsintrg); (6)

in which we are to remember that
Yk,0= 21 Lk Y105 Yl,c,o =2 Ll,k ?Jf,o-

3. (Corollary 1.) If there be but one particle, P;, displaced at the time 0, and if no particle
have at that time any velocity, we may write Y, o=y, o Lj 1, Y1,0=0, and the expression for
the displacement y, , of any particle P, at the time ¢ becomes

Y= + 1 Lj 3 Ly . cos try,
B oo o T lkem . 3km
_mz(k)lsmn+1mn T 2atsmn+1 )
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4-8] XIX. VIBRATION AND THEORY OF LIGHT 453

4. (Corollary 2.) In like manner, if only one particle, P;, have an initial velocity, ¥; ,, and
if no particle have any initial displacement, we may write

Yio=0, Yio=¥joLyw

and
Yi,.= n+ porog z(k)l Ly Ly, ,,f dt costry,
_ %50 Jhm Ve
cid n+lz(")lsmn+1 n+1 dtcos 20n:sunn+1

5. (Corollary 3.) The general solution (6) may therefore be put under the form

2 Jhkm lkem . 3n
y,,,=m2m1 (y, o+, OJ‘ dt) E(,,)lsm et 1tsm———1 cos (2atsmm). (7)
6. (Corollary 4.) If the initial displacements and velocities be of the forms
sin 2™ slm %o in T il
y =M n+ 1 ’ 771, 8 n+ 1 2

¢ being any integer from 1 to » and 7;, 7; being constants, we shall have Y o—n——;—lm,

1
Yio= n;- 7;, and all the other values of ¥, o and Y} , will vanish; therefore, in this case, the

general expression (6) reduces itself to the following:
; t
Y, =sin nd (m +7; f dt) cos (2at sin %Wl)

7. (Corollary 5.) By taking

il A 2 s b S tlmr

n+l n+l’ Kl | H1Y10 PO L

we may express any arbitrary initial displacements y, , and velocities y; o by developements of
the forms

Nni= Zh1Y08

o il il
?/lo— (1)17115111 +1’ +1

if then we had found otherwise the expression given in the last corollary for y, ;, corresponding
to the particular suppositions

.% 0=2(h1 7;8in ——

il il
Yro=mi8i0 ——, Y o=mn;sin——

n+1’ n+1’
we might have thence deduced the general expression (6) under the form

il Tor
Yi,e=Ziin smn+ 1 (m"'"h.[ dt) cos (2“t Sm—+i) (8)

8. (Corollary 6.) If we write, according to a notation already employed,
i
n+1
and introduce two new constants, B; and ;, such that
Bjcos By=n;, BjsinB;=mnirit,

r,=2as8in
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454 XIX. VIBRATION AND THEORY OF LIGHT [8-10

we may employ this other expression

Yr,o= 21 Bycos (tr;— B;) sin —— (9)

+l

in which 7; is a known function of the index (or integer) ¢, but B, and B; are in general arbitrary
functions of that index.

9. (Corollary 7.) The general system of total displacements ¥, , may be considered as the
sum of » component systems of partial displacements,
ilm
n+1’
of which each is separately possible, & of which all are mutually superposed. Each system of
displacements, by itself, may be called a simple movement or mode of simple vibration. It corre-
sponds to some one integer value of ¢ (from 1 to » inclusive), and to one corresponding periodic

time
27 Yim
T _7T cosec 22
r, 6 n+1’

involving also two arbitrary constants, or arbitrary functions of 7, namely n; and %;, or B;
and B;, which latter may be called constants of amplitude and of epoch.

Y,1= B, cos (tr;— B;) sin ——

10. (Corollary 8.) In any one such simple movement, corresponding to any one value of 7,
the displacements all attain extreme values when ¢ =7718;; and these simultaneous and extreme
values are all expressed by the formula

71 Selar
Yu,ri—2p: =B Mg

If 1 =1, these extreme displacements (relatively to ¢) increase in magnitude with / from /=1

till l= n;— - if n be odd, or till l=g if n be even; and afterwards decrease from /= I’%l or from
n+2 gy
l—T to I=n; being all of the same sign as B;. But if +=2, the displacements B, sin_——5

n+1 r_n _n—l P n+2
g% g ST T T

as nis of the form 4v—1, or 4v, or 4v+ 1, or 4v+ 2, » being an integer & « 0; they afterwards

increase in magnitude with 7 from I=1 till /= , according

g i 1 i
decrease and become negative when [ is between 2t andn +1,if B,>0.

2

may be considered as corresponding to ¢ — 1 nodes N,, N,,

In general the formula B, sin i
n+1

.. N;_,, for which I (though integer for each actual particle) is supposed to receive the (perhaps

fractional) values (n-@!- 1) 4 2(n+1) ,

. i
¢ i 1 ; b ' n+1
positive; between N, and N, negative; and so on alternately. The ¢ intermediate points V,, V,,

n+l 3(n+1) (21,—-3)(n+1) (22—1)(n+1)
. Vi1, V; for which I= % 5 9% . %
of extreme excursion, alternately positive and negative (if B;>0).

are venlers or points
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11-13] XIX. VIBRATION AND THEORY OF LIGHT 455

11. (Ezample 1.) If n=1, so that there is but one moveable particle P, , attracted equally
to two fixed centres, P, and P,, and slightly and transversally displaced from the middle of
the line (= 2) which joins them; then the variable displacement of this particle P, at the time
¢ is represented by the formula

Y1,0= By cos (ir; — By),
7—2r= 1; in which formula r, =2a sinZ:a\/ 2. The extreme displacement is B; and
the law is that of the cycloidal pendulum.

Mm=Y,e=DBicos By, my =¥1,0="1Bysin fy:

, sin (at+/2

because sin
and

12. (Bxample 2.) If n=2, so that there are two moveable particles P; and P, between two
fixed particles Py and Pg; then the variable displacements y, , and y, , of P, and P, are

Y11= ‘_/; {Bycos (try—By) + Bycos (try— o)}, Ya,0= %% {B, cos (try— B) — Bycos (try— )},

because

ﬁ—sing—sinz—"— —sing'
R s a Bl v i@ & 3’
also
'rl=2asin7—(;=a, r2=MSin1—;=a\/3.

The two simple modes of vibration, which are here superposed, are

3
Lo ?/1,t=?/2,l=1/2—31 cos (at— B,),
and
¥ 3
2ne Y= “2’/2,1=%Bz‘305 (at+/3 —By).

. The periodic time of the first mode is greater than that of the 204 in the ratio of 4/3 to 1. The
displacements of the two particles P, and P, are equal and on the same side in the 15t mode,
but equal and opposite in the 2nd,

1 § 2 1 ’ ’
B, cosBy=n,= Vg (1,0t Ya,0), Bysin Bi=aln = m (1,0t Y2,0)s

1 : Sl /
B, cos ﬁz=ﬂa=% (Y1,0—Y2.0)> Basinfy=(a+/3)1n;= 3a (1,0~ Y2,0)-
13. (Example 3.) If n=3, then
W e \/;Bl cos (try— By) + By cos (try— By) + \/;Ba cos (try— Bs),
Y=  Bycos(try— ;) — Bycos (trs— Bs),
Y3, = V3B, cos (try— By) — Bycos (try— By) + V3 Bycos (try— By);

: .59 - ey
rl=2asm7§r=av2—\/2, r2=2asm§=a\/2, r3=2asin§81=a\/2+\/2;
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456 XIX. VIBRATION AND THEORY OF LIGHT [13-15
1, 1, : 1 3 ’ g N
B,cos ;=% (\/%?/1,0 +Ys,0t \/‘;‘ys,o), B, sin ;= 2—7.1 (‘/%?/1,0 +¥Y2,0 +\/%.'/3,o)a
2 1 ’ ’
By cos By= % (41,0~ ¥3,0)> B,sin ﬁz=— (Y1,0—Y3,0)

Bjcos By = %(‘/*}?/1 0~ Y20t ‘/g?/s,o)’ Bgsin By = (‘/%?/1 0o—Ya0t+ \/‘%?/3 0)s
2 27w 2m

there are three simple modes of vibration, with periods whxch are respectively — g ET that
Ty Ty 73
2m 3 2 a T 2
is —cosec—, - cosec cosec , or finall 2, —————; they may also be
a 8 8’ 8 Ve av/z3—/2’ s V2 +4/2 i

thus Wntten —L V2+4/2, V2 & \/2 V/2—4/2; in the 15tor slowest mode, the 3 displacements

have all the same sign & are proportlonal to /4, 1,4/, that is, to 1, 4/2, 1, the second particle
being a wventer ; in the 2nd mode, the 15t & 3t displacements are equal and opposite, & the 2nd
displacement vanishes, so that the middle particle P, remains at rest and forms what is called
a node, the first and third particles being venters; in the 3™ or quickest mode, the 15t and 3rd
displacements are equal and of a common sign, while the 274 is of an opposite sign and greater
in the ratio of 4/2 to 1; so that, in this mode there may be considered to be two nodes, one
between P, and P, but nearer to P; and the other between P, and P, but nearer to P,; in
fact the abscissae of these two nodes are § and § respectively, the abscissae of the 3 vibrating
particles P,, P,, P, being 1, 2, 3; and in the same third mode, there are three venters of which the
first and third have for abscissae § and 42, so that they are near P, & P, but between P, and
P, and P, and P, respectively, while the second venter coincides with the particle P,.

14. (Corollary 9.) If there be but one particle P; which at the time 0 has any displacement
or velocity, we shall have

2940 . Y 2ry Y7
B;cos B;= +1smn+1, B;sin B;= ly,, g ¢
and therefore )
_ SESDEBRS S0 TEW "%
B +1\/y,,0+rz i os1nn+1, tan B; —ri,o i

15. (Hxzample 4.) If n=2, then
B;cos B;=3%y; ¢sin 1,_7?# ,  Bysin B;=%r71y; ¢sin z‘%ﬂ;

therefore, more particularly,

. g ) 2 5.5 L g
Blcosﬁl=§yj,0sm§, Bl_smﬁl=371yj’osm 3’
. 2w D it S N g
Bzcos,32=%yj,osm—3—, B, 81n,82—3—{/—3y,-’osm—?.
Still more particularly, if j=1,
l . 1 ’
B, cos ﬂ1=\7;y1’0, B;sin Bl:myl,o’

1 i ey
B, cos 132:'%?/1,0’ B, sin Igz=§‘;y1,o’
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and, if j=2,
1 : ? o
B100351=W?/2,0: Blsm/31=a—\/3?/2,05

1 ; Lk
B, cos B, = —\‘/‘gyz,o’ Bysin B, = —gayz,o-

In this manner we determine the coefficients of the two coexisting simple modes of vibration in
the system P, P, P, P,, corresponding to any initial displacement and velocity of P, alone,
or of P, alone.

. (Example 5.) In the system P, P, P, P, P,, n=3 and

B;cos B; =1y, s1n‘7—, B;sin B;=§r7'y;, osmq"i

that is, '
Blcos,81=%yj’0sinj£, Bysin By = \/22-1;/\g2 },osin;,
B2003ﬁ2=%?/j,05m-2‘—£—7, stinﬁg=my;,osing—£—r,
B cos B3 = }y;,08in %‘E 3 S B Rin B \/2 \/\é2 Y} osi 31’”_

17. (Corollary 10.) By last corollary or by corollary 3, article 5, the whole effect at the
time ¢ on the particle P, of the initial state of P;, is

t
(yf,0+y:’i,0fodt)f(j’ l: t):
in which ‘

n+l n+l +1
If 7%1 be much larger than j or /, this finite sum is nearly = the definite integral

i &, t)——-——zf«f)lsln Y sin e cos (2atsingﬂr—).

%fz d0sin 270 sin 216 cos (2at sin 6).
0

If then we consider the case of a very numerous system of particles, we shall have, nearly, for
those which are much nearer to one end than to the middle,

: m
Yo o= ; R (3/1,0 + y;-,of dt)f2 d0 sin 256 sin 210 cos (2atsin 0); (10)
0 0

92
Y;,0and yj , being supposed = 0 unless & _ﬁ i be small; and this expression corresponds rigorously

to the limit » =co, j and ! remaining finite.

18. (Corollary 11.) If nothing be neglected, we have
4sin a.sin Bcosy =2 (cosa— f—cosa+ fB) cosy

=cos (a— B +7y)+cos (x—B—y)—cos (x+B—y)—cos («+B+7y);

HMPII 58
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458 XIX. VIBRATION AND THEORY OF LIGHT (18

therefore*

1 %'w i)
F0, LE)= Tt D) (m{cos( tsm v
w  i(l—g)m

-+ cos (2atsmn+l 5 )

—COo8 (2atsm 4 )
n+1 n+1

—COo8 (2atsm ok Z(H—j )}

n+1

and therefore
1 _ 1B Yim  i(l-j)
y"’=m2$)l (yj’°+y"’°_fodt) E{;)l{cos (2atsm +1 o+ P )

+ cos (2ats1n dim M)—cos <2atsm gim _,_@(l"‘.?) )

+1 n+1 +1 n+1
—cos | 2atsin =—— AR i L } (11)
n+1 n+1 :
i 1+7 . -7 .
If, now, j, l and n all tend to co but so that Wi is nearly =1, and that o | is nearly =0, or

9
in other words so that —il—l and n——ﬁ—l are each nearly =1, though 2/—n—1 and 2j —n — 1 may

both be large numbers positive or negative; in short, if we consider only particles P; and P,
which are much nearer to the middle than to the ends of the very long line Py P, ,,, although they
are not necessarily near to one another; we may then neglect those sums of rapidly fluctuating

cosines which involve Z(l?—w—)ﬂ'r and may transform the other sums into definite integrals by

making % 0; and thus we obtain, as a very approximate formula,

. m
Y= 7—2,_ Z - (?/1+h,o - ?/;+h,of dt)J‘2 d6 cos 2h8 cos (2atsin 0). (12)
0 0
Accordingly this expression gives

2 L (3 Wi
Yoss.t™ ;Z%*” (th,o - y}+h,0J‘ dt)f df cos (2h0 F 20) cos (2atsin 6),
o /Jo

* [fs L )= {Taq— (2at) = T 345 (2at)}.

The following note appears on the opposite page of the manuscript. “It is remarkable that this function f(j, , t)
is symmetric relatively to j and I, even if » be not large. Indeed each part, corresponding to any one value of s,
or to any one mode of simple vibration, is symmetric also. Thus, the effect (and even that part of the effect which
corresponds to any given number i of venters) of the initial state of P; or the state of P, at the time ¢, is the same
as the effect of a like initial state of P,on the state of P;at the time ¢; even though P; may be near one extremity
and P, near the middle of the system. It will be important to try whether a similar result holds good for other
attracting or repelling systems.”]

1 [This can be inferred from the value given in the previous note for f(j, 7, #). Hamilton’s paper on Fluctuating
Functions did not appear until 1843, T'rans. R.I.A. X1X, pp. 264-321, although there is a short note in Proceedings
R.I.A.1(1841), pp. 475-477.]
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18-21] XIX. VIBRATION AND THEORY OF LIGHT 459

therefore ks

Y+ Y1,0= ; Z - (y, sno0+ Y +h,0f:dt)f:d0 cos 2h0 cos 26 cos (2at sin ),
and . ¢\ (2
Yire— 2t Yimr,e= — . 2= (y,+h,o + Ym0 f odt) J i df cos 2h0 sin 62 cos (2atsin 6);

the function (12) therefore satisfies rigorously and indefinitely the equation in mixed differences
(1), and is the complete integral of that indefinite equation because it reproduces the arbitrary
initial data y; o and ¥}, as the values of y;, and y; ;, for ¢=0.

19. (Remark.) Thus the expression (10) corresponds rigorously to the transversal vibrations
of an indefinite line of equal particles extending in one direction from the fixed point P,; or if
in both directions, then so that y_, ,= —,; ;; and the expression (12) corresponds rigorously to
the transversal vibrations of an indefinite line of particles extending in two opposite directions,

& having no point fixed.

As applied to the theory of light, the expression (12) seems adapted to illustrate the internal
propagation of luminiferous vibration, and the expression (10) to illustrate the reflexion of such
vibration. And this expression (10) may be thus written

t\ (2
Y= ;ZT - (y,,o + y},OJ‘ dt)f dfsin 2§60 sin 216 cos (2at sin 6), (13)
0 0
if we consider y_; , and y_; ; as equal to —y; o and —¥j,.
20. When = is finite, if we put for abridgement

and therefore 7;=2asin g,

w
P21y
we have, for any simple vibration, the formula
Yy,1= Bjcos (2atsin i¢ — B;) sin 2ile,
which may be put under the form
; Y= 3 B;sin (2ilp — 2atsin i + B;)
+ $ B;sin (2l + 2at sin id — B;).
It may therefore be considered as the sum (or resultant) of two conjugate simple movements, of
which the phases are respectively 2ilé — 2atsini¢ + B; and 2:ld + 2atsin i — B;; the amplitudes
are each = } B, ; and the velocities of transmission of phase (from particle to particle) are respec-
asin g —asini
7 ¢ and 5 (ﬁ;

positive velocity is <a and > 2—“, because i¢ >0 but <
m

tively that is, they are equal in amount but opposite in direction. The

g. The epochs B; and — B; are, in like

manner, equal and opposite.

21. Each of the two conjugate simple movements, described in the last article, satisfies
the indefinite equation in mixed differences (1) whatever ¢ and ¢ may be; but the advantage of
combining them, & of supposing ¢ =-———, is that we thereby satisfy also the conditions

T
2(n+1)
58-2
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- 460 XIX. VIBRATION AND THEORY OF LIGHT [21-23

Yo,0=0, Yn41,,=0, for all integer values of ¢. If we omit the last condition (y,,,,,,=0) we may
take any values for ¢ and ¢ ; but we must still combine the two conjugate formulae. If we omit
both of the extreme conditions, we may use either formula alone, and may assign any value to

7 and ¢ (between ¢=0and = g) g

22. In this manner then we might perceive that at the limit considered in article 17, which
corresponds to the integration of the original equation (1), subject only to the one condition
Yo,:=0, we may write

0y 7
Y= j d6 Bycos (2atsin 6 — By) sin 216, (14)
6,

the limits 6, and 0, being arbitrary quantities and By and B, being arbitrary functions of 6.
But in order to reproduce in this case the initial values of y,, and %, we must (if possible)
determine these arbitraries so as to have

A 0y
Yo= f df Bycos Bysin 210, y; o= f 2adf Bysin Bysin 0 sin 210;
0, 0
and these conditions accordingly are satisfied, as in the formula (13), by supposing

T 2 ]
0,=0, 02=§, Bgcosﬁ,,:"—rz(";)_wyj,osmzye,

’ ¥ : 1 e
Y_jo=—Y50 Y-j0=—Yj0 DBygsin /30=‘;T 2% —w Yj,08in 2j0 cosec 6.

23. We might also, in like manner, have perceived, that at the other limit considered in
article 18, corresponding merely to the indefinite integration of the equation (1), we may write

GI 2
y,,,=f df Bysin (216 — 2at sin 6 + By) +Jn du O sin (2l + 2atsin e +y,), (15)
0, u

the limits 6,, 6, and ¢, , ¢, being arbitrary quantities, while By, B, are arbitrary functions of 6,
and C,, y, are arbitrary functions of «. To reproduce the initial values we must endeavour to
determine these arbitrary quantities and functions, so as to have

6y Ly
Vo= J db By sin (210 + By) + f duC,sin (2l +y,),
0y 3%

05
Yi0=— 2af d0 Bycos (210 + By) sin 0 + 2afhdb C,cos (2l +7y,)siny;
6, u
conditions which may be satisfied, as in the formula (12), by supposing

1 . .0 COS 2h0
Bgcos By= s ) %N, (y,,,osm 2h0—%) >

: 1 Y, 08in 220
Bysin lgo=;2<°?z)—w (y,,,ocos 2’*‘”—2‘;&?
1 w 3 y', cos 2h
C.co8y,=_EG)-w (y"’°sm 2ht+%) 1
» 1 y,'h sin 2
Ousiny,= S, (vn,0008 2he—0SeE),
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23, 24] XIX. VIBRATION AND THEORY OF LIGHT 461

and 6,=0, 0,= g y 4 =0, = g . In fact these last suppositions give

Bysin (210 + po)=7-17 (iR (y,,ocos(zho W) + 5 M, -”"' ; sin (240~ 210))

O, sin (T +9,) = %2(,,, m (yhocos (2h—20) — 5 Y0 gin (21, - 2h));
and therefore

2
Bysin (210 + Bg) + Cysin (210 + ) = = - Yn,0€08 (2h0 — 210),

m
2
so that, performing on this the operation J db we get y, o; also
0
1o : Yn,
Bgcos (206 + Bg) = — I (?/h,o sin (2h0 — 210) — ﬁigo cos (2h0 — 2l0)) g

1 . A
C,cos(2li+y,)= s 23w (yh,osm (2he— 20) + 2%::005 (2he — 2lp)) f
and therefore !
2
2a 8in 0 { — By cos (210 + By) + Cycos (216 + yp)} = & Z)— w Yh,0 08 (2h6 — 210),

2
so that the opera,tionf df, performed on this, reduces it to ¥} o; the initial values are there-
0

fore reproduced At the same time, the expression (15) becomes

Y= f df[cos (2atsin 0) { Bysin (210 + By) + Cysin (216 + yg)}
+sin (2atsin 0) { — Bycos (210 + Bg) + Cycos (206 +yy)}]

.2 3 L i , sin (2atsin 0)
= ;fo di X o cos (2h6 — 210) (yh'o cos (2atsin 0) +y5, o Fr e )
2 (2 t :
= ;f do =3, _ ., cos (2h0 — 210) (?/h,o 4 y,',,of dt) cos (2atsin 0)
0 0

¢\ (2
= ?r BT U (ym,,o + y;+,,,of dt) f dB cos 2h0 cos (2atsin 0),
0 0
so that the formula (12) is re-deduced.

24. One element in the solution of the problem of article 1 has been the theorem that
X1 8in ‘7’:_"1 ingﬁ:O, or —n; 1,
according as j and /, being both integer numbers >0 & <n+ 1, are unequal or equal to each
other. As we shall have several analogous summations to perform in these researches, it may be
well to give here the process of proof in full.
The equation 2sin «cos (2ka+ B)=sin (2ko+ « + B) —sin (2ka—« + B) gives, when it is
summed with reference to k,

2sin a 2 5, cos (2ka + B) =sin (2kyo + « + B) —sin (2k; . — o+ B).
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462 XIX. VIBRATION AND THEORY OF LIGHT [24, 25

Let o=, £ibaes B0,
sin (2%, + 1) (ot + o) — 8in (2 — 1) (o £ az)

2sin (o + o)
sin (2k, + 1) (ot — otp) — 8in (2k; — 1) () — p)

4 8in (o) — oty)

sin (2ky + 1) (oty + otp) — sin (2k; — 1) (oc1+oc2)
+
4sin (o + op)

then  Zfyy, cos (2kay + 2ka,y) =

Sk 1., 008 2ka; cos 2oty =

sin (2ky+ 1) (0t — otg) — sin (2ky — 1) (ot — otp)
4sin (o — o)
__8in (2ky + 1) (o) + o) —sin (2ky—1) (¢:t1+ac2
4 sin (ot + o)

and ks r, sin 2ka; sin 2o, =

Hence
271 8in 2ko, sin 2ko,
sin (2n + 1) (¢; — op) —8in (a4 — aty)  8in (20 + 1) (oty + ty) — 8in () + 1)
4 8in (ot; — o) 4 sin (ot + otp)

_sin (o +0) 8in (2. + 1) (%, — ag) —sin (otg — otp) 8in (20 + 1) (ot + )
4 sin (ot + o) 8in (ot — 0tp)
_ 008 (2not; — 20 + 2aty) — COS (21 + 20 — 2naty) + COS (2n + 20, + 2nax,) — cos (2nay + 2n+ 20+ 2aty)
8 sin(ot; + o) 8in (23 — p)

sin 2na, sin 2 + 20, — sin 200, 8in 27 + 20,
2 (cos 2y — cos 2a;) ¥

g il i ot
M2’ %B=5 T2’ unless cos 20, = cos 2« , that is, in the

present question, unless j=1I. But, for that particular case, the sum may be found by differ-
entiating numerator and denominator relatively to «;, & then making o, = a; it is *.*

n+1 nlar lmr n+1

3 coslnsmn+ lcosecn+ oy

this sum therefore vanishes, if o, =

25. The same theorem of summation shows that, in the notation of articles 7 and 8,

Zip1Blcos B =X mi= 1y 2(1)1 Y105
Zih1rt Blsin B =T, 1% = s Tty o,
It is interesting to calculate also Xf}), 7} Bjcos Bi=2Xp,7in}. Since r;=2asin %Wl , we have
2= 2a®— 2a® cos n’L_:_T s we have therefore only to calculate
n+1 i v . ilm
(-2—) Zipami cosn +1 = X1 008 —— ntl (Ean?/z Ly 1)
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For this purpose we have to calculate

2%, cos n'rzl sin ni_l:1 Sinr;,jiﬂl 1 (sxnz (‘Z;.:_ll)ﬂ+sin7' ('Zi:'_ 1) )s n _l:rl gy
unless j=I+1. But if j=1+1, j & I being each >0 and <n-+ 1, then the last sum =11;—1.
Hence
i o (2(1)1 Y1,08i0 z-l:-l)z e 5 Zib1" Y0 Yi41,05
therefore
2

Z¥h17m3 cos — g 1 s+l E('fﬁl?/t,o Yi1,0

and finally, because y,,,, =0,

4q2
173 Bicos B =20 rini = ntl —— 21,0 Y10~ Yit1,0)-
Hence

2 g
T i Bl = Py | Zha W%+ 202Y1,0 Y10 — Y1100}

26. (Bxamples.) When n=1, then

ry=av/2, BycosPi=n,=y,9, 7T1Bisinfi=n1=y1,.
When n =2, then

ri=a, ry=ay/3, BicosBi+ BioosBi=}(yho+uho)
73 Bisin B} +73 By sin B3 = § (4% +Y20)
4a?
7%B%C°Sﬁ§+7§B§cos.3§=—3—(y%,o‘*'yg,o—?h,oyz,o)'

When n =3, then
r=aV2—14/2, r,=a+y/2, rz=aV2++/2,

Bj cos B} + B cos B3+ Bjcos B3 =1} (4} o+ 43,0+ ¥3,0)s
73 BYsin B3 + r3 By sin B3 +r3 Bisin B =} (1% + Y220 + ¥520)s
7§ B} cos B} + 13 Bj cos B3 +73 B cos B§=a2 (Y30 Y30+ Y30~ Y1,0Y2,0— Y2,0Y3,0)-

27. Thenon-periodical part of 2, 4% i Z(m r% B%; this non-periodical part is therefore

equal to the sum

Q=20 {3y% + %0 (Y0— Yis1,0)}- (16)
This part @ appears to be in some sense a measure* of the quantity of vibration of the system (the
mass of each particle being unity).

Problem I1.

28. It is required to apply the general solution of the 15t Problem to the case where, at the
time 0, all the displacements & velocities vanish except those of the j—j,+ 1 consecutive
particles P;,, P; .4, ... P;_,, P;; supposing also that the initial displacements and velocities of

* [Sum of initial kinetic and potential energies.]
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464 XIX. VIBRATION AND THEORY OF LIGHT [28, 29

these are such as to agree with a simple mode of vibration, in such a manner that, if I be >j,—1
and <j+1, we have

Y1,0= By, cos By sin 2klg,  yj o= By, sin By sin 2kisp,
¢ being =¢T%f_i , and 7y, = 2asin ké; but that
yl,0=0: ?/;,020’
if I be <j, or >j.

29. (Solution.) The general expressions

B;cos B;=n;= Zih1Yy,08in 2ilp,

n+1

r;B;sin By =mn;= oy Z(,)ly; o 8in 2:l,

become now
Ny = n———i 1B,‘c cos By Zi, 7,8in 2ilé sin 2kl4,

2r, el sl ke &
= 7?"1 By,sin B, ; sin 24l sin 2klp.
But, by article 24,

St win Sl ain S

4sin (¢ —k) ¢
_sin(2j+1) (i+k)$—sin (2, -1)(G+k)$_F(j)— F(j,—l
4sin(v+k)d
7 . _8in(2j+1)(i—k)¢ sin(2j+1)(i+k)¢ sin 2ji sin 2 + 1 k¢ — sm2]k¢sm2j+lz¢
()= 2sin(i—k)¢  2sin(s+k)é cos 2k — cos 2i¢
therefore
1

2 3}y; sin 2il¢ sin 2kl = % {sin 2ji¢ sin 2j + 1k — sin 2jke sin 2j + 1igh

cos 2k — cos 24
—sin 2j k¢ sin 25, — 1id +sin 2j i sin 2j, — 1k} ;

cos 2§, k¢ sin 2j, — 1k — sin 2jke cos 2j + lqu
sin 2k¢

2 Ty, (sin 2kl$)P=j—j, + 1+

Hence, by the general formula (9), we have, in the present question,

\

sin 2:ld

inke . ¥
kown, ( cos B, cos (2at sin ig) + sin /3,, sin (2atsin “ﬁ)) 008 2/ — 608 23

in id
x {sin 2jic sin 2j + 1k —sin 2k sin 25 + 1id

Yu=ni1

—sin 2j, k¢ sin 2j, — lid +sin 25, i sin 25, — 1kg};  (17)
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29-32] XIX. VIBRATION AND THEORY OF LIGHT 465
and the part corresponding to ¢ =#% is

\

7%008 (2atsin k¢ — B;,) sin 2kl {j—j,+ 1+

cos 2j, k¢ sin 2§, — 1k — sin 2k cos 2j“+_1k¢}
sin 2k :

30. Ifj,=1,sothat thej first particles P,, ... P;are alldisturbed originally in the way above
supposed, then

I (cos B}, cos (2at sin icp) + sin B} :E’:i sin (2a¢sin z‘¢))

sin 2il¢ {sin 2jig sin 2j + 1k — sin 2jke sin 2j + Ligp}

X - :
cos 2k¢p — cos 2i¢

L By
=011

(18)
and the part corresponding to ¢ =k is

B;, A gL ;
g1 (2at sin k¢ — B;,) sin 2kld {j -

sin 2jké cos 2jﬁk¢}
sin 2kd :

31. If j and I be each much smaller than #, so that = is treated as infinite, while j and /,
though perhaps large, are finite, then the expression in article 30 becomes a definite integral,
namely

Y= 2 B,‘chz db (cos B cos (2at sin 0) + sin /3,“ﬂ.—t sin (2atsin 0))
ST o sin 0

i sin 206 {sin 2j0sin 2 (j + 1) « —sin 2jasin 2 (j + 1) 6}
cos 2« — cos 20
in which a=/k¢. This expression satisfies the equation in mixed differences (1); and gives
Y,0=0,4;,0=0,if I > j; but y; = By, cos B, sin 2lu, y; , = 2asin « By sin B sin 2/, if I <j + 1,1 being
a positive integer: it gives also y, ,=0.*

30 £19)

32. In the formula (18), making i¢ =6 and k¢ =«, we are led to consider the product

sin 206 {sin 2;j6 sin 2j + lo.—sin 2jasin 25 + 19}

= 4 sin 20 {cos (2jo.— 0 + 2x) — cos (2o + 0+ 20) — cos (28 — o + 26) + cos (20 + .+ 26)}

=sin 200 {sin (6 + «) sin (2j + 1) (0 — &) —sin (0 — &) sin (25 + 1) (0 + )}

=} sin (0 + «){cos (2j — 21 + 10 — 2j + o) — cos (2j + 20 + 16 — 2j + 1)}

— 4 sin (6 — o) {cos (2 — 21+ 10 + 2j + 1«) — cos (2j + 21 + 10 + 2j + 1a)}.

I+ ll is nearly =1 but that %—;—ll is nearly =0,
we may neglect those sums which involve cosines of 2 (j +) 6 + const., unless they be divided by
something which vanishes or becomes very small in the course of the summation; and may
reduce (under the sign of summation) the recent product to

cos(2j—2l+1)8.cos(2j+1)x.cosf.sina+sin (2j—2/+1)0.sin(2j+ 1)« .sinf.cosa

=4sin (0 +a)cos{(2—20+1)0— (2 +1)a}—}sin (0 —a)cos{(2j — 20+ 1) 0+ (2 + 1) a};
reserving, however, the part
—4sin (0+a)cos{(2+20+1)0— (2 + 1)}

> l:sin2j09in2(j+l)ac—sin2jasin2(j+l)0
cos 20— cos 26

If now we suppose, as in article 18, that

=%{Z32sin 2 (j—s)0sin2(j—9) oc.]

HMPIL 59

www.rcin.org.pl



- 466 XIX. VIBRATION AND THEORY OF LIGHT [32, 34

for special consideration. It may however be instructive, before thus passing to these limits, to
resume the formula (18), & to study first the consequences of it in the case when the number n

of moveable particles is finite but even, & when j= g’

sin 2joeccos 2 (J+ 1)«

vy , which occurs in article 30, may be put under

33. The expression, j —
sin2(2j+1)a
2 sin 2a
that is, if exactly half of the whole number » of moveable particles have such original displace-
ments and velocities as correspond to a simple movement of any one kind; & consequently, in

this case, that part of the whole resultant movement which is of the same period is
* }B;,cos (2atsin « — B},) sin 2lo;
it is therefore exactly half of that other movement
Bj,cos (2atsin o — B;,) sin 2lo
which would reproduce the initial displacements and velocities, not only for half but for the
whole of the system of moveable particles. In other words, we have the theorem:

If the initial state of half the system P,, P,, ... P, correspond to one simple movement
' 2

4 B, cos (2at sin o — B;,) sin 2/a,
and if the initial state of the other half P, ... P,_,, P, correspond to another simple move-
1

the form j+3 — ; it reduces itself therefore to 7—"%} , ifj= g, (beca,use a= —%) ’

ment of the same period and amplitude, but with an epoch differing by an odd multiple of =,
— 3B, cos (2atsin «.— B,) sin 2,

in which a=:i_:1, then the resultant vibration of the system will be composed entirely of

simple movements of other orders, that is, with other periodic times. (The next article will
show that the indices # which mark these orders differ by odd numbers from the index £.)

34. To express this resultant vibration, we may employ the formula (18), under the form

\

Y=o Z4 (cos By cos (2at sin 0) + sin B,,————sm(2atsm 0))

2j+1
sin 210 {sin (0 + o) sin (2§ + 1) (6 — &) —sin (0 — ) sin (25 + 1) (0 + a)}
x ; (20)
cos 20 — cos 20
in which the part corresponding to ¢ =k is now to be omitted; we have also, now,
o o . $km
2 +1’ 2j+1’

(Z+1)0Fa)=30Fk)m;
we need therefore attend only to those values of ¢ which differ from k by odd numbers, positive
or negative. Let I=j+A; then

sin 2l0=sin(2j0+2h0)=sin(%T+(2h—- 1)0)

=sin((" Y "" +(2h— 1)0)_sm(' fan, (%’1+(2h-1)a),

2
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34, 35] XIX. VIBRATION AND THEORY OF LIGHT 467

(1—Fk)m
2

=0. For the same reason
0 . e :
(sin (2 270)11) S F 5 (i—k)m . (c+k)m

because cos

5 sin—— =cos km;

sin 210 {sin (0 + o) sin (2j + 1) (0 — &) —sin (6 — o) sin (2 + 1) (0 + )}
cos 20 — cos 26

cos (%’r+ (2h—1) 0)

= T cos 20— cos 20 {sin (6 + &) — cos kmrsin (0 — o)}

=1cos (’%’+ (2h--1) 9) (sin(;— a)+s§n_(;)-l:))'

(If k be odd, this becomes

ki1 . ;
J(=d)'s sm(2h-—l)e(sin(g_a)+sin(0+a));

if k& be even,

k A -
%(—1>2cos<2h-”"(sm<a-a>'sin<0+°‘))')

Hence the expression for y; , becomes

1B : . il - :
Ysani= Z:"—k—l Zy | cos By, cos (2atsin ) +sin B = —;sin (2atsin 0)
1 (—1)k+1

X COS (";2—"+(2h—- 1)0) (sin(@—oc)+sin(0+a)); (21)

in which the summation is to be performed relatively to i for all values of that index which
differ from % by odd (integer) differences, being also >0 and <n+1; and

i R
0—2j+1’ ey 75

35. For example, if j=1, k=1, we must take 1=2, 6=g, a=%, B—ac=%, 0+a=g,
| 1
sin(0—-a‘)=§, sin(0+a)=1, sinac=§, sin0=\-§, and
Yon S4B (cos [ Hipryy; e %—‘T‘/:”) sin (1 — 24) 0;

that is,
V3 Vi o SiNadA/3
yl,,=Bl\{T(cos ,Blcosat\/3+smﬁls—m$T\/)= — Yot

These values accordingly result from the more general formulae of article 12 by sup-
posing \ ¥
3 o £ s VS &
V0= \/‘4*3100331: Y1,0= %/-Blsmﬁl:

3 \ \ ’ a4/3 i .
y2,0=—‘—i—Blcosﬂ1, yz,():—%BlSlnBl.

59-2
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w

And if we had supposed j=1, k=2, we should have been obliged to take :=1, x=3, 0=%,

0—a= —g, 0+a=1—r,

Y14n,0= 5 B; (cos B; cos at +4/3 sin B; sin at) cos (2h — 1)%;
that is,
V3 5 X AN
yl,,=y2,,=TBz(cosBzcosat+\/3smﬁgsmat).

Accordingly these expressions result from the formulae of article 12 by supposing
3 \ A ’ ’ 3a N 2 A
y1,o=y2.o=%32005.32: ?/1,o=?/2,0=“4“stmﬁz'

36. Whatever j may be, if we take k£ odd and = 2« — 1, we must take 7 even, and of the form
2:; k and ¢ being each some one of the integers 1, 2, ... j. Hence, in this case,

2(—1)« . 3 L Y
Yssnt= I By, 13y, {cos Bax_1 008 (2at sin 27—}-—1) sin G+l

. (21 (k—3)7

sin CO8 —
Lo A sk . (k—%)7 27+ 1 2j+1
+smBzK_lsm(2atsm Py 1)sm %+ 1 } o 1)'”_0 : " (22)
2+1 2j+1
And if, on the other hand, we take k= 2« and ¢ =2.— 1, we have
_ﬁ__l)_’j \ j \ . ("_%)Tr 3 ("—%)ﬂ
Yjint= 2 +1 By, X, {cos B, cos (2at sin 541 sin 541
AR i cos - _21j)-f-L ; b " sin 2;:1 cotan (;;f)lﬂ
gt TNy ; - § T
+smBsz1n(2atsm %+ 1 )Sm2j+l} e . (23)

i VIO gk T

And these formulae may be considered as rigorous with reference to the present question.

37. Supposing now that j increases without limit, but that £ so increases with it as to
leave o =some finite arc, between 0 and g; we shall have, as the limits of the two last formulae,
the following:

2 2 AR
Ysena=_ (=1)B;,. f d0 {cos By, cos (2atsin 0) sin 6 + sin B,._, sin (2a¢sin 0) sin o}
0
sin (2h60 — 0)cos «

cos 2a—cos 260 ’ (24)
and
2 2
Yisnt= 7—1( — 1) B%"J. df{cos B;, cos (2atsin 6) sin 0 + sin B;, sin (2afsin 0) sin o}
0
cos (2h6 — 6) sin « cotan 0; (25)

cos 20 — cos 26
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the first corresponding to the case k = 2« — 1, & the second to k = 2«. It is evident that both these
expressions satisfy the equation of mixed differences; & to show that they also reproduce the
initial displacements and velocities, we must show that they give, according as the integer %
is > ornot >0,

Yisno= F 3Bjcos B;sin2(j+h),

Yisno= FaB;sin B;sin 2 (j+h)asina;

in which a= %kﬂ , 80 that
2%+1

sin 2 (j + h) e =sin {$km + (2h — 1) o} =sin }km cos (2h — 1) o+ cos $kmsin (2h — 1) o
=(=1)*1cos (2h—1)a, or =(—1)¢sin(2h—1)a,

according as k is of the form 2« — 1, or of the form 2«.

38. There are, therefore, for a verification, or for an & posteriori proof of the formulae of
the last article, the 2 following equations to be proved:*

+zcos(2ha—a)_Jgdosm08m(2h0—0)'
~4 cosax ), cos82x—cos20 ’

__1_rsin(2hoc—-oc)_J’gdacosﬂcos(%e—-())_
4 sina ), cos2x—cos20 ’

the upper signs corresponding to positive values, and the lower signs corresponding to negative
values, of the odd integer 2/ — 1.

Now, if we put

: cos 2h0
- Sm j cos 20 — cos 2o T w

we shall have, for all values of &,

4 o 3
Chy1+ Chy — 2008 20C; = 7—Tsm 2ocf0 cos 2k0d0 =, 5in 20 sin har;

therefore this function vanishes, if # be any integer > or < 0; but ¢; +c¢_; — 2 cos 2a.¢y= 2 sin 2a.
Again ¢, =c_;; and ¢,=0. To prove this last relation, we may set out with the evident

relationt O=f %@, which gives 0=f ;d:xa, a being real; (though the complete discussion

of the value of this definite integral belongs to the theory of singular integrals, considered
first by Cauchy;) therefore

b e
o \Z—a z+a z%2—a

l:The integrals which follow are to be interpreted as being Cauchy’s Principal Values, i.e.

fimmf 0]
1 YRR
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and therefore 0= f :;E_d_a%z , if @ be real and different from 0. Make x=tan 20, a = tan 2«, and
o Z2—

suppose (cos 2«)% > 0; then

e 3 6 (sec 20)?sec 2 _ [4 o, df )_ f’z" e
") (sec20)2 — (sec 2x)2 [, \cos 2a+cos 20 ' cos 2a —cos 20) ], cos 20 — cos 26°

which is what was to be proved. (However, it is to be observed that we have here supposed
cos 2« to be different from 0. Yet even if it were =0, so that we had to consider the integral

- 4
f %@ , we might consider this as being =J.4(sec 26 — sec 20) df, and therefore as being =0.)
0 k 0

Admitting then that ¢y= 0, we have c¢_, =¢, =sin 2«. Hence ¢, =sin 2k, if & be any integer not
less than 0; and ¢;, = —sin 2ke, if & be any integer not greater than 0. That is,

Py,

2 cos2hf  _  mwsin2ha
o ©€0820—cos2x ~ 2 sin2«

’

according as the integer 4 is Z0, or =0. Hence, if 2> 0,

2008 20— cos (2h6 — 20)  sin 2ho— sin (2ho — 2a)
db = ; ;
0 cos 20 — cos 2a 2 sin 2«

that is, dividing by + 2,

3

gdﬂ sin fsin (2h6 —0) _ 7 cos (2ha — «)
o cos2a—cos20 4  cosa

if the integer 2k — 1 be > 0; from which, without any new calculation, we see that

H 9 sin fsin (2h0—0)  m cos (2ha— a)
o cCcos2ax—cos20 4 cosa

if the integer 22— 1 be <O0.

In like manner, if 2 be > 0 (being integer), we have

2. cos2hb +cos (2h0 —20) 7 sin 2ho + sin (2ho — 2a)

0 == : :
0 cos 20 — cos 2a 2 sin 2o

that is,

4

2d00080008 (2h6—6) _ msin (2ha— o)
Jo cos2ax—cos20 = 4 sina

r

if the integer 2k —1 be > 0. And hence, without any new calculation, we see that

2

;—’dﬂ cos B cos (2h0—0) _ sin (2ha—a)
" cos2x—cos20 4  sina

if the integer 2k — 1 be < 0. The initial conditions are therefore satisfied.
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39. The same analysis shows that, if the integer & be > 0,

A

T 2
3 cos 2ha = L

dg

0os B con 90 {2 cos a?sin sin (2h6 — 0) + 2 sin «® cos 0 cos (2h6 — 0)}

2 cos (2h0 — 20) — cos 2a cos 2h0 2 sin 260 sin 240
=0 = do,;
0 cos 2a — cos 20 0 COS 20 — cos 26

and accordingly, if we denote this last integral by f;,, we have

Sny1+Sn1—2f5 cos 2« =J2d0 {cos (2k0 + 20) — cos (2h8 — 20)} =0,
0

w

if h>1, and = A5 if h=1; also fy=0, and
: m
fi =f (cos 2+ cos 20) df = 5008 20t
therefore ;
So=m{(cos 20)2— }}= g cosda, and f,= 7—; cos 2he,

if A > 0. The same integral vanishes (as we have just remarked) when A =0, and since it changes

sign with %, it must become = —g cos 2ha, if b < 0.
We have therefore the discontinuous equation

2 J‘gsin 20 sin 240 d0

———————— = +cos 2h«, =0,
o COS 2a— cos 20 : Eossiin

w

according as the integer 4 is Z 0, or =0; & we found, in the last article, that

m
D 2
—sin2ocf M: Fsin 2ha, or =0,
™ o €08 20 — cos 20

according as the integer % is Z0, or =0. Indeed, we may consider both the two last equa-
tions as included in either of the two which occur at the beginning of article 38; & as
conducting reciprocally to those two, by easy combinations.

40. We see then that if we assume

Y= —"2—Tcos afz g =g {bsin 6 cos (2atsin 0) + ¢ sin a sin (2at sin 6)},

o COS 20 — cos 26
b and ¢ being any constants, & % being any integer number, we shall satisfy the indefinite
equation in mixed differences

' @ Ynsr,t+Yn-1,0— 2Yn) =Yne>
and also the initial conditions

gM: y”"o = F 2h -
o P bl e L
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according as 2k —1is > or <0. In like manner, if we assume

{bcos (2atsing) +252%
sin 6

we shall satisfy the same indefinite equation in mixed differences, and the conditions

2 | f;_rdﬂcos()cos(ZhB—O)
yh’t=—;sm¢x

cos 20— cos 20 sin (2atsin 9)} o
0

’
Yno___Yno -

b 2acsina s (e ),

o=

according as 2h—1is 0. If we assume, in the third place,

2f2 ¢ doa foin. 2he{b sin 6 cos (2at sin 0) + ¢ sin asin (2a¢sin 0)},

. W= o €OS 20— cos 26

we shall satisfy the equation in differences, & the conditions

4
Yno___ Yno

: =¥ 2he, =0,
g et F }cos 2ha, or

according as & is Z0, or =0. And if we assume, in the fourth place,

{b cos (2at sin 6) + om o
: sin 0

we shall satisfy the same equation in differences, and the conditions

2 d0 cos 2h0
o €08 20t — cos 20

Yni1= — 1ssin 20 sin (2atsin 0)} 4
kK

Yn,0 ?/;zo 2
L b PRI 4L SRNEPRRLE n2ho: or =0
b 2ac sin o _%Sl i " f

according as 4 is Z0, or =0.

41. Tt follows that the first expression of article 40 corresponds to the effect, at the time ¢,
of an initial state represented by

Yn,a= F % {bcos (2adtsin a) + csin (2adtsin «)} cos (2ha — «),
and the second expression of the same article to the effect of an initial state represented by
Yna= * $1{bcos (2adisin ) + csin (2adtsin «)} sin (2ha — a),
the upper or the lower signs being taken according as 2> or <1.
It follows also that the third expression of the same article corresponds to the effect of an
initial state represented by
Yn,at= T %{bcos (2adtsin «) + csin (2adtsin )} cos 2ha, or =0,
and the fourth expression to the effect of the initial state
Yn,a= *+ %{bcos (2adtsin &) + csin (2adtsin «)} sin 2ha, or =0,
according as & is 20, or = 0. The system of particles is here supposed to extend indefinitely in
two opposite directions from the particle P, so that no account is taken of any fixity of the
extreme particles.

42. Resuming then the consideration of the case where half only of the system is agitated
at the time 0, we see that if this system be indefinite in both directions, and if its initial state
be represented by the formula

Yn,a= €08 (2ha — ) . (b cos + ¢sin) (2asin adt), or =0,
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42, 43] XIX. VIBRATION AND THEORY OF LIGHT 473

according as k is not greater than 0 or is greater than 0, its state at the time ¢ is represented by
the formula

Yn,1=1% (bcos +csin) (2a¢sin o) cos (2ha — )

8 cos ocfz B i 6 (bsin 0 cos + ¢ sin asin) (2at sin 0).
T o  COS 20— cos 20

And if the initial state be
Yn,at= — (bcos +csin) (2a sin adt) sin (2hae.— ), or =0,
according as A is not greater than 0, or greater than 0, then the state at the time ¢ will be
Y= — % (bcos +csin) (2at sin «) sin (2ha — «)

_gsinaJ’2decose cos (270 — 6)

i : Lo i
sinecos20(__00820(bismt9coas+csmousm)( at sin 0),

for all (integer) values of 2. And hence, by an easy combination, we find that if the initial state be
Yn,a= (b cos +csin) (2a sin adt) sin 2hx, or =0,
according as & is * 0 or > 0, the state at the time ¢ is
Yn,t=% (bcos + csin) (2at sin «) sin 2ha

sm 20 cos 2h8
f T ey T (bsin A cos + ¢ sin asin) (2atsin ).

In like manner, if the initial state be :
Yp, = (bcos +csin) (2a sin a.dt) cos 2ha, or =0, as A+ 0 or >0,
then the state at the time ¢ is
Yn,i= % (b cos +csin) (2a¢sin a) cos 2ha

cos 2a cos 2h0
f sin 0 cos 20 — cos 20 (bsin 6 cos + ¢ sin . sin) (2af sin )

1(2 df cos(2r0—26) ,, . s ! :
pe] ey Sy wommey (bsin 0 cos + csin asin) (2a¢sin 0)

=4 (b cos + ¢sin) (2at sin «) cos 2he.

e 0(bsin@cos+csinocsin)(2atsin0)

o €OS2a—cos2

2J‘2d9 cos 0 sin 2h60

7
2 f o PO S S L R A Gl )
7)o sin 6

43. The third conclusion of article 42 might also easily have been deduced from the fourth
conclusion of 41. And the fourth conclusion of article 42 might have been deduced from the
third conclusion of 41, namely from the theorem that if the initial state be

Yn.a1= F % (bcos+csin) (2asin adt) cos 2ha, or =0,

HMPII 60
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474 XIX. VIBRATION AND THEORY OF LIGHT [43, 44

according as & is Z0 or =0, then the state at the time # is

2J‘2dﬂcosﬁsm e (bsin 0 cos + ¢ sin asin) (2a¢ sin 0).

Y=o o €08 20— cos 20

For we have only to add to this the term % (b cos + ¢sin) (2a¢sin «) cos 2ka, to allow for the
additional parts of the initial states of all the particles except P,; and then to allow for the
remaining part of the initial state of that one particle, namely the term

Yo,a:=% (b cos +csin) (2a sin adt) = $b + acsin adt,
by means of the formula (12) of article 18; which shows that, in the indefinite system here
considered, the effect of this initial state y, 4 of the particle P, on any other particle P, at
any time ¢ is

; m
}T (b + 2ac sin ocf dt)J‘2 d0 cos 2h6 cos (2atsin 6)
0 0

m
z 1
=1f d6 cos 2h0 (b cos+—s—glﬁcsin) (2atsin 6).
mJ, sin 0
44. To treat now the question proposed in article 32, we are to suppose, in passing to the
limit there required, that for all integer values of &> 0, we have
Yisn0=0 Yiino=0
J being some very large integer number which however is to be treated as given; (but as infinite;
that is, in one part of the calculation we are not to consider it as varying, but in another part
of the same calculation we are to treat it as increasing without limit;) and for all integer

values of A3 0,
Yjn,o0=Bycos Bisin 2 (j +h)a,

Yjin0=2asin o« By sin B sin 2 (j+h) «,

By, and B, being arbitrary constants, and a=jiﬂl=some given and finite arc. And the

problem may be considered as being to find a function y;,; ; of & and ¢, which shall satisfy the
initial conditions just now mentioned, & also the indefinite equation in mixed differences
Yiant= Ypsnir e+ Yyen-1,0— 2 n,)-
Now, the initial state y;,, 4 here proposed may be considered as the sum of two others, of
which one is expressed by the formula
Bj, cos 2ju (cos B, cos + sin By, sin) (2adt sin «) sin 2h«, or 0,
and the other by the formula
B;,sin 2ja (cos By, cos +sin By sin) (2adt sin «) cos 2hx, or 0,
according as the integer 2 is % or > 0. The first part of the initial state gives, for its own effect
at the time #, by article 42,
4 By, cos 2ju (cos By, cos +sin ), sin) (2af sin o) sin 2ha

®d  cos2hl

Ty e g (cos By, sin 6 cos + sin B, sin « sin) (2a¢ sin 6);
0

a W
% B;, cos 2jasin 20
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and the second part of the initial state gives, by the same article,

4B}, sin 2ja (cos B, cos + sin By, sin) (2at sin «) cos 2k«

cos 0 sin 240

T Bksm 2.7af A i cos 20— cos 20

(cos By, sin 6 cos + sin By, sin asin) (2at sin 6)

+- Bk sin 2jaJ d6 cos 2h8 (cos By cos + 0 % sin B sm) (2atsin 0);

the last line of which last expression would have dmappeared if the initial values y; , and y;,o
had been only half as great as they are here supposed to be. The whole effect at the time ¢, or
the expression for y;,; ,, is, therefore, in the present question,

Yjrn,i=3By8in 2 (j +h) « . (cos By cos +sin B sin) (2at sin )

+‘%Bl‘c‘[2 decos2h08m2(_7+1)a—sm2jacos2(h—1)0
0

cos 2o — cos 26

(cos B;. cos oy L sin f3;, sm) (2atsin 0). (26)

n 0

Accordingly it is evident that this expression satisfies the indefinite equation in mixed
. differences; & it satisfies also the initial conditions, because the theorem of article 38,

fg Bea Bdd 5 S i

cos2x—cos20 T2 amde’ s

according as the integer 4 is Z 0, or =0, gives

1 z cos 2h0s8in 2 (j + 1) o« —sin 2jecos 2 (h—1) 0
~ By | do
cos 2o — cos 20
\ 8in 2hasin 2 (j+ 1) « —sin 2ja sin 2 (b — 1) «
sin 2o
$B;, (sin 2ho cos 2jo + sin 2ja cos 2he)
$Bysin2(j+h)a,

1B}

I
-+l

i
=F
according as & is > or *0.

45. We ought also to be able to verify the expression obtained in the last article, by deducmg

from it those of article 37. Suppose then k=2« — 1 and n = 24; we shall have o = o P ; there-

2j+1
fore
cos (2ja+a)=0, sin(2jou+a)=(—1)<;
therefore
sin 2jo =sin (2ja+ 2a) =(—1)**1cos«; cos Zjo=(—1)“+lgin«;
sin 2 (j+h) a=(— 1)+ cos (2ha —a);
and \

Yysn=%(— 1)<t By, cos (2ha—a) . (cos By, €08 +8in By, _; sin) (2at sin «)

sin (2h0 — 0)

o™

9 2
4 1)K+ i
W Byq (= 1) cos “L 4 cos 2o — cos 26

% (cos B3y_1 8in 0 cos +sin By, _, sin « sin) (2atsin 0);

60-2
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476 XIX. VIBRATION AND THEORY OF LIGHT (45,46
an expression which accordingly differs from the corresponding one (24) of article 37 only by

KT

the addition of the first line, which was there purposely suppressed. Again, if k= 2«, o= ZG+1
then sin(2ja+a)=0, cos(2ja+a)=(—1)% sin(2ja+2a)=(—1)sina= —sin 2ja,

cos 2ja=(—1)<cosa, sin2(j+h)a=(—1)sin(2ha—a),
and Y, p,.=%(—1)% By, sin (2ha—a) . (cos By, cos +sin B, sin) (2a¢ sin «)

cos 0 cos (2h6 — 6)
cos 20 — cos 20

2B;K(— l)xsinocfzde osm szsm) (2atsin 0);
0

an expression agreeing, as closely as it ought, with (25) of article 37 f

(cos Bs,c cos +

46. The results obtained in recent articles may be used so as to throw light upon the
analysis begun in article 32. In fact we may now easily perceive that, by admitting the
transformation in article 31 of sums into integrals, an expression for y; , or for y;,; ,is deduced,
involving functions of 7 + j, namely an expression consisting of the two following parts*:

By gdocos2(j—-l)0.sin2(j+1)oc—cos2(j-—l+l)0.sin2joc
cos 20 — cos 20

(cos By cos + sin 0 % sin Br sm) (2atsin 6);

and

By (%, cos2(j+1)0.5in2(j+1)a—cos 2 (j+I+1)8.sin 2o
7
cos 20 — cos 20

(cos B;. cos =5 ok =5 sin B;, sm) (2atsin 6).

The first of these two parts coincides with the second part of the expression fory;,;,.in article 44,
when we change [ to j + . With respect to the second of the two parts assigned in the present
article, it may be remarked that (see article 32)

—cos2(j+1)0.sin2(j+1)a+cos2(j+I+1)0.sin 2ju
= —sin (0 +«).cos{(2)+ 21+ 1) (0 — &) + 2la} + sin (6 — o, . cos {(2j + 20 + 1) (0 + &) — 2lat};

and that cos 2« — cos 20 = 2sin (§ — «) sin (0 + «); therefore, dividing by this latter function, and
neglecting the terms which have no small divisors and those which change sign with 6 —«, we
find, for the part still to be considered, the expression

BJ'desm(2j+2l+l)(0 o) .
k

Ly} sin 2le (cos Bj, cos + sin 8, 8in) (2at sin o)

=4B,sin2(j+h)o.cos (2atsin o — By),
coinciding with the first part of the expression in article 44, because j + / increases without limit.
* [If these two parts are joined together under the integral sign, the resulting integrand does not become infinite

when 6=u and can be evaluated by ordinary methods. The process here consists of taking each part separately and
interpreting each integral by Cauchy’s method and the method of fluctuation. ]
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47. Resuming now the analysis of articles 80 and 32, we see, in the first place, that the
expression (18) may be decomposed into two parts, namely the two values of the expression

cos2(j F1)ip.sin2(j+1) k¢ —cos2(jF1+1)id.sin 2jké
cos 2k¢ — cos 2id

+2 859,

(cos B;, cos g f:sm Bx sm) (2at sin id);

in which ¢= ;‘}% ,and j, k, I, n are finite. We may also change

) ; =210 to Cpt+ZGH Cs+ Zipiess Oy
in which

_1B: , 5 b { . sin2(?4'+1)k¢}.

Ok—n+lcos(2atmnk¢ Bi)sin 2kl 125+ 1 sin 2%g 3
this last expression being rigorously that part of y;, which has rigorously the periodic time
Ecosec kq.’; Let j, k, I, n be very large, but such that the ratios g, ;’:, % are sensibly >0and <1,
and tb,a,t s is sensibly =0. Then ¢ is extremely small, and so is even 2 (j—1) <;6——+£1 m,
although t-he number j—! may be considerable. Thus, the part C; of C; which involves j—1
alters very little when ¢ is changed to ¢+ 1; unless the denominator becomes small by ¢ being
nearly =k, or atleast by i¢ — k¢ being small, which may be while ¢ — £ is considerable; and there-
fore, with respect to this part (7, the conversion of summation into integration is permitted
unless it shall be found that this conversion is invalid near the critical value i¢ = k¢. To examine
what happens near this value, let¢ =k + g, gbeing aninteger > Oor < 0 which may be considerable
itself but is to be so chosen that the product gé may be moderately small: & let us calculate

sin2(1—j)gé 4 Sin(2atcoskgsingd)
sin g sin g¢

Ci+g+ Ci—y- This sum is found to involve ~— ; that is, we

have to sum expressions of the form
sin2(l—j)g¢ sin (2at cos k¢ sin g¢)
’ G e e ’ X . )
$x1h) $xg 21 wh), b /()
from g =1 to g=a large integer, and the functions f(g¢) not varying rapidly near the lower limit
of this summation, while ¢ is still extremely small and tends to 0. But such summations

]
x (&c.) may be replaced by the definite integrations d(g ) (&e.); & therefore, (on
)1 b

account chiefly of sin ?f_‘_ J) and sin (2at cos asin i+i) bearmg determined limits to sin %:1

when 7 tends to c0,) it is permitted to change the summation (Zf;' + X} 1,) ¢ into a definite

in’oegrat.ionjzdﬂ, for that part C; of C; which depends on j —I. With respect to the other part C}

of C; which involves j+1, we see that this part involves cosines of arcs which receive a finite
increment
G+h=

n+l’

=2(j+D) =

when i is changed to i+ 1; while these cosines are multiplied by functions which receive, by
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418 XIX. VIBRATION AND THEORY OF LIGHT [47, 48

the same change of 4, only infinitely small alterations, except near the critical value i¢ = k.
It is therefore permitted to reject all values of i which do not render g¢ = i — k¢ small; and the
limit of this smallness is 0. We may therefore, after employing the transformation indicated in
article 32, change ¢ into k, or 0 into «, except in

_cos{2lo+(2j + 21+ 1) gp} + cos {2l — (2j + 20 + 1) g}

sin g¢é
which may be reduced to
2sin 2l sin (254 21+ 1) g¢
: g9
It remains therefore to calculate the sum
w 1. (J+l+3)gm,

o > TRy

for we shall have
B\
(B + 2 p4a) Ci=— sm 2lo cos (2at sin o — B;,) E‘”’lg sin? (J +_l:i b i

But (lj;fj)-— is >0, < 2m; therefore, by a known theorem,

)
s 1o g(3+l+%)n w 1_j+l+11~
("’19 P B n+1

accurately; we may therefore write, for this sum, 3 ( 1-—- ,’%) & we have for that part of
2 (¥=14+7.,) C; (observe this notation) which depends on j +, the expression
(g- hj‘) B} sin 2l 008 (2atin & — BL):
And since )= % By, sin 2o cos (2at sin o — B;,), we have, upon the whole,
Y1,¢= § By, sin 2o cos (2at sin o« — B)

cos2(l—45)0.sin2(j+1)a—cos2(l—j5—1)0.sin 2je
cos 2a — cos 26

1. (2
+1B f do

i 0
(cos B;; cos + sm B sm) (2atsin 6); (27)

an expression which coincides with that marked (26) in a,rt;cle 44.

48. The analysis of the foregoing article shows, at the same time, by what steps we may pass
back from this expression (27) or (26) to that marked (18) in article 30; that is, from the
supposition of » infinite to that of n finite. In this return, we are 15t to restore for « its value

%kﬂ 4 1 %’b 8 B
P 2nd to change dOF Tl X F ot ; 3rdin the part free from the sign of

integration, namely %B 1 8in 2o cos (2at sin « — By,), (« retaining for abridgement its meaning just
recited,) to resolve the factor } into two parts which are nearly i and % — 1%; or, more precisely,

to substitute for this part free of the sign [ the sum of the two following functions:
2j+1 sin2(2+1)«)
2 28in2« )’

\

B;,
0k—n+1

cos (2atsin o.— ;) sin 20« {
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and
B, S, (14,0 cos{(2j+20+1) (0 +a) — 2} cos{(2j+20+1) (0 —a)+ 2la}
PN W ALy sin (6 + ) sin (6 —a)
: X (cos B Co8 + % sin By sin) (2atsin 0);
: i 3w sin 0
in which §=-2*—.
n+1

49. With respect to the physical meaning of this last resolution of the factor % into the two

4

parts ;% and ;»—7% , the foregoing analysis shows that the part 8 corresponds to the immediate

effect of the initial state, namely
Y,a= By sin 2l cos (2asin adt — B;), or =0,
according as /3 or >j, in producing the part

% B, sin 2lu cos (2atsin o — B},),

for all values of / (from 1 to ») or, more precisely (when 7 is finite) the part

sin2(2j+ 1)«
sin 2a

2(n+1)

% +1—

Bj,sin 20« cos (2atsin o — B}),

: PR, 2
with the same periodic time gcosec o, & the same number of venters k= ;oc (n+1), as there

would be in the initial state, if that were extended to all values of 7 and ¢. In such a manner that
if one third part only of the system (supposed numerous) be originally agitated so as to correspond
with a given simple mode of vibration, or with a given value of %, then the whole system becomes
agitated with all possible simple modes superposed upon each other, corresponding to all
possible values of ¢ (from 1 to n), but the amplitude of the kth mode is % of the initial amplitude.
And the modes for which ¢ is nearly equal to k, or more precisely for which 6 is nearly equal to o,

so that their periodic times Zcosec& are only a little less or a little greater than Zcosec o,

"besides producing the effect expressed by the definite integral in the formula (27) or (26),
produce also a resultant mode which (if n be large) coincides nearly with the simple initial

mode k& & has an amplitude which bears to the initial amplitude the ratio of § — % to 1. Thus, when
(as in the case just now mentioned) the initial agitation occupied only the third part of the
(numerous) system, so tha f—z, =1, we have %—%: %, and the indirect effect (extending to the

whole system) increases by % of the initial amplitude the immediate or direct effect which had
been found to amount to 4. This indirect effect is produced in an indefinitely short time ¢, and then
is permanent ; so that if n be very large, there is at once produced for the whole system a per-
manent, mode of vibration which coincides with the initial simple mode in all respects except
that of having an amplitude only half as great; which ratio does not require for its establish-
ment that the part originally agitated should be exactly or nearly half of the whole system. The
remaining effect, expressed by the definite integral, corresponds to a complex mode of vibration
formed by the superposition of infinitely many simple modes ; but when the time elapsed is very
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small, it reduces itself sensibly to a single mode, namely the initial mode %; or rather to two
coexisting movements with the initial period & epoch, but with amplitudes which bear to the
initial amplitude the ratios of } and — }, according as l is < or >j, and so reproduce the given
initial discontinuity. We shall soon consider whether any and what reduction of the same sort
takes place when the time elapsed is large.

50. The definite integral in (26) or (27) may be transformed by observing that of the two parts

sin (0 +oa)cos{(2j—2l+1) 0~ (2j+1)a} and —sin(0—a)cos{(2j—20+1)0+(2j+1)a},
into which (as was remarked in article 32) the numerator

cos2(l—7)0.sin2(j+1)a—cos2(l—j—1)0.sin 2ja
may be decomposed, the second results from the first by changing 6 to 7 — 6; while cos 26 in the
denominator & sin 6 do not alter by such change. In this manner we find that the formula (27)
may be thus written:
Yy,1= % By, sin 2lec cos (2at sin o« — By,)
! cos{(20—2j—1) (6 — ) + 2la
+%B"L e § sgn(t‘))—(oc) ! }

(As this is a decided simplification of the integral (27), it Wlll be interesting to inquire whether
we cannot find a similar simplification of the sum (18).)

(cos B cos + i % sin Br sm) (2atsin 0). (28)

51. Under this last form, as under those found before, we see clearly that the function
¥, satisfies the indefinite equation in mixed differences; and to show that it satisfies also the
initial conditions, we ought to be able to show that

lj'"docos{(% 1)(6- a)+2la} g
gin (0 —a)
according as 2k — 1 is Z0. This discontinuous equation appears to resolve itself into the two

following:
J‘"decos (2h—1) (O—oc)=0
sin (6 —«) Y

for all integer values of & ; and

n  sin(2h—1)(0—o)
f it gin(@—a)

according as the integer 4 is > or 3 0. Accordingly

cos (2h—1) (60— oc) J‘" ; St
Ahf do g g -2 » dfsin 2k (0 —a)=0,
sin(2h—1)(0—a) _ (" e &
A,,j dé (0 —2f dfcos2h (0 —a)=0, or 2,
according as A is Z or =0; so that it only remains to prove that fﬂ zl: = )—0, and this
integral :
: i dfsin2a s | ik
_fo df{cotan (§ — o) — cotan (9+ct)}=f0 5 &) 8 (o_m)=2xsm2mf0 S s b

by article 38.*
* [See note, p. 469.]
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52. It is evident also from inspection of the integral in (28) that this integral reduces itself
to — }B;,sin 2« cos (2atsin o — B;,), that is to the part free from the sign [, taken negatively, (so
that the one part of the formula destroys the other,) if we take j = — oo, or h=1—j=c0. A result
which might have been expected, because, by throwing indefinitely far back in the system the
origin of the disturbance we must render the effect of that disturbance insensible for any finite
values of [ and ¢. And we have thus a new explanation of the term independent of integration;
namely that it is the negative of the value of the integral term for j= —oco. We may therefore
write the formula (28) as follows:

By (* dé

Yu=3— 0Sin(o_a)[cos{(2l—2j—1)(0—a)+2loc}—cos{ 2l—2j +1) (0 — ) + 2la}]

(cos B;. cos + 0 % sin B sm) (2atsin 6); (29)

in which j, = —co. And if we treat j, as finite, we may then consuder this last formula as express-
ing the solution of the question:

To find a function y; , which shall satisfy the indefinite equatlon in mixed differences (1), and
also the initial conditions
Yy, = Bj.sin 2l cos (2asinadi— B;), or =0,

according as ! is, or is not, one of the j —j, + 1 successive integers j,,j, + 1, ... 5— 1, 4.

53. This question might have been resolved by the help of the formula (12), which, when
applied to it, becomes

Y= B f df {Z;); sin 2jacos 2 (j 1) 6} (cos By cos + sm B sm) (2atsinf);  (30)

in which
22(5,, sin 2ja cos 2(j~1) 0=2f; {sin 2 (56 +jo —10) —sin 2 (j0 —jo — 16)}

cos{(2j,— 1) (6 + «) — 210} — cos {(2j + 1) (0 + «) — 216}
2sin (6 + o)
_cos{(2j,—1) (0 —a)— 200} —cos{(2j+1) (6 — ) — 216}
2sin (6 —«) .
so that the formula (30) reduces itself to (29). And because the formula (12) admits of a very easy
proof, and may almost be said to be obviously true, it might have been a better or at least a
more elementary mode of proceeding to have begun by deducing (30) from it & to have then

transformed (30) into (29) in the manner just now indicated; after which it would have been
easy to pass to (28) as the limit corresponding to the supposition j, = — oo,

54. The formula (29) may be thus written:

acdiies 4 Tas BB S0 1T (IS a)
y,,,—;kaodO sin (6 — a)

in{(21—j—j,) (0 — )+ 2o}
(cos Bj. cos + mesmﬁksm) (2atsin 0); (31)

in which we mayremember thatj—j, + 1is thenumber of particles P; , ... P;originally agitated;
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and l-—j—g‘i’ is the distance of the particle P, from the middle of the initial agitation. If j, =7,
that is, if there be but one particle originally agitated, this last expression becomes

Ypi=— BkJ dfsin {2 (I—7) 0 + 2ja} (cos B;: cos + sm B sm) (2atsin 6)

== Bk sin 2]af dfcos{2(l—j)0} (cos B cos + 0 % sin B sm) (2atsin 0),
as it ought to do.

55. Article 32 and all the subsequent articles have had reference chiefly to the case of a
system or series of particles extending indefinitely in both directions from the particle P;, of
which the motion is to be examined; but it is easy to deduce analogous results for the case
considered in article 31, in which the system is indefinite in one direction only, the particle P,
being fixed. The formula (19) for this last mentioned case may be thus written:

Lo (7, sin(2i+1)(0—«) . )
Y= kao de T sin 216 (cos By cos Hio. Sy esm Bysin | (2atsinf);  (32)

and might have been obtained from (10) under the form

Yii=— ka d (Z;), sin 2jesin 2;6) sin 216 (cos B cos + 0 *sin B sm) (2atsin@).  (33)
And if, instead of 2, , we take 2, , that is, if we suppose only thej—j, + 1 consecutive particles
P; , ... P;to be originally agitated, we have then

2 sin(j—j,+1)(0—a)
Yue= B"J i sin (6 — a)

cos(j+J, )(0—a)sin2l0
(cos By cos + 0 *sin B sm) (2atsin 6). (34)
If only one particle P; be originally agitated, then j, =j, and the last formula becomes

Yi=- Bkj df cos 2j (0 — &) sin 216 (cos B;. cos + 0 % sin B sm) (2atsin )

ek B,‘c sin 2jaJ d0 sin 26 sin 210 (cos B;. cos + 0 *sin B sm) (2at sin 9),
agreeing evidently with (10).

56. It is worth observing that the formula (32) may be obtained from (31) by changing 7,
to —j. And it is easy to explain this circumstance. In fact, instead of supposing P, fixed by any
external cause, we may suppose it to be originally at rest, and to remain so because y_; = —¥; o
and y’; o= —Y1,0, a8 was remarked in article 19. But in this view we must suppose, in the
question of articles 31 and 55, that the 2j+ 1 particles P_;, ... P; are all originally agitated
according to the law B sin 2/« cos (2a sin adi — B,); except the particle P,, which fulfils this
law by being undisturbed, & any others which in like manner have sin 2/a = 0.

57. An analogous reasoning may be employed to deduce the solution of the 15t Problem
from the formula (12), or the laws of vibration of a finite from those of an infinite system. To

e [T - - ~ ~ ]
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illustrate this transition, let us begin by considering the case where, for all values of j, positive &
negative,

Ypo=Bysin’l, y;0=0;
so that
Y25,0=0 and  Yy;10= —Yaj1,0=B1.
The formula (12) may in general be thus written:
2z : B j
Y= "—Tfo d0 X3 _  cos (216 — 256) (y,,o + yMJ‘o dt ) cos (2atsin 6); (35)

& in the present case it becomes

Y= % d0 (2(1)1 sin 256 sin* 3 ) sin 216 cos (2at sin 6);
in which
23, sin 2j6 sin? — 2 (sin 26— sin 60+ sin 106 - &c.)
. ku
LT sm4)\(0——)
—hmZZ(’msm 2jﬂsm‘7 —h {ithein 4w:lim : :
cos 20 X! ( 11')
sin2(60——
+
therefore i 4)\( )
Y= 28145 j a6 ——————sin 216 cos (2at sin 6)
b sm2(0——)
.l lr
= Bysin 5 €08 (@lV2)= Yy, 0sﬂn cos (atV'2),

as found in the 15t example, article 11, for the case of a single moveable particle. Indeed, we
there considered, on the one hand, only the value /=1; &, on the other hand, supposed y; o not
to vanish. But with respect to this last part of the conditions of article 11, if we now suppose

Yi0=Y1,0 sin‘z;—T , we get, by the analysis of the present article, the additional term

ou? sm4)\( ) A
yl’“limf df) ——————= sin 210 f dt cos (2at sin )
i sm2( 4) v
lwsm(a,t\/é)
2 vz '’

which completes the agreement with the results of the 15t example. In fact

- sin4)«(0—§)
lim | de————F(e)=gF(g),
b sin2(0—g)

if the function F () remain finite for the whole extent of the integral.

=y o8in fdtcos (atV'2)=y; osin

61-2
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58. We might even have considered it as evident & priori that the indefinite integration of
the equation in mixed differences
.. 9
Yoe=15 A Yt (2)
combined with the initial conditions
. I ; oy My
Y0=Y1,080 5, Y,0=Y1,05M 5,

if these be supposed to hold good for all values of the integer /, from a large negative to a large
positive value, must conduct nearly, and more and more nearly as these initial conditions hold
good for a greater extent of /, to an expression of the form

=1, ,8in o
Y,e=Y1,¢ 50

in which y, , is a function determined by the differential equation

Yi,e= — 201,43
and therefore that the integral of this equation, namely

sin (@t V2
?/1t—?/1o‘3°5(a“/2)+ Y105 e SR )

aV'2
when multiplied by sin %I, must express the limit to which the expression
Y= —j do (2(1) 1 cos (210 — 270) sin ) (y1 008 (2atsin 0) +y;. os%n—o))

tends as & increases without limit. And since the sum

sin 4)\(0—2)

9
J '
sm2(0—74)
h

in which A= 5 or lb—-—;——l according as % is even or odd, we might thus be led by the consideration of

the differential equations to discover the following limiting values of definite integrals:

it AT S
k5 cos (210 — 2j6) sin "3 =sin 216

z sin 42 (0 - E)
lim | 6

Amod® sin2(0—£)

w sm4)\(0 )
lim 2d0 sin 216 .

it sin2(0—z) gt

59. In like manner, if the initial conditions be

sin 206 cos (2at sin 0) = g sin lg cos (atV'2);

4 N
sin (2atsin 6) = e sin - sin (atV'2).

. Y i
yj,0=77i31nﬁi: Yj0= "hSlnn+ 1
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and if we use the formula (35) of article 57, we have the expression

y“=—f dag (Ew_msm 2jesm?)sm 216 (m+7hf dt) cos (2atsin 0);

in which 3 _ ., =2lim 2%, ,; and, by article 24,
i=w
sin(2j+1)(0—«) sin(2+1)(0+a),

42{” 1 Sin 2j0 Sin 2ja =

bl sin(@0—«)  sin(6+a)
erefore
1 sin (2j+ 1) (0 —«) sin(2j+l)(0+oc)) : ( ,J" ) g
Y= 0d0£w( 3 ey YL sin 206 | n; +n; odt cos (2atsin ),

in which a= 2—(—;—";3, sothat «is >0 & < g, if72> 0, <n+ 1. We may therefore neglect the part

depending on the rapidly fluctuating term sin (25 + 1) (6 + «) as being rigorously null at the limit
J=00; and in the part depending on sin (2j + 1) (6 — «) may confine ourselves to the consideration
of infinitely small values, positive or negative, of § —«. We find therefore, as the limit sought,

t
Yi,¢=sin 2la (ni + 715 f dt) cos (2atsin ),
0
the initial conditions being, for all integer values of 7,

Y5,0="s8In Zer, Y o=m;Sin Zjo;
and thus the formula of the 4t® corollary, article 6, for the case of a finite number of particles
is deduced from that of an infinite number. And hence by reasoning similar to that of
article 7, we may infer, for an infinite system, that if the initial conditions be, for all integer
values of 7,

i X ijm
Yj,0=ZH1 s8I0 —— n+l’ Yj,0=ZH1Misin —— ntl’

which require only that (if ¢ be integer) we should have the kind & degree of initial
periodicity expressed by the formula

Y5,0= ~Yan+2-4,0=Yan+245,00  ¥5,0= —Yan+2-4,0=Y2n+245,05
we shall then have, for all integer values of I & for all values of ¢, the same kind & degree of
periodicity, which may be expressed as follows:

il o 16y i,
u, ,_Z(msmn_'_ i (1“+7hf dt) cos (2atsm I+ 2); (8)

3y o L ’ a ’
Y11= —Yonio—1,t= Yant241,1> Y= — Yonro—1,t= Yonto+i,i+

Thus the theory of a finite system is included in that of an infinite system, since the formula
(8) has been deduced from the formula (12).

60. The reasoning of the foregoing article shows also that if the initial conditions be, for
the whole extent of an infinite system, or for all integer values of 7,

Y5,0 =745 2j&,  Yj =17, 8in 2ja,
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« being any real arc between 0 and 72—7, (and therefore also if « be any real arc), we shall have, for

the whole extent of the same system at any time ¢,

t
Yp,p=sin 2o (na + n&j dt) cos (2atsin o).
0

In fact it has been shown, & is evident, that this expression satisfies the indefinite equation
in mixed differences, whatever « may be. And here we might commence, from a new point of view,
reasonings analogous to those of article 23; but it seems desirable to pass on to other things.

61. By a transformation analogous to that of article 50, we may simplify the formula (18)
of article 30. For if, in that formula, we extend the summation relatively to i as far as the
value ¢=2n+ 1, we merely double the whole expression, because (2n+ 2—1)$=m—1i¢p, and
the value ¢=n+1 gives sin 2il¢ =sinlr=0; & the two lines of the last expression in the 1st
sentence of article 32 are changed each into the other by changing 6 to = — 8; so that by confining
ourselves to one alone we again halve the expression. In this manner we find that the formula
(18) may be thus written: :

MW . RO sin (2j+ 1) (0 —«) i iy Al
Y=t T Tt l)z‘i’l sin 210 wn (Va4 (cos ,Bkcos-i-msm Bksm) (2atsin 0); (36)
; y v km s, : . : :
in which 6= SmL1)’ a=3 wtl) It is evident that this expression for y, ,satisfies the equation

in differences, & gives y, ;= 0, ¥,,1,= 0; it ought also to give
Y1,0= Bj.cos Bysin 2la, y; = 2asin « By sin B sin 2l«,
iflbel, 2 ..j5buty,,=0,y,,=0,ifI=j+1, j+2, ... n. We ought therefore to find that

z%ﬂsin 2l08in (25 + 1) (0 — )
O 2n+2  sin(0—a)

=gin 2lx, or =0,

according as [ is not greater, or greater, than j; / and j being integers which are each >0 and
<n+1; and 6, « having their recent values. In fact
sin (2j+ 1) (0 —a)
sin (6 — a)

=3 ;c082j (0 —a)=1+22f,, cos 2j (0 —a);

& making 0 =1¢, we have
2sin 210 cos 2j (0 — ) =sin {2 (j +1) i — 2ja} — sin {2 (§ — 1) ip — 2joc};

cos {(j +1)p—2ja}—cos {(4n+3) (j + 1) — 2}
2sin (j + 1)

_sin{(2n+1) (j +1) ¢}
T sin(jxl)é

I Fgin {2 (j £ 1) i — 2ja}=

sin{(2n + 2)(j + 1) ¢ — 2ja} =sin 2ja,

unless denominator = 0; therefore
2 sin 2lid cos 2j (1 — o) =0
unless j=1,if j & l be each >0, <n+ 1; but when j =/, this sum becomes (2n + 2)sin 2la.
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62. Another mode of verifying, and indeed proving the formula (36), is to show that the

expression of which it is (relatively to j) the sum, namely
yu-nlj_ 7 X2 sin 210 cos 25 (6 — ) (cos By cos + | % sin B sm) (2atsin 6),
corresponds to the case of only one particle P; initially dlsturbed,
Yj,0= By, cos B;sin 2ja, y; o= 2asin« By sin f; sin 2jo.
Accordingly the last expression for y, , may be thus written:
2 tlar o ym Yim

" Z(msm oL gl (yj o+, of dt) cos (2atsm?)
and under this form it agrees with (7). Reciprocally, in (7), if we suppress the sign of summation
2% so as to attend only to the effect of the initial state of a single particle P;; & if we represent
this state by the formulae

Y=

’i'ﬂ
y:l'O "hsm ¢

. . W)
Yso=misin = i

we may write R

1 . lem Jjlk—2)m ke
SRR 5 T |
Yit n+12("’1 smn+lcos Ty ( ¢+mf ) (2atsm 1)
1 Ukemr k—1)m . Akw
1 (m+mf dt) 51t sin o cos‘7 (n+ 1) cos (2ats1nj+ 1).
Interchanging ¢ & k to conform more closely to the notation of article 28, and summing
relatively to j from 1 to j, we get this other formula, equivalent to (18) or (36):
. il 2j+1)(2—
i Py Z%“smn+l sin 2 27212 2 g i 3
yl,l_' 2n+ 2 NeT Mk 4 ()1 (’l« 05 k)ﬂ Co8 sin m n+ 2 ( )
" on+e +2

And if we sum, instead, from j, to j, we get this transformation of (17) & therefore this other form
of the solution of Problem II:

1 sin(j—j,+1)(0—a)
2n+1 '
Yoe=p3i ("nc‘*"?kf dt) XA §in (0=a)
x 8in 210 cos (j +7,) (0 — «) cos (2atsin 0); (38)

. It is evident that this includes the

i b . : T km
in which, as in many former equations, 6 = =
y O T Tl "

formula (34).
Problem I11.

63. It is proposed to determine the consequences of the supposition that the initial states
of some number of successive particles correspond to one of the two conjugate components of
a simple movement, (considered in article 20,) that is to the uniform transmission of phase in
one direction.

64. Before passing to this determination, it will be convenient to review & recapitulate the
chief results already obtained.
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(I). The number n of moveable particles being finite, so that the differential equations to be
satisfied are » in number, namely
Y1.0=02(0=2yy ;+¥s0)s  Yo,=0%Y1,i— 2Y5,:+ Y3,0)>
Y3.0=9 Yo,0— WautYa))s s Yn1,4=9 Yust— W1+ Ynt)  Ynt=0* Yn-1,— 2n,0);
we found that we might satisfy these equations, & therefore also the dynamical conditions of
the question, by supposing all the displacements to correspond to that simple mode of vibration,
which is expressed by the formula

t
Yy,e=sin 2la; (m - n;f dt) cos (2atsin «;);
0

in which o; = ﬁ:—z’ and 7;, n; are constants. In this mode, the » moveable or intermediate and

the two fixed or extreme particles are, at any moment ¢, arranged all upon the 7 alternate branches
of a stnusoid, which has 2 extreme & 7— 1 intermediate nodes and ¢ venters. This sinusoid
varies with the time, & oscillates between two extreme positions determined by those of the
first venter. The sinusoidal form is expressed by the factor sin 2/«;, and the oscillation of the
first venter by the factor

t
(”h‘ + n;f dt) cos (2at sin o;)
0

=(1;icos+2—’7;“s—)(2atsma,) (n;cos + 771y sin) (try), if r;=2asina,.

The greatest positive excursion of the venter is attained at those moments, (succeeding each
other after equal intervals or periods of time, each period 7'; being

i cosec cosec o
B P o 3 2n+2)°
when
cosir;= 7’————'_, sintr;= —‘————__7"_
Vi1 Vi +riin?
and this greatest positive excursion = B; =V/'n}+7;27;2. The greatest negativeexcursion = — B;,

& is attained at moments which follow or precede, by exactly half the periodic time 7';, the
moments of greatest positive excursion; so that if these last be of the form ¢;+v7';, in which
v is any integer, positive, negative or null, while ¢, is such that
N : it
YT B MRV R Ok
the moments of greatest negative excursion are expressed by the formula ¢;+ (v+ %) 7';. The
intermediate moments e;+ (v + }) 7; are such that in them the sinusoid reduces itself to a

straight line, the displacements of the particles all vanishing; in such a manner that y;,=0, if

t=¢;+(v+ 1) T;. Infact we have then tr;=17;¢;+ 2vm £ s 3 therefore
costr;= Fsinr;e;, sintr;= +cosr;e;, (m;cos+r7in;sin)(tr;)=0.
The variable velocity ¥;, is expressed as follows, in this simple mode of vibration, for
any particle P;:

b i,
Yi,1=sIn 2let; ("h’ +7; (E) costr;;
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in which the first factor sin 2lx; corresponds to the sinusoidal relation between the several
particles, & the other factor

RN . A .
N+ 73] 008 tr;=(m; cos —r;m,sin) tr;
expresses the velocity of the first venter. This velocity vanishes when ¢=¢;+ v7'; and when
t=¢;+(v+3) T;, that is, at the moments of greatest positive or negative excursion; but at the
moments when t=¢;+ (v + 1) 7';, & when therefore tr;=7r;¢;+ 2vm + g, the velocity of the venter
becomes = Fr;Vyi+r;292; it attains therefore at these moments a negative or positive

’

maximum of amount & this greatest velocity is equal to V72 + r2n3 =Vn? + ;292 multiplied by
the coefficient r; which multiplies the time ¢ under the signs of periodicity. (In former articles
r;€; has been called f;.)

(IT). The foregoing being a possible permanent mode of vibration of the system, it follows that
if at any one moment, such as the moment, ¢=0, the displacements y, , & the velocities ; , are
all such as to agree with it, then, at all subsequent moments #, the displacements & velocities
Y0 & i, will still agree with the same simple mode. In other words, if the particles are all
arranged on a sinusoidal curve of the form y, o= Y, sin 2x«, at the moment 0 & also on another
such curve y, 5= Y 4sin 2ze; at the infinitely near moment d¢, the coefficient «; being still

i
2n 42
displacements of the first venter, (for which z=

and the coefficients Y, and Y 4 representing for these two near moments 0 and df the

7 sty chk
ol
the particles will all be arranged on a curve of the same kind, namely y, ,= Ysin 2xa,; in which
the coefficient Y, represents the displacement of the venter and satisfies the differential equation
of the second order Y;+72Y,=0, so that it may be deduced from Y, & from Y =Y+ Y dt
by the formula .

), then at anysubsequent moment ¢

i
Y,=(Y0+ Y{,Jdt)costri.
0

(ITI). By the linear form of the differential equations of the question, it is permitted to add
together any number of particular integrals or to superpose any number of small motions of
which each is separately possible. On the other hand, any single initial displacement y; o, of
any one particle P;, may be considered as the sum or resultant of » different initial sinusoidal
displacements of the form y, ,=n,sin 2lx,, of which each separately extends to all the par-
ticles P;, but which destroy each other by interference or superposition for all the particles
except P;. For we may write y; o =20, ;sin 2ja;, if we so choose the n coefficients 7; as to
have n;= nr 1Yo sin 2ja;; because X, (sin 2jor;)? =X (sin 7%7_’-_77—1)2 = 7—"——-'2-—! . And with the same
choice of the coefficients 7; we shall have as the resultant initial displacement of any other
particle P, the null expression

D

! 2 L e
Y1,0=2(h1 M Sin 2o, = bl | Y.0 2hy1 810 Zja, sin 2le; = 0,

I being different from j. The effect of a single initial displacement y; , of any single particle 7;

HMPII ' 62
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is to produce, at the time ¢, a system of displacements, or a complex mode of vibration, repre-
2 R . ;
sented by the formula y, ,= poers /X 2ty sin 2jo; sin 2l cos tr;. In fact this complex mode is a

possible permanent mode, because it is the sum of n simple possible & permanent modes; & it
reproduces the initial conditions, giving ¢, o = 0 or =y, o according as [ (being integer) is different
from or equal to j; & giving y; ,= 0 for all values of I. In like manner the effect of any single
initial velocity ¥; , is to produce the complex mode of vibration represented as follows:

Y=, ¥ 1 ——cWie J‘ dt T} , sin 2jo; sin 2le; cos br;.

And therefore the effect of any arbitrary initial state, or the complete solution of Problem I, may
be expressed thus:

2 o o iy o
y"‘=n—+1 E{'},l(y,,o—!- y,‘oJ‘ndt) 21 8in 2ja, sin 2la,; cos try;

in which it is important to observe that the part of the state of any particle P, at the time ¢,
which corresponds to a given value of ¢ and to any given initial displacement or velocity of any
other particle P;, is equal to that part of the state of the latter particle P; at the same time ¢,
which corresponds to the same value of ¢ (or to the same mode of component & simple vibration),
and to an equal initial displacement or velocity of the former particle P;; because the product
sin 2jo, sin 2lx; is symmetric relatively to j and 1.*

(IV). To pass to Problem II, we are to suppose that the initial states of some one or more
successive particles correspond to the kt* mode of simple vibration, so that for one or more
successive values of j we have

s ; P 3o - kw
¥Yj,0= "SI0 2joy, 5,0 ="z 510 2joy,, (%=m);

but that, for all the other values of j,y; o and yj o vanish. And it now is necessary to sum the
product sin 2ju; sin 2joy, between some given limits of j; or at least this is the operation which first
presents itself. But because we have afterwards to multiply by sin 2/«; and to sum relatively to

"1, and because oy, ;=7 —a;, &, +1=1—;, we may substitute cos 2j (o; — a;) for sin 2ja; sin 2ja;,,
if we afterwards change 2 X, to %!, In this manner we find, if j be confined to one value,
the expression

1 J ; -
Vij=ies (7?.& + q,;f dt) T sin 2lo; cos 24 (o, — o) cOS g3
0

and if we are to sum relatively to j from j, to j, then we find

1 sin (2j + 1) (ot; — o) — sin (25, — 1) (o — aty.)
Yoe= 2n+2(ﬁk+nkfdt)2¢i)flsln2lm{ air:c(ac‘—cxk) ¥ L eoslr;
L » PR Sl sin(j—j, + (=) . .y ;
e (qk+qkfodc)z(Q1 sin 2l o ey cos (J +7,) (o —oy;) cos try;

an expression which is the complete solution of the II*4 Problem.

* [Rayleigh, Theory of Sound, 1, pp. 150-157.]
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When all the j first particles are originally in the £t mode of vibration and all the others are
originally without displacement or velocity, so that j, =1, we may write more simply

1 ¢ sin (294 1) (ot; —otg,) .
I ’ on+1 i % } g
Yit=3013 (nk + Jo dt) pX i s sin 2o, cos tr; .

(V). The number » of moveable particles being still supposed finite, the most general mode
of motion of the system may be considered (as we have seen) as the resultant of n simple
modes, of the kind lately described: so that we may write generally

t
Y11= {1 8in 2lo; (”h‘ - n;f dt ) costr;
0
=Xy Bysin 2la; cos v, (E—€;).

And because oy, 9 ;=7 —0;, oy 9_;="7;, W& may write

yl,f = %2?{)‘?—1 'B’I; Sin 2l“,‘ Ccos T,- (t o Ei),
if we assume B,, ., ;= — B;, but €5, ., _;=¢;.

With these last assumptions, we may therefore write also

yl,t = %‘ Zg’)"ii-l B,,: Sin (2lai -~ T,-t + 'I‘i Gi);
and consequently, (B, ,, being =0), may consider the general mode of complex vibration y; ; as
the sum of » pairs of component vibrations, of which each pair might separately continue to
exist, but not (in general) each component semi-mode of vibration itself, if taken without its
conjugate semi-mode, which has the same periodic time for the vibration of any single particle.

Those » component semi-modes for which ¢ <n+ 1 would correspond, if the system were

indefinite, to a continual transmission of phase in the forward or positive direction with a velocity

(for the ¢th mode) = —g;— = SI: - ; and those n other component semi-modes for which ¢ >n+1
i i

would correspond, if the system were indefinite, to a continual transmission of phase in the back-

ward or negative direction with a wvelocity which, for the semi-mode conjugate to the ith, is

s %

=—a

, and is therefore equal in amount (though different in sign) to that just now deter-

mined for the ith semi-mode itself. In fact, the parts of y, , corresponding to these two conjugate

semi-modes are _

1 B;sin (2loa; —r;t+7;¢;) and }B;sin (2lo;+ 7t —17;¢;).
Their resultant vanishes for the extreme particles P, and P, ., whatever { may be; & for any
intermediate particle P, it is, as before,

B;sin 2l cos (r;t—17;€;).

In general, whatever may be the arbitrary initial state of the system, we may represent its
state at the time ¢ by the formula

v Ye=3Z T (mysin+ 71y cos) (2le; — 2at sin o),

if we assume that 7,,.,9_;= —1;, Nonsa_i= — 7}, and therefore that 7, ., =0, n,,;="0; «; being
still = Erim_—é . And we shall still have, in this last formula for ¥, ,, as in others,
245 ke b s 02 sy 2 ks
kL ZH1Yj,08m 2oy,  mi= 21 i1 Y5080 Zjor;..
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Thus, generally, we have the expression

| o5 % A i
Y= gy 2y, 22 sin 2o (y, 98I0 + 771 5 o cO8) (2l — tr;),
‘ ; R ) Loonid i
in which 7, is still = 2asina«,, and «, is still = i3

Accordingly it is easy to prove a posteriori the truth of this last expression for y;,. And if
in it we make y; o= C; ;€08 ;, 17'Yj o= C; 38in 7y, 4, 80 that Cgyp ;=0 ; and ya,.9 ;=i
we shall have

1

Tn+l
But this last transformation does not seem to be attended with any advantage.

Yi1 1 St Oy g8in 2o sin (2lax; + yy j—tr;).

65. The foregoing article contains a recapitulation of the chief results obtained already in
this manuscript for the case of a finite system. If the system be unlimited in one direction,
so that only the condition g, ,= 0 but not the condition y,,,, ,= 0 is to be attended to, we have
then the following results:

(I)’. The differential equations to be satisfied are now infinite in number; they need involve
only positive values of /, but / may be taken as great as we please; they may be written thus:

Y1,=0*(0—2y1 1+ ¥Y20)s  Y2,0=0 Y10~ 2Ys,1+ Y3,0); -
Y11= Yp-1,0— 2¥1,1+ Y141,0)> &c. ad infinitum.

A particular integral, or possible permanent mode of motion of the system, which may also
be considered as a simple mode, is expressed by the formula

¢
Yy,=sin 2l ('qa + n;f dt) cos (2atsin «);
0

in which « is any real arc & 7,, 5, are any arbitrary real functions thereof. This formula in-
dicates an arrangement of all the particles on a sinusoidal curve, containing indefinitely many
alternate branches and varying with the time, but so that a first node is always at the fixed

particle P, & a first venter at a distance, as measured on the axis of the system, = % . The

whole space-period, or interval between two similar modes, is 8, = g; the whole time-period, or

periodic time of vibration of any one particle, is connected therewith, being Ta’=;—:cosec .

The positive maximum of excursion of the first venteris B, =V7? +r-2n2, in which 7 , = 2a sina;
P « Noe T T "N «

and is attained when ¢t=e¢_+v7,, v being any integer & e, being such that cosr,e,= %"i ]
o
el P
sinr e, = Ta T e negative maximum of excursion of the same venteris = — B, &is attained

B(X
when t=¢,+ (v+3%) T ,. At both these two sets of moments, the velocity of the venter vanishes
(& so do therefore the velocities of all the particles); while, on the contrary, the velocity of the
venter attains the negative or positive maximum Fr,B, at the intermediate moments
when t=¢,+(v+1)7,; & at these last mentioned moments the displacements all vanish,
or the particles are all in the axis. ;

it e s g a o
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65] XIX. VIBRATION AND THEORY OF LIGHT 493

(IT)’. A mode of vibration, such as has been just now described, if once established, will
persist; if then, at each of any two near moments 0 & dt, we have

Yo=71a802l0 and y; g= (1, +1edt)sin 2o,

we shall have, for all subsequent moments,

t
Yp,e=sin 2l ('r)u 4 n;f dt) cosir,,
0
that is,
Y1,1= B, sin 2l cos {r, (t —€,)}

(III)'. The sum or integral of any number of such simple vibrations, that is the resultant of
the superposition of any finite or infinite number of them, if once established, will persist; but
any single initial displacement y; , may be expressed by such an integral as follows:

Yio= u Y10 f * 49 sin 246 s1n 219 ( .. yj,ofwdoc sin 2ja sin 2loc\ )
T 0 w 0 /

because this integral becomes =y; , or =0, according as the positive integer [ is equal to or
different from j; the effect of any single initial displacement y; , is therefore to produce, at the
time ¢, the system of displacements represented by the formula

Yii= % Yj.0 f * d0sin 2j0 sin 210 cos try.
0

In like manner the effect of any single initial velocity ; o is to produce, at the time #, the system
of displacements

5 :
t 2

Y= ;—iy;,of dtJ~ df sin 276 sin 210 cos try;
0 0

and therefore the effect of any arbitrary initial state of the indefinite system of particles P, ,
P,, ... is to produce, at the time ¢, a state which may be thus expressed:

o
’ ™

Y= %Z(‘;?)] (yj,o + y;-,of dt) Jz d0 sin 20 sin 216 cos try.
0 0

This result may be connected with the corresponding one in the subdivision (III) of article 64
for the case of a finite system; & the same remark respecting the symmetry of sin 2ju sin 2/«
applies.

(IVY'. If, for some set of successive values of j, from j=j, to j=j, we have the initial con-
ditions y; o ="748in 2ja, Y o=17,8in 2ja, while y; , and y; , vanish for all other (positive) values

of j, we have then, by changing 2f2 do to fﬂde & summing cos 2j (0 — «) relatively to j,
0 0

i pl 12 ™ sin(2j+1)(0-—a)—sin(2j,-—1)(9—«)} .
?/1,:-7—7(-"70‘+77af0dt)f0 d@{ P sin 210 cos try

2l [Tl A DO |
'—;(na+nafodt)fod0 S (0= <) cos (j+7,) (0 — ) sin 216 cos try;
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494 XIX. VIBRATION AND THEORY OF LIGHT [65, 66
and if in particular j, = 1, so that the first j particles all satisfy the foregoing initial conditions,

then
_1 [ TeSin(Zj+1)(0—a) .
Y= n("la""?afodt}fo do =y 210 cos try.

(V)'. The most general mode of vibration of the present system may be expressed as follows:

3 t
Y1= fz df sin 210 (‘r)o +mng f dt) coslirg,
0 0

in which 7, and 7 are connected with the initial state of the system by the relations

A f :_1,0 6in 20d6, 0= f f njsin 210d6,
so that, by what was lately shown (section (III)’), we have |
e ; 219,080 200, 4= ; 219,080 256,
If we extend these last expressions to all values of 6 from 0 to =, we shall have
it f "gsin 2000, o, o=} J " ngsin 21040,
and 5 :
Y= %f”dﬁ sin 210 (")0 + néf'dt) costry.
And this expression again may be }:)ut under the form ;
Y= %f"dB (mg sin +rgingcos) (210 — try), -
or, substituting for 5y and 5, their v‘;lues,
Y= % ze f :de sin 28 (y;,8in + 771y, o cos) (210 — try).

The general expression for the mode of vibration or complex motion of a system indefinite
in one direction may therefore be considered as the sum of an infinite number of pairs of con-
jugate component motions, in each of which there is a continual & uniform transmission of
phase in one of two opposite directions. In any one such component motion, corresponding to

: T . : T ; : 2r @
0=a,ifa>0, <, thereis as above a space-period §,=—, and a time-period 7', = — = — cosec «;
o v il

and the velocity of transmission is 5—,"‘ =a S-lgg . In the conjugate component motion, corre-
sponding to § = — o, we have the samealength of space-period & of time-period, but the velocity

of transmission is negative and may be represented by —a §?. The combination of the two

is necessary in order to preserve the fixity of P,.

66. To recapitulate in like manner the results already obtained relative to a system which
extends indefinitely in two opposite directions, without any condition of fixity, we may
observe that: '
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66] XIX. VIBRATION AND THEORY OF LIGHT 495

(I)"”. The differential equations are now all those included in the formula

Y= Yr1,0— 200+ Yisa,0)s
I receiving all integer values. A particular integral is

{
Yi,1=c08 (2o —y,) (m. - q;J. dt) costr,,
0

in which « is an arbitrary real quantity, r, = 2asin &, and 7, 9., y, are arbitrary real functions
of «. The function y, is introduced, instead of the constant 72—7 which occupied its place in (I)

and (I)’, because we do not now suppose ¥, , to vanish, & therefore retain the cosines as well
as the sines of 2l«. This simple mode of vibration is still sinusoidal, but the particle P;is not now
necessarily a node, With this exception the remarks of (I)’ apply to it.

(TI)"”". In this indefinite system also a sinusoidal mode of vibration, if once established, will
be permanent. A node and venter may be assumed at pleasure, but when the space-period is
m
2
arbitrary but real function of «, namely the abscissa of a node, we may write for any one mode
of this sort

thus determined, the time-period is so too. By making y,=2+2xA,, in which A, is a new

Y= B,sin{2 (I—A,) a}cos {ry (t—e,)}.
(III)”. The sum or integral of any number of such vibrations will be permanent; therefore
the effect of any single initial displacement y; , is
yf“zgyj'or dfcos 2 (I—j)0costry,
0

and the effect of any single initial velocity ¥} ¢ is

LT
y“=§y;'ojodtj:dt?cos 2(l—j)0costrg.

The effect therefore of an initial arbitrary state of the system is, at the time ¢, expressed by
the formula

g Gt
y,,t.:ng;,_w (%,o"'y;'.o.[ dt)J.2 dfcos2(l—7)0costry.
0 0

By supposing y_; o= —y; o and y_; y= —¥} o, we can reduce this general expression for a
system indefinite in both directions to the corresponding expression in (III)" for a system
which is indefinite in one direction only, the particle P, being fixed. It is also possible, by con-
sideration of limits, to connect the expression for a doubly infinite with that for a doubly finite
system, so as to deduce each from the other. In deducing the infinite from the finite, we suppose
J» I, » to increase indefinitely together, preserving finite ratios; in deducing the finite from the
infinite, we suppose a certain periodicity of initial state, for greater and greater distances
from the origin P,, in each of two opposite directions.

(IV)”. In the recent expression for ,, we may change 2 j : to J‘ﬂ; & then, if
0 1]

Yj,0="qCOS (23-0" e 7&), ?};,0 - 1?;: cos (29“' R 'Yoz)i

www.rcin.org.pl



496 XIX. VIBRATION AND THEORY OF LIGHT (66

we may change
cos{2(l—7)0}cos (2ja—y,) to cos{2l0Fy,—2j(0Fa)};

in which it is remarkable that we may take at pleasure the upper or the lower signs. Summing
relatively to j, we find

1 ’ t i4f g 4 o |
Y= o ('r)(x + nafodt)fo dO[sin{(2j+1) (0 F o) — (210 F y,)}

—sin{(2),~1) (0 F o) = (W Fyo | graats
ith A 7 8in(j—7,+1)(0—a) e iy
—;(")a'*")aj.odt)fo do o (P8) cos{(j+j,) (0 —a)— (210 —y,)} costry,

as the effect, at the time #, of an initial state in which all the particles from P; to P; inclusive
are disturbed according to the simple mode (I)”’, so as to have

Yi,0=",CO8 (2l°‘ A '}’a)’ yl,(l b 17; Cos (2l“ e Ya)’
and all the other particles are originally undisturbed.

In the particular case when y, = g, the recent expression for y, , reduces itself to (29) or (31),

in articles 52, 54; the initial conditions being then
Y0 ="q810 2la, Y] g=7,sin 2la,

iflbe >j,—1but <j+1, &y, 0=0,y;,=0, for all other integer values of /. By assuming also the
relations y_; o= — 4,0, ¥_1,0= =¥1,0, We can pass from the case of a doubly infinite to that of a
singly infinite system. And by consideration of limits, the cases of a doubly infinite and of a
doubly finite system may be connected so as to deduce each from the other. The consideration
of limits shows also that if j, = — o0, so that, in the doubly infinite system, the particle P; &
all behind it are initially disturbed according to the law Q;:@ =cos (2l —1y,), while all

o o

beyond it have neither initial displacement nor velocity, the state of the system at the time # is
expressed as follows (at least if « be between 0 & 7, or more generally if sin « be different from 0):

¢
Yi,i=%cos (2la—1y,) (na + n;f dt) cosir,
0

1 oy i ! costrg
—%(na+naf0dt)J0d0 sin {200 —y,— (2j+1) (0 — )} TP

By making y, = 7—27, this reduces itself to the formula (28) of the 50t article.

(V)”. The general formula for the doubly indefinite system may be thus written:
14 ”
y,’,=71—rZ(°';) s (?/j,o‘*'?/},of dt)f df cos (210 — 2j0 —trp); (rg=2asin0).
o JJo

This most general mode of motion of this system may therefore be considered as the resultant
of an infinite number of component motions, of which each separately corresponds to the
continual and uniform transmission of phase in one of two opposite directions. Nor is it neces-
sary now to compound or conjugate two opposite transmissions of this sort, in order to obtain
a particular integral; we may employ either singly, & shall still obtain thereby a possible
permanent mode of motion of the system.
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67-69] XIX. VIBRATION AND THEORY OF LIGHT 497

67. The three preceding articles, 64, 65, 66, contain a recapitulation of the chief results
obtained in the earlier articles of this manuscript. A few remarks may however be usefully made
here, before passing to the solution of Problem III. In particular, it seems useful to observe
that the particular integrals hitherto considered correspond either to oscillating or to travelling
sinusoids. The oscillating are those which have fixed nodes, but oscillating venters; the travelling
are those which have neither nodes nor venters fixed, but which, instead of oscillating & thereby
changing form, change place by moving uniformly & continually either in the positive or in the
negative direction. When any particle is fixed, this condition of fixity obliges us either to suppose
a node to be fixed thereat, & therefore the sinusoid to oscillate, or else two oppositely travelling
but otherwise similar sinusoids to be always conjugated together. But when the system is doubly
infinite, this conjugation is not necessary & we may suppose a doubly indefinite sinusoid to
travel continually in one direction, without being accompanied by any other travelling in
the direction opposite. Even if the system be finite, we may suppose the sinusoids, whether
oscillating or travelling, to be infinite. Finally, in the case of a finite system & finite sinusoid,
we may suppose the number of venters to exceed the number of particles; but this will lead
to no essentially new law of arrangement or vibration of the particles themselves. Thus, in
the case of a single vibrating particle, we may treat that particle as a 34, 5th, ... venter; but its
motion will be the same as when it was treated as the 1st.

68. Returning now to Problem III, article 63, we are to suppose that the initial states of
some finite number of successive particles correspond to some one travelling sinusoid, while

the other particles are initially undisturbed; & are to investigate the consequences of this
supposition.

69. For the case of a finite system, we have found (see page 492)

1

Ypo= g 271 ZeB L sin 2ja, (y; o8in + 771 Yj,0€08) (2lo; —tr;),

; ; v ;
in which o;= 517,:-—2 and r;=2asina;. And we are now to suppose that for certain successive
values of j, namely from j, to j, we have

Yj,0=Bysin (Zjoy, + By),  ¥j 0= — 1y By cos (Zoy, + By),

k being an integer which is less or greater than n + 1, according as the initial sinusoid is travelling
forward or backward.

Instead of X2 sin 2ju, sin (2la; — #r,) we may write
X1 sin 2jo; sin 2lo;costr;, & we have 0=X2cos 2ju,sin 2la; cos tr;;

we may therefore change, under the signs of summation, the product
sin 2jo; sin (2jo, + B)  to  cos{2) (a;— o) — Bi)s
& in like manner

—sin 2ja, cos (2joy, + By) to  —sin{2) (x;— o) — By} =cos (2_7' (o — otz) — Bre+ 1—;),
therefore )

Bi sont1 sin (j—j, +1) (ot; — o)
Y=t 1 HOT iy sin (ot; — aty,)

% {cos {(J+7,) (e — o) — By} cos tr; — :—k sin{(j +7,) (2 — oaz) — By} sin t"i} .

HMPII 63
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498 XIX. VIBRATION AND THEORY OF LIGHT [70

70. This is the general expression for y, ,in the present question; if j, = 1, that is, if all the
first j particles are originally disturbed in the way supposed, we have

sin 20o, (sin {(2j + 1) (ot; — oz) — By} cos try + :l‘ cos {(2j + 1) (&; — oz) — By} sin tr,)
i
2 sin (o; — oy,)
sin 2/o; (sin By costr;— Tk 608 Bsin tr,)
ot Bk 2n+1 Ts
n+1701 2 tan (o; — o)

Making both j, = 1 and j =n, that is, supposing all the » particles to be originally disturbed

in the way already mentioned, we find
sin (2j+1) (o, — o) sin{(6 —k) 7 — (2, —oz)} sin(i—k) =
sin (o —o) sin (o; — o) ~ tan (a;— o)

the first part vanishes or is equal to 27 + 2, according as ¢ is different from or equal to k; & the
second part disappears in the summation; in like manner

cos (2j+ 1) (#;— o) _cos (i —k)n _cos(i—k)m
sin (o — o) tan (o; — ay,) tan (o; — o)’
therefore the expression for the state of the system at the time ¢ is '

k
ym:m 2(2314-1

—cos(t—k)m;

+sin(i—k) =

y," = Bk sin Zlak co8 (t”'k - ﬁk)
B,
2n+2

+ 23 Fsin 2o, cotan («; — o) vers (i — k) (sin By costr;— :l‘cos B sin tr,).
i

In this expression the first part corresponds to a possible and permanent mode of simple
vibration; & the second part must correspond to an initial state in which the displacements
and velocities of all the particles are represented by the formulae

Ys,0= Bj.cos 2jay8in By, Y o= — 15 By cos 2joy cos By
Accordingly, the effect of such an initial state of any single particle P; is

Y= 1—}% 231 sin 2o, sin 2j (o; — o) (8in By cos try — 1y, 77  cos By sintr);
and
cos (ot; — ) — o8 (2n + 1) (o; — o) vers (s —k) =
2sin (o — o) - 2tan (o —ay)’
This last expression becomes =0 when ¢ — k is any even integer (zero included); if therefore k be
odd, of the form 2« — 1, we must take ¢ even, of the form 2., & we have, as the corresponding value
of the formula of the last article,

Yy,1= By 8in 2oy, ; 008 (73,3 — Pax—1)

Zfy1 8in 25 (o — o) =

TR SR i T .
it n:’-‘ 11 21 8in 2loy, cotan (o, — %g,_y) (sm Bax—1 COS try, — :.:-i C0s By, 8in t"m);
12

but if & be of the form 2«, we must take ¢ of the form 2.— 1, and
BBK
n+1

Y11= By, sin 2lay, cos (iry, — Bax) + 4! sin 2lay, ,; cotan (g, - Og)

7.
3 2K
X (sm Ba.cOStry, s — -

2t-1

cosfsintry, ;).
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T1. Forexample, if n=2and k=1, so that the system contains only two moveable particles
and that these are originally in the state of the travelling sinusoid
Yj,a=Bysin (2jo; + By — 7y dt),

in which o, =% and 7, =a; so that
Y5,0= B, sin (E+ Bl)! Yj,0= —11 By cos ('7';“"*‘ B1)§

then the parts proportional to sin ‘73 , namely the initial partial displacements

“ ind”
Yj,0= B cos B, sin 3

& the initial partial velocities

i, o—aBlsmﬁlsmj3 ;
will produce the permanent partial vibration corresponding to a fixed sinusoid with one venter,
and represented by the partial formula

Y= Blsinlgcos (at—By);

jm

and the parts proportional to cos “- 3>

namely the initial partial displacements

Y;,0=Bysin B; cos‘%r,

or more fully
Y1,0=3Bysinfy, Y, 0= —4B;sinpg,,
& the initial partial velocities :
Yj,0= —aB;cos B, cos‘%r 4
or more fully

’ a ’ a
Y105 —531008/31, yg,o=§BICOB B
will produce another partial vibration at the time ¢, which may be thus represented,

Yp,1=%B; I, 8in 213 cotan (L; 6) (sin By cos try, — ary, cos By sintry,),
in which
72L=2asinb—37—r=a\/3;
also

2r @
cota,n(g—g) cotan(? 6) cotané—cotan— V3

i

B, 2l 1 p
y”_% (smﬁlcosat\/3—-\—/§cos,Blsmat\/3).

Accordingly this also is a possible permanent mode of vibration of the system of two par-
ticles, & satisfies the initial conditions.

63-2
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- 500 XIX. VIBRATION AND THEORY OF LIGHT [72,73
T2. Again, if n=2 & if the initial conditions be

9
Yj,0= — 73 Bycos Bycos - i

yj,°=stinﬁzcos&z 3

3 b
we find by the formula for & even

(rz =a '\/3)1

. (20— - ! i
y,'l=%)]?t)lsml( v 3 1)‘rrcot;s.m e 63)"( sin B, cos try, ; — 7 fcos ﬂzsmtrm_l).
Also
m m sy [A il Wby Ay
cotan ( —5) —cotani— —-v3; U y= —\—/Esm 3 (sin B, cos at —4/3 cos B, sin at).
Accordingly this gives

By ,  avy/3 "
y1‘0=—-2—2sm/32=y2’0; y1,0=—}§/—32008ﬁ2=yg,0.

73. Next let the system be infinite in one direction, so that the condition y, ,= 0 but not the
condition y,, ., ,= 0 is to be attended to. We have now to suppose that for all values of j, from j,
to j, the initial state is represented by the formulae

Yj,0= Bysin (2ja+ B,), , Yi0= —raBycos (Zjot By);
but, because we already know the effect of the initial state
Yj,0=Bycos B,sin 2ja, y; o=7,B,sin,sin 2ju, (see page 493),
it is sufficient now to calculate the effect of
Yj,0=Bysin B, cos 2ja, y; = —71,B,cos B, cos Zjax.
Using for this purpose the formula

m
Y= % 5 lfo dBsin 2j0sin 210 (y;, o cos trg+ 15 1y; o sintr),

& changing under the sign of summation sin 2;6 cos 2j« to sin 2j (6 — «), we get, as the new part
of the final state of the system,

2B, smy -J,+1)(0— oc)
sin (6 — o)

Y= sin (j+7,) (6 — «)sin 210 (sm By cos tro-— —%cos B, sin trg)
Ty

The old part was (see page 493)

2BJ‘ sm] —J,+1)(0—a)
Y= sin (6 — )

cos (j+7,) (0 — o) sin 2160 (cos By cos tr0+%sin ﬁasintro);

0
therefore the sum of these two parts, or the solution of the question proposed in the present
article, is

_ 2By [ psin(j—j,+1) (6—a)
-’/""Tf ey o et

X [008 {(j +,) (0~ ) = B cos trg—r, 7 sin {(j+4,) (8~ x) — B} sin trg].
It might have been deduced from that of article 69 by changing B; to B, «; to 6, o to «,
B to By, rsto 79, 13 tO 74, andn:_ i to j do.
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It may also be thus written:

=22 [0 S lsin {2+ 1) (0= )~ B —sin (2], — 1) (9 =)= Bl cosiy

+T—;"[cos{(2j+ 1)(0—«)— B} —cos (%, — 1) (B—a)—Ba}]sintra}=<D(2j+ 1)—® (2, - 1).

T4. The function ® introduced at the end of the last article is such that

(I)(l):%JﬂdBﬁ?(:j«{ sin B, cos trg+7 .75 cos B, sin trg};
0

this, therefore, with its sign changed, is to be added to @ (2j + 1), in order to obtain the effect of
the initial disturbance of the first j particles of this singly indefinite system. On the other hand,
if we seek the effect of the initial disturbance of the j,** and all following particles, we are to
suppose j =00, & to calculate ® (c0); which is

® (00) = B, sin 2l (cos B, cos tr, +sin B, sintr,) = B, sin 2« cos (ir, — B,)-
We have therefore, for the effect of an initial disturbance of the kind supposed, but extending
to the whole system, the expression

B, (=, sin2l0
Yi,0=D (00) — @ (1) = B, sin 2la cos (ir, — B,) + fd@m

X (sin B, costrg—r, 75" cos B, sin iry);
& the second part of this expression, namely — @ (1), must be the effect of that part of the initial
state of the whole system which is represented by the formula y; ;= B, cos 2jasin (8, —7,dt),
or by ¥, o=B,cos 2jasin By, yj o= —7B,ycos 2jxcos B,. Accordingly it is easy to verify and
rededuce this result by making j,=1 & j=o0 in the formula given near the middle of the

preceding page. We may also easily deduce the present result, as the limit of either of those
given at the end of article 70 for the case of a finite system.

75. As an example we may take the case ac=7—27, in which the initial state of the system

corresponds to a travelling sinusoid of the form y; ;= Bsin (j=+ p— 2adt), so that
Yjo=DBsinB(—1), y;,=2aBcosp(—1)+,
In this case, the permanent part, free from the sign of integration, disappears, & we find
Y= —gf:dﬂ sin 210 tan 0 (sinﬁcos trg—i—:cos Bsin trg) ;
Accordingly
f:db‘sin 20tan 0=, and J:dG{sin 2 (14 1) 0 +sin 216} tan 0 =0,
if /, being integer, is \>O ; so that
- %f:d@ sin 2/0 tan 6 = (— 1),

if I i8>0, and the initial conditions are satisfied. These initial conditions correspond to an
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alternate arrangement of the particles both in displacement and in velocity; & as long as [ is
much greater than ¢, the arrangement ought to remain nearly alternate; that is, the above
expression ought to give, nearly,

Y1,4= Bsin (Ir + B — 2at) = B cos lrrsin (B — 2at),
if I be much greater than ¢. Accordingly this result is obtained by integrating from 1—2r— 80 to
4
2

of supposing ¢ large, or the state of a system after a very long time, shall be the object of a full
examination hereafter.

+86. On the contrary, if t be much greater than /, we have nearly y, ,= 0. But the consequences

76. Finally if the system be indefinite in both directions, and if for some set of successive
particles, P; , ... P;, the initial state is represented by the formula

Yj,a= Bsin (B + 2jo—r,dt),
that is, more fully, by

Yj,0=Bsin (B+ 2ja), yj o= —7,Bcos(B+2jx),
we may resolve this travelling sinusoid into two fixed sinusoids, namely,
1st, y, o=Bsinfcos 2jx, yj o= —1,BcospcosZja,
and 204, g, o= Bcos Bsin 2ja, Yje= 7,Bsin Bsin 2.
The effect of the first is, by page 496, (making y,=0),
=§ "dosin (G—5,+1)(0—a

5 Y7 )cos{(j+j,)(0—«)—210}(sinBcostrg-—raro"lcosﬁsintro);

Yt

and the effect of the 21 part is, by the same page, (making 7a=1§r’)

B "d0s1n(j—j,+1)(0—a

e R AL Y R ;
5 5 (0=a) sin{(j+J,) (0 — ) — 210} (cos Bcosirg+r,ry sin Bsin try);

therefore the whole effect, or the solution of the present problem, is

B[ sin(j—j,+1)(0—)
y“‘?fod" sin (9 —a)

x [sin {B+ 210 — (j+4,) (0 — «)} cos trg— 7475 * cos {B+ 210 — (j +3,) (6 — )} sin trg].
It may also be thus written, |

- % 0 En% [{cos ((2j+ 1) (§— ) — (210 + B)) — cos (2, — 1) (0—a) — (210 + B))} cos trg

—rorg M sin (25 +1) (0— a) — (210 + B)) —sin ((2), — 1) (0 — &) — (210 + B))} sin tr]
=W (2+1)=F (2, 1).

77. In this expression the function ¥ is such that

—‘I’(—oo)=g{sin (2l + B) cos tr, — cos (2la+ B)sintr} = § Bsin (2la+ B—tr,);
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if therefore all the particles as far as P; inclusive are originally disturbed in the way supposed
in the last article, we have, at the time ¢, a state which is thus expressed,

Yi,o=%4Bsin (B+ 2la—tr,) + 5— &8 f" ﬁ__ [cos{(2)+ 1) (6 —a)— (216 + B)} costry
—rorytsin{(2j+1) (0 — o) — (206 + B)} sin trg).
The part involving the sign [ must therefore express the effect of an initial state in which all
the particles as far as P; inclusive are agitated according to the formula
Y= +3Bsin (B+ 2la—7,dt),
& all the particles beyond P; according to
Y,a= — 3 Bsin (B+ 2l —r,dt).
We ought therefore to have

+ msin (B + 2lo) = f cos{(23+l ) (6 —a)— (200 + B)},

sin (0

+ mcos (B+2loc)=fﬂ sin{(2j+1) (0 —a)— (200 + B)},

de
o 8in (0 —a)
the upper signs to be taken if / be not greater than j: that is, we ought to have
. df et
iW=J0 Sin(e—_a)sm (2‘7—-2l+ 1) (0—0(),
according as 7 is % or > j; and
i A B
~Josin(f—a)
And it is easy to prove, in fact, that these equations are true. (See article 51.)

cos (2)—20+1) (6 —a).

Problem IV.

78. Itisnow required to determine the approximate or limiting forms to which the solution
of the foregoing problem tends, when the system is numerous & the time elapsed is large.

T79. Beginning with the case when the system extends indefinitely in both directions, and
when all the particles as far as P; inclusive are originally agitated according to the formula
A Yj,a=Bsin (B+ 2ja—r dt), r,=2asina, «>0, <m,
but all beyond P; are originally undisturbed, we have to discuss the formula of article 77, on
the supposition that ¢ is very great. In this manner we obtain, approximately, attending only

to values of 0 nearly equal to «,
o+

Yp,i= 5 Bsin (B + 2l — )+ B ) ed_—eacos{(2j+ 1) (0 — o) — (200 + B) + trg}

=4Bsin (B + 2le—1tr,) {1 +71Jm B—d_ezsin (25 +1—20+1ry) (G—a)},
in which 7., = 2a cos «. If therefore I be considerably less than j + § + af cos «, then we have nearly
Y1,0= Bsin (B + 2l —#r,); butif I be considerably greater than j + 4 + af cos «, then, nearly, ; ,= 0.
And these conclusions hold good, whether ¢ be large or small, & even for negative values of ¢; we

may therefore consider the initial state of the system as having been and as continuing to be
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504 XIX. VIBRATION AND THEORY OF LIGHT [79, 80

dynamically propagated, forwards or backwards according as cos« is > or <0, and with a
velocity =acosa.

80. Let us consider particularly the case °‘=1§T’ for which this velocity vanishes. The

rigorous formula of article 77 becomes in this case

=B (~ Vsin (B 2a0)— 5 B(~1) [ dbsectd
sin (2at sin 0)

X {sin {(2j+ 1 — 21) 8 — B} cos (2at sin 8) + cos {(2j + 1 — 21) 0 — B} i d

1.
s
)
which may also be rigorously thus expressed:

l+sm

Y4=1} (= 1) Bsin (8 — 2at) ——(-an dh=—0  sin{(2j+ 1~ 91)0— B+ 2atsin 6}

1

= -—lfBJ d0 sn{(2_7+1 21) 0 — B — 2atsin 6}.

271'

Now, while ®g=(2j+ 1—2l) 6 — B— 2atsin 0 receives a small but finite increment, 6 in general

ABy e i :
5 ¥ 1-91— Satoos® =A#0; if then I be conmderably different
from j+ 4 —at cos 0, the factor sin {(2j + 1 —2l) § — B — 2atsin 0} will fluctuate often between its
extreme values, + 1, while the other factor o x s
sin 26
or 7; thus, in calculating the 2n4 definite integral, we may in general attend only to these
particular values of . But for these values, we must combine the corresponding parts of the
15t definite integral, and to do this we may write the 214 integral as follows:

receives, nearly, the increment

will vary little, unless 6 be nearly =0

——( ) B f 0 smelsm{(2‘9+1 21) 0+ B+ 2atsin 0};
the whole expression for y, , may therefore ngorously be thus written,*

Y1,=3%(—1)'Bsin (8- %t—l(—l)chosBJ sm{(2_7+l 21) 0 + 2at sin 6}

—(—l)st Bf oos{(2g+l 21) 6 + 2at sin 6};

so that if / be considerably greater or less than both j + } + a: a.nd J+ % —at, the sum of the parts
corresponding to 6 nearly =0 and 0 nearly == is insensible; but if/ be considerably greater than
J+%—atand at the same time considerably less than j + } + at, (¢ being large and positive,) then

* [Accepting Hamilton’s method of treating the integrals, it is a question of finding the value of the integral
——( IYBcosB/ 20 5 sin {(2j-+1-21) 0-+ 2at sin 6)

between the limits 0, ¢ and = —1, x, where ¢, 5 are sma.ll and 2j+1—2l+2at, 2j+1—2l—2at are large positive
or negative numbers. We get then, easily,

~o- (=1) Beos B [ 9 sin (2541~ 21+ 2at) 6,
Jo

+l(—1YBmﬁf@m(2j+l—ﬂ—M)8.
p 0
If €, n are such that |(2j+1—21+2at) €|, | (2j+1—21—2at) n| are large, the results follow as above.]
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this sum of parts is sensibly = —4(—1)’ Bceos B; & consequently, a disturbance or displace-
ment, represented thus and due to the initial velocities, spreads with two equal and opposite
velocities +a on the two sides of the particle P; which terminated the initial disturbance, or
rather on both sides of the point j+ }; and this constant amount of resultant displacement is
= {ay; .. 1f we have exactly I=j+ 4 +at, & if ¢ be large, we have to consider

I - sm{2at(8 sin 0)}, j—cos{Zat(ﬂ —sin6)};

of which two integrals the second may be neglected, so far as depends on values of # near to 0
or 7, but the first gives, for the parts depending on those values,

°df . (at®\ = 0..de. . ™
QJAO ?sm(T)—l_T and —&J‘wmﬁsm(mﬁr‘)~-—z,

2at being here an odd integer; so that the sum is — 7, and the resultant displacement is

6
—§(—1)! Beos B=13ayj,,-
Ifl exactly equalsj + } —at, t > 0, then 2at is still a large odd integer and the parts considered are

__(—1)1BcosB(J. f se) sm{2at(9+sm9)}— ——(——- )’Bcosﬁ(-—%),

giving still the same sum
—&(—1) Beos B=15ay;,.
And it seems likely that if [ be the nearest integer either to j+ 4 +at or to j+ 4 —at, when ¢ is

large, we shall still have nearly this same displacement %y;’o as the part of the general expres-

sion which corresponds to values of # near to 0 and . As to the values of # near g, we may use
the 1¢t definite integral in the second formula of the present article, which, for this purpose,
may be put under the form

__(_l)fBJ.%+38 sm{(23+1—23,’)( +9—_—) B+2at—2atversﬂ_—_—72;}

Yo

=%r(“ l)le?::BiB%cos {2@3—B+(2g'+1—2!) (9—%)—20:731'5(9—%)}

=1(—1)‘Br%sin(ﬁ—-2a£ooaﬂ,)sin(25+ 1-20)6,.
™ 0 ’

If 2j+1—2l be >0 and large, and if we put (2j+ 1-2l)6,=0,, we may suppose ®, large
enough to allow of our changing, with a sufficient approximation, this integral to the form
1 ' d@,
! B il
w( 1B 0, ‘sin @ sm(B 2at cos

0, )
° 2%+1-21)°
at ©?

. o
while 2atvers8,=a£(2sm2) is very small, being nearly = @ri-t

sy and then the integral

HMPII 64
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506 XIX. VIBRATION AND THEORY OF LIGHT [80
becomes % (—1)! Bsin (8— 2at). In like manner if 2j+1—2l be large but negative, so that
mj;;—t:ﬁ)—z is still extremely small, this integral becomes — % (— 1)} Bsin (B — 2at).

Hence, adding the term free from the sign [ at the beginning of page 504, we find the following
results, as consequences of the initial state expressed by the formula
Y,a=(— 1) Bsin (8—2adt) for l*j;
(@)... Iflbe much greater than j+ 4} +at, y,,=0;
(b)... Ifl be much less (algebraically) than j+ % —at,

Y1,1=(— 1) Bsin (B — 2at);
20-2j—1

(¢)... Iflbemuch less than j+ § + a¢ but much greater than j + §, and if g be much
greater than a certain large number ©,, then
Y= —%(—1) Beos B;

(d)... Iflbe much greater than j + 4 —at but muchless than j + 4, and if W be much

greater than the same large number ©,, then
Y= —3%(—1) Beos B+ (—1)! Bsin (8- 2at);
but peculiar calculations are required near the critical values I=j+4, I=j+4% +at. Thus, if

2 we have, by the last

l=j, & if we wish to calculate the part depending on values of ¢ near 3

page, for this part, the expression (if ¢ be large)

sin

;lr(— 1)i Bfwd0, 7 0, sin (B — 2atcos6,);
0 ’

which is insensible.

And generally if 2/ — 2j — 1 be small (whether positive or negative) in comparison with Vat,
so that 2at vers f, may attain a considerable value while (2 —2j—1)#6, is very small, we have
then, by the last page, to consider the part*

B 2j+1—2lJ“’° i 2j+1-2I . ( .-n)
—(=1}~*———| db,sin(B—2at+0%)=34B(—1)~———sin| B—2at+ - |;
which corresponds to a vibration, but with diminished amplitude, and with a change of phase;
to which is to be added the constant displacement,

—}(~1Y Beosp, &also }(—1) Bsin(8—2at).

* [The integral is of the form

1 Ol sk A atf®
~ (11 B [ ain 0sin (—2ut+ )

where since @, is small we may put 6=sin §. Putting 6= 2}.—:‘%1, we get the required form.]
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81. Thecorresponding constant parthasnot yet been calculated in the problem of article 79.
To do so, we must resume the formula of article 77, attending to the factor 7;* & to the values of
6 which are near to 0 & =.

The part depending on these values of 0 is
f 2 [o0s {(2j-+1) (9— ) — (26 + B) — 2atsin 6} — cos {(2] + 1) (9 — ) — (26 + ) + 2atsin 0}

MJ 3[cos{(2s+1)(e+oc) — (216 — B) — 2at sin 6} — cos {(2) + 1) (6+ ) — (206 — B) + 2atsin 6}]

—;%sm{(23+1)a+ﬁ}j 6[3]:1{(2}-&-1 20) 0 — 2at sin 6} — sin {(2j + 1 — 21) 0 + 2atsin 6},

it vanishes or is insensible if j + § — ! —a# and j + 4 — I + at are both large and have the same sign,

that is, if  be much greater than j + § + af or much less than j + § —at; but if / be much less than

j+ %+ at and yet much greater than j + 4 —at, so that 2j + 1 — 2/ — 2at is large and negative while

2j + 1 — 21 + 2at is large and positive, then the above part becomes, nearly,
—3Bsin{(2j+1)a+ B}

When or.=g, this reduces itself to the value found in article 80, namely, — 4 (—1)/Bcosf. In

general it may be represented by — 3y, o, if the initial formula y; o= Bsin (2je+ ) be con-
ceived to extend as far as the point j+ 4, or to the middle point between the particles P; and

P, ,. It may also be thus written, ;y;,o ok

Yi.0-

82. If it happen that j+3}—at is an integer and if we take I equal hereto, so that
2at = 2j + 1 — 2l =a large positive odd integer number, the formula of the last article conducts
us to calculate the integrals

J:%Fsin {2at (60 —sin 0)}, ﬂj:%ain {2at (0 +sin 0)};

which are %, - g; their sum is therefore = —13:, and the corresponding displacement is
Byt ;
—Esin{(2j+ 1)a+ B}

And the same result is obtained by supposing !=j+}+at. At these critical positions, the
constant displacement is therefore only one third part of the value which it has for particles
nearer to P;.

83. If 2j+ 1— 20— 2ai is only small in comparison with Vaf but not exactly =0, we may
still reduce the integral

jm%mn{(zj+ 1—21) 0+ 2a¢sin 6)
0
to g but the integral

‘ " 46
J G sin {(2j+1—21) 0 — 2atsin 6}
i [
assumes the form
j %9sin{(2j+ 1— 20— 2at) 0+ 2at (0 — sin )},
0

64-2
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508 XIX. VIBRATION AND THEORY OF LIGHT [83

in which the second part within the brackets now predominates; 2at (6 —sin 6) being able now
to attain a considerable magnitude, while not only 6 is small but also (2 + 1 — 2] — 2at) 0, this
latter being nearly equal to
2j+1—21—2at
: gt)
3
f dosm{2at(0 —sinf)}is = é’
2j+1—21—2at J‘ °°
~—————— | dfcos(6®). Now (see
T 1 eon i S
15t Blank Book of the present year, 1839, page 65, left hand & the references there made)*,

I'(n)= f °°ar:"—le-”da: =fw(m +V = 1ba)r—le~@+V-1b0d (qz +V — 1bz), (if a>0),
0

V/2at (6 — sin 0).
Also

at being very large; we have therefore only to calculate

=(a+V -1b)» f a"-1e=a* (cos bz —V — 1sin bx) de;

therefore

0
I" being the celebrated function tabulated by Legendre, and r, v being connected with a, b by
the relations a =7 cos v (> 0), b=rsin v. These theorems hold however near @ may be to 0; they

hold even at that limit, and thereby give (ma.kmg v—— a=0,r= b)

] @
f e~ %gn-loogbrdxr=r—"cosnv ' (n), and f e~%gn—1gin bxde=r-"sinnw I' (n),
; 0

f wxn—l 0B bt e B $08 = 'y =Y (n), f 2"1gin bxdx = b—"sin 7—; I (n).
" 0

1
Making b=1 and x= 0", these become

© 1 0 1
f d6 cos (ei)=ncos”—2"1‘ (n), f dfsin (eﬁ)=nsin’-‘§r(n);
0 0

or, changingnto—l—, and observing that nI' (n)=I"(n+ 1),
fd@cos(&"‘) cos—I‘(l+ ) fdﬁsm (™) = sm—I‘(l+l)

For example, f dfcos 0= 0,f dfsin 6= 1; (to be integrated as limiting results;)
0 0

fwdacos(oa)=J§r() Jz, fdﬂsm(ﬁ“) f () [

and finally, returning to the present question, f df cos (6%) = [ ( 3) in which, by Legendre’s

Table, at the end of the 24 Part of his Exercises, we have I (I) = 1019508414 — ( 892079, Thus, in
the question of the present article, we have, because I'(§)=1T'(}),
f ggsm{(%; +1—2l)0 — 2atsin 6} = 7-r+ w I‘(l);
2V at+/3 3

* [There is no trace of this book among the manuscripts.]

www.rcin.org.pl




83-86] XIX. VIBRATION AND THEORY OF LIGHT 509

and the expression at the beginning of article 81 becomes

b P S TL R a
Bsm{(2j+l)a+ﬂ}{6 Va3 P(3)}.
84. Inlike manner, if 2j + 1 — 2]+ 2at be small in comparison with v at, the same expression
becomes
i 1 2+1-21+2at (1),
Bsin{(2j+ 1) a+ B} {6+ i Vai 3 r (3)},
so that if / be as much less than j + 1 +at, in this last result, as it was greater than j+ § —at, in
the result immediately preceding, or vice versa, these two results (of the present & the former
articles) will coincide; or in other words the amount of disturbance, as distinct from vibration,
increases very nearly according to the same law as we advance inward from both extremities
towards the middle of its extent = 2at, for the greater part of which extent it is nearly constant,
but is reduced to one third of this constant amount at each extremity.

85. If ! be nearly =j+ }+atcos«, the integral of article 79 will take another form. In this
case, because
(2j + 1) (6 — o) — (200 + B) + 2at sin 0 = 2at sin o — (2l + B)
+(2j+ 1 -2+ 2atcos a) (60 — o) + 2at {sin 6 — sin & — (§ — ) cos },
and
2at {sin § —sin « — (0 — &) cos a} = —at (0 — x)?sin «,
nearly (x>0, <w), we may write

B fette dg 2j+1)(0 210 2at sin 0
o Msamcos{(.?‘*‘ ) (6 —a) — (210 + B) + 2at sin 6}
B2j+1—2l+2atcosocJ‘°° : )
= dlsin (2l + B — 2at sin o + 62
T Vatsin o 0 ( A o )
B2j+1—2l+2atcosa . ( m ’ )
il o sin| 2la+ B+ —2atsina ); -
. “ 18t

the change of phase presenting itself still, as at the end of article 80. But we must add the
constant part and also the part free from the sign [; & thus we find that if / be nearly
=7+ % +atcos«, we have, nearly,*
Yy,e=3Bsin (B + 2la— 2atsin «) — § Bsin (B + 2jo+ )
+%B2j+ 1—2l+.2atcosoc
Vmatsin o

sin(,8+2loc+£—2atsinoc).

86. We see, then, that although a disturbance, distinct from vibration, spreads, with two

equal but opposite velocities, +a, and with a certain constant amount = g?l},o —% Yj,0, i

both directions, from the point intermediate between the particles P; and P;,,, accompanied
by two terminal diffusions, which are similar to each other, and are nearly proportional in
longitudinal extent to the cube-root of the time ¢ elapsed from the original state of the system;

* [The general term in the asymptotic expansion of the Bessel Function was firet given, without proof, by
Hamilton, R.I.4. Trans. Vol. x1x (1843), p. 313. See Watson, Theory of Bessel Functions, p. 12.]
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there is also a real spreading or dynamical propagation of the initial mode of vibration, preserving
the same constants of amplitude and phase, and accompanied by a terminal diffusion which is
nearly proportional, in longitudinal extent, to the square-root of the time t; a.nd the velocity of

this forward spreading of the vibration is represented by acos «, if «> 0, < o ! a——, there
is only terminal diffusion and spreading of a constant disturbance, but no proper propa;gation
of vibration. And if « > g, <, there is a backward propagation of vibration, or an uniform rate

of abandonment of particles originally occupied by that vibration, the negative velocity of
this propagation being still represented by a cos a.

87. Itisremarkable that this velocity of propagation, a cos e, is the algebraical sum of all the
velocities of transmission of phase,
asinoe asine asino asine asino

o o—7m a+7m o—27 u+2ﬂ_+&c.=acosa,

these several velocities corresponding to the several ways in which the phase may be expressed,

namely
B+ 2lo—2atsina, P+ 2l(xFmw)—2atsina, B+ 2l(xF27)—2atsina, &e.

In fact .
sina=a(1—i)<1+5)(1-—)(1+ )
T T 2
therefore
dsina sine lsina lsinae 1 sina 1 sina
COSOL=—=——-——— + - +— — &c.
do o o T o 2 2m o
Sdens  Tapet IV LR R
T T 2 2

. + &c. becomes

For example, if a = ;—T, the series 2>

3a\/3

{1-3+i-3+3-§+&e}
which may also be thus written

a(sin2oc gin4o sin 6o sin8a ) a(m—2a) a T
+ &o.)]=——F—— =-=acos .

ol Lah auddi '\ b % 2 3
But it is not obvious what dynamical interpretation ought to be put upon this theorem of
summation, as applied to the present question; or in other words, it is not clear, & priori, why
the actual velocity of propagation of vibration ought to be the sum of all the possible velocities
of transmission of phase.

o

88. It is evident that the solution of the case of Problem IV, proposed for consideration in
article 79, includes the solution of that other case of the same Problem, in which the initial
disturbance is confined to a limited number of successive particles; since this finite number may
be regarded as the difference of two infinities. Thus, for this latter case also, analogous results
hold good; & we have still a propagation of vibration in one direction & with one velocity
expressed still by @ cos a. It seems then that even a single undulation tends to propagate itself
with this velocity.

To illustrate this subject, let us consider the following Problem:.
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Problem V.

89. A single particle P, of a doubly indefinite system being compelled to vibrate according
to a known law, it is required to determine the motion of the system which will ensue in
consequence of this vibration of this particle.

90. Suppose, first, that the particle P, is obliged to remain fixed from the time 0 to the time
¢, 8o that y, , is, during this interval of time, constant & =y, ,. We may now consider ourselves
as falling back on the case of a singly indefinite system, and may employ a modification of the
formula (10) of article 17, namely the following, in which 7> 0,

+ PNt glmodi, )
Yne=7 25)1(yj,o—?/o,o+y},of dt)J d0 sin 256 sin 216 cos (2atsin 0) +y, o
0 0

In fact this reduces itself to y; , when ¢ = 0; it gives also an expression for y; , which reduces itself
to y;,0 when t=0; & it gives y; ;= a® (Yy.1,i— 2¥1,4+ ¥1-1,); if | be any integer >0. Had we sup-
pressed the terms proportional to y, o, we should have had ¥} ;= a® (y,,— 2y;,,), instead of having
Y1,0= 0% (Ya,1— 2Y1,;+ Yo,0)- The part proportional to y, o is

Yoo {1 ‘; s, | *d6sin 2j0sin 210 cos (2at sin 0)}; _
0

it is the effect of the displacement y, , of P,, continued forcibly constant throughout the
interval of time ¢, the system being supposed to extend only in the positive direction.

Instead of X%, sin 270, we may write lim X, sin 2j6, that is,
j=o

deo cosO—coa.s (29 + Ua(:lim 81n]051.n(‘70+0));
Jow 2sin 6 s sin 0

cos
2sin 6

Thus, the solution of the question of the present article may be expressed as follows,

& at the limit we may reduce this to the term =} cotan 0, on account of the integration [.*

¢\ (2
Y= % 251 (yj,o + y;-,of dt)f d0 sin 250 sin 216 cos(2at sin 6)
0 0o

tan 6

the first line being only the old expression (10) for the effect of an arbitrary initial state of a
singly indefinite system, the particle P, being fixed at the origin of coordinates; and the second
line being that new part which results from the fixing of that particle P, in the displaced position
Yo, 0 during the time ¢.

g
+yo,o{1_%fodosm2lecos (2atsin0)};

91. Imagine next, that after being thus displaced during an interval of time =7, the
particle P, is suddenly removed to a new position ¥, . & isretained there during some subsequent

* [The terms which vanish are th -1 g5r1+9 (202).]
—> 0
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interval Ar; & let us inquire what will be the state of the system at the end of the time 7+ Ar.
The immediate effect of the displacement Yo,-> continued during the time Ar, is

yo,,,{ f d()sm =0 os(2a,A-rsm6)}

but we have to consider also the effect of the initial displacements & velocities ¥, ¢, ¥},
expressed still by the first line of the formula at the end of the previous page, or by the old
expression (10), in which =7+ Ar; we have also to consider the effect of the new displacements
and velocities,

2 (2 sin 2j6 ;
?lj,r—yo,o{l—;fodo =Y 008(2afrsm0)},

2
y}ﬂ_:%yo,o J' _ dfcos fsin 2jfsin (2arsin0)

which result, at the end of the interval =, from the first fixed displacement y, . The effect of
these is

AT ;
;4-;- I (yj,-r P y;,,fo dAf)fo df sin 2j0sin 210 cos (2a Arsin 6);

in which the part of y; . independent of j, namely the term y, ,, gives, as its part of the effect,

Yoo j dosmm don (20 A8 0);

2doc  sin 2jo
the element — Yoo ta.nJ

cos (2arsin o), in the expression for y; ., produces the effect

2do sin 2/«

— V0.0 008 (2arsin «) cos (2a A7 sin %);

and the element dads

Yo,0 €08 a8in 2ju sin (2arsin «), in the expression for y; ,, produces the

effect
2da  sin 2l |, h : B0
w1 4 i e sin (2a7 sin &) sin (2a A7 sin a);
so that the joint effect of these two elements is — 2—‘? Yo 05:2112?. cos (2atsin o), in which t=71+Ar.

The state of the system at the end of the time ¢ is therefore expressed by the formula*

4 t 5 . - - -
Y= ;2(7)1 (yj,o+y;,of0dt)fo d0 sin 256 sin 210 cos (2at sin 6)

- i
+yo,,—?r-(yo,,—yo,o)fodﬂcotanl)sin 216 cos {2a (t — 7) sin 6}

2
"_,2‘,,!/0,0_[ df cotan 0 sin 210 cos (2atsin 6).
0

* [This could, of course, have been inferred from article 90 by taking the displacement y, , from 0 to ¢ and
Yo,+—Yo,o from 7 to £.]
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Accordingly this expression gives, if I > 0,

3
i 3 % ze, (y,,,, +¥0 f Tdt) f d8 sin 2j0 sin 206 cos (2atsin )
0 0

™

2
+y0,o{l—§f dOcotan()sin2lecos(2arsin0)},
0
paveng Sl v SR 1
Y= o 2 (yj,o 7 + y,,o)J‘o d0 sin 20 sin 210 cos (2arsin 0)

2
+ %yo,of df cos 0sin 210 sin (2a7sin 6),
0

so that it reproduces the known state of the system at the end of the first interval ; it gives
also, for any moment of the 2nd interval Ar, that is, for any value of ¢ from = to 7+ Ar, (I being
still >0,)

Y1,0=0* Yi1,0— 200+ Y110
including the equation

Y1,e=a* (Yo,1— 2Y1,0+ Yo,7)s

& therefore it satisfies the differential equations of vibration, on the hypothesis of y, , being,
throughout the whole of this second interval, constant & =y, ,.

92. In the next place, if there be three successive displacements y, o, ¥, t,» Yo,1, lasting for
the successive intervals =, 75, 75, we must suppose that at the moment ¢, =7, + 7, the dis-
placements and velocities are represented thus:

R
I,= ?‘r Zi (?/j,o + y},oJ‘O dtz) fo df sin 2j6 sin 216 cos (2at, sin 6)

2 2 sin 216 . 2 2 sin 210 .
+Y%0.4— (Yo, = Yo,0) Odemcos (2ar,sin 9) —;yo,ofod() tond °% (2at,sin 0);

4 d Wi o .
3/;,:, s 2 (y,,o i_i?z + y},o) fo d0 sin 256 sin 216 cos (2at,sin 6)

T

2
#+ 4:1:_1 (Yo,6,— Yo,0) f df cos 0sin 210 sin (2a7, sin 6)
0

™
2

; + 4-; Yo,0 f d6 cos 0sin 210 sin (2at, sin 6);
0

and the function y; ;, in which />0 and ¢=t,+ 73, is to satisfy the differential equations of the
form yj;=a®(yy41,1— 2914+ Yia,0), including the equation y,=a® (Y, — 21,1+ Yo,); the final
effect is therefore expressed by the following formula:
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m

t 2
yz,t=%z(°;)1(?/1,o+y;.of dt)f d0sin 20 sin 216 cos (2at sin 0)

sin 210 ¢
had ) R (?/o t— ?/o.u)j 8 rT fh (2a74sin 6)

216 R —
‘*(yotl .’/oo)f dosm =0 ° cos (2arg + 748in )

- Y00 f BSm wcos (2ary + 74+ 7, 8in 0);
which may also be thus written,

t 2
y,,,=f_rz;;,1 (?/j,o'*‘y;.of dt)f dfsin 20 sin 216 cos (2atsin 0)
0 0

2
¥ . Y, "f do - 2;0{1 cos (2arysin 6)}

+ ~Yo, "f OSm 220{ 08(20«1’38111 0) — cos (2ary + T4 sin 0)}

sin 2l0

E inliiaiirothuiond
+ 1% Yo, 0 J. dO y iy {cos (2a‘r3 + 7y 8in 0) — cos (2ary + 74+ 7, 8in 6)}.
0

(92, 93

93. Itis easy to see that this law continues; and that it gives, as the solution of Problem V

in article 89, the expression
¢ 2
Y= % I (y,,o + y;,of dt)j dfsin 2§60 sin 210 cos (2at sin 6)
0 0
e f d'ryo,,f db cos 0sin 216 sin {2a (¢ — 7) sin 6}.
0 0
Accordingly this expression gives
m
di v ok B 42 g
Y= = ZH (ym 5t ym) L df sin 2j0 sin 216 cos (2at sin 0)
8a2 [t e b , :
hp f dr yo’,J. d0 sin 0 cos 0 sin 216 cos {2a (¢ — ) sin 6},
0 0

2 t 2
y,,_-%z;;n(y,ﬁy;of dt)f d0 sin 62 sin 2j6 sin 216 cos (2atsin 6)

2
AN f dry,, ,.J' de sin 62 cos 0 sin 20 sin {2a (¢ — 7) sin 6}

4a2 5
A yo,,f dfsin 26 sin 210,
0
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so that y;, and ¥}, reduce themselves when ¢=0 to the given initial values, and also the dif-
ferential equations of the form y;,=a®(y;,1,,— 2y; 1+ ¥;1,1) are satisfied if I >0, including the
equation y] ;= a®(¥y,;— 2y1,;+¥o,1), in which the function y, , is arbitrary. As a verification we
may observe that if this function reduce itself to the constant y, ,, we have

¢ 3 ; 1 —cos (2atsin 0
fodryo,., sin {2a (t —7)sin 0} =y, o _2a,(s—iﬁ—9-J b

so that if the initial displacements and velocities y, o and y; , vanish, we have

3 2 sin 200 ' 2 (7 sin2ld :
yz,z=;?/o,of0 demvers (2atsin 0)—y0’0{1 _;jo do tan 8 % (2at sin 0)} ;

as found in article 90.
94. The effect of the vibration y, ; of the particle P, being thus found to be

W) e . .

;J‘ dr y””f df cos 0'sin 210 sin {2a (¢ — 7) sin 6},
0 0

o

let us suppose that y, ,= —7sin (2arsina — B), « being >0, < 3

Multiplying this by 2sin {2a (¢ — 7) sin 6}, we get
n cos {2atsin § — B — 2ar (sin 6 — sin )} — 1 cos {2at sin § + B — 2a7 (sin 6 +sin ) };
and multiplying again by 2sin 210, we get
n sin {2atsin § — B+ 210 — 2ar (sin 0 — sin &)} —n sin {2atsin 6 + B + 210 — 2ar (sin 0 + sin «)}
—nsin{2atsin § — B— 210 — 2ar (sin 0 — sin o)} + 7 sin {2a¢ sin 6 + B — 216 — 2a7 (sin 6 + sin a)},

which is to be mtiltiph'ed by :—tcos 6, & integrated relatively to 7 from 0 to ¢ and relatively to 6

from 0 to % In this manner we obtain*

* [The expression for y; , may be written -

m
7 fg dB {cos 0 sin 210 sin (2at sin §— B) — cos a sin 2lo sin (2at sin o.— )}

e sin 6—sin «
2

m

n (2 df (cos @ sin 20— cos « sin 2lx) sin (2a¢ sin «— B)

i) i sin 6 —sin & e
%

The first integral may, obviously, be written

m

m
17 Jarit
e~>07T\) g % ate sinG—sinu{ }
B Y

, ™

=g 2
or Lt 1’([“ +/ Y e 008 f'ein 200 sin (%t sin 0 B),
] 07\ _=7 a+e/ 8in f—sin o

65-2
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m

%
2 ["_d808 ¢ (2atsine — B+ 216) - cos (2atsin 6— B+ 216)

27 ) o 8sinf —sina
— cos (2atsin o« — B — 216) + cos (2at sin 0 — B — 210)}

m”

__‘g_f? d6 cos 0

o m{cos(—2atsinac+,B+2l0)—cos(2atsin0+ﬂ+2w)

—c08 (— 2atsin a + B — 210) + cos (2atsin 6 + B — 210)}

T

2
=217_1r STig%_o—_:ionm{co‘i(2€"tﬁincc—/3+2l0)—co:s(2ats1in()--,3.|.21(9)
“3
— cos (2atsin « — B — 210) + cos (2atsin 6 — B — 210)}
7 :
=?17; ”W{sin@atsin(?—ﬁ)—sin(2atsina—,3)}
i

_-:lfi df cos 0sin 210 sin (2atsin 0 — B)
w) sin  —sin «

—n cos 2l sin (2a¢sin o — ),

observing that by article 39 we have, if / be any integer >0,

2 ffde sin 20sin 260 2 deo sin 0 cos 0 sin 210

cos 2lo=— =— : .
w)o cos2e—cos20 m), sin#2—sina®

1 % X 1 1
=7—Tf0 docososm2w{sin(&—a)+sin(0+a)}

T

1 (? dfcos@sin2i0

w)_ = sin(@—a) °
2
As a verification, the effect calculated in the present article ought to vanish when ! becomes
infinite, ¢ remaining finite. Now
sin 210 sin (2atsin 0 — B) = § cos (2160 + B — 2atsin 0) — } cos (210 — B + 2atsin 6);

& the first of these two terms gives, at the limit, —-gsin (2l + B—2atsin &), while the second

gives + 1 sin (20— B + 2at sin « ; their sum gives therefore + 7 cos 2l¢sin(2atsin'a- , as it
B gl 7

ought to do.
95. We find therefore that in the singly indefinite system, extending only in the positive
direction, the effect of the vibration y, ;=7 sin (— 2a¢sin a + g) (in which &> 0, < 7—2r) of the first

w

because Lt (/a_s +j-’ ) Ti..,, —0.
€>0 ™ x+€/ 8Sin f—sin o
2

The second line gives —n cos 2l sin (2at sin a—B).

We thus arrive at the final form given for y; ;, the integral to be interpreted as this special Cauchy value. The
case sin 2la=0 is exceptional. Here the Cauchy value is unnecessary.]
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particle P, is represented by the formula

4 2 df cos fsin 210 sin (2atsin 6 — p)
) sinf—sina

2

_n [*' d(sinb)
" 27 ) _1sinf—sina

—n cos 2lasin (2atsin o — B)

{cos (210 + B — 2at sin 0) — cos (210 — B+ 2at sin 6)}
— 7 cos 2lasin (2a¢ sin o — ).

If I be much larger than at cos «, this effect is insensible ; but if, on the contrary, af cos « be much
larger than /, the effect is nearly represented thus,

Yr,e="n1{}sin (2la+ B — 2atsin ) + § sin (2lx — B+ 2a¢sin o) — cos 2lasin (2atsin o — B)}
= {sin 2l« cos (2atsin o — B) — cos 2la sin (2atsin & — B)}
=7 sin (2o + B — 2at sin «).

Thus it is true, in a certain sense, that even the vibration of a single particle P,, with a periodic

time = Z cosec a, (in which « is any real arc >0, but < 7—27) , produces vibration, with the same
periodic time, in all the other particles; the transmission of phase having a velocity = - s;n o

but the propagation of vibration having a somewhat less velocity, namely a cos a.

96. Ifx =g, so that the vibration of P, is
Yo,1="7 8N (ﬁ — 2at),

then the same analysis shows that the effect of this continued vibration of this single particle is

k3

7 e ERARIRINEREI s t  R |
Ypo= _f_z e S {sin (B — 2at sin 0) —sin (8 — 2at)};
2

now
T

m
7 : 7
i W=—2J d8 tan @sin 200 = (- 1)f;
7w 1—ginf 0

2

therefore in the present case,

: 1(2 dOcos()sin2lf)sin(B—-2atsin9)}
= )i b5 b3
yl,t‘"’? {( 1) sin (B 2a’t)+7rf_z 1 —sin0 .
2

Changing 0 to g— 0, this becomes

: : 1 (7™ dfsinfsin 210
?/l,t='r)(—-1)’{8111(/3—2at)—;f CRRITLG RN a

gy sin(B~2atcosB)}
2 iar

2 ? dfsin 410 .
=n(—1)"{sin(B— — | — - g ;
=n(—1) {sm (B—2at) ‘."rfo tang SR (B—2atco 20)}
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This is insensible, if I be much greater than V/at; but if, on the contrary, I be much less thanVat,
it becomes, making 2V atsin0=9,,

5 4 (= $
7 (— 1)‘{sm(ﬁ—-2at _mfo df, sin (B—2at+0?)}

=q(—l)‘{sin(ﬁ—2at)—% sin(ﬁ—2at+£)}.

97. We might suppose y,,=7sin(f—2aAt), A>1; & the analysis of article 94 would
then give

o

_m (* dfcosfsin2lf . , e lap aladed - ¢ :
Vo= T {sin (B — 2atsin 0) — sin (B — 2a.4t)};
2
but whether 7 be large or small in comparison with ¢, if both be very great, this function will
become insensible, because the denominator 4 — sin # cannot now vanish. Thus a vibration of

shorter periodic time than the minimum :—; cannot sensibly propagate itself far.

However, when ¢ is very great, we have nearly

”

2 dfcosOsin 210

- ain (B= ik bt ool
yl,l_"s:ln (ﬁ 2aAt) ™ sinf—A4 ’
2

in which*
1 (? dfcosfsin2lf 1 idosinzosinm__f
n) = sinf-A4 =), sin2-4* — V!
2

=a function such that
2
PN b 2f,+4A’f,=%f d0sin 20sin 200 =0 or 1,
0

according as [, being >0,is >1 or =1. Also
m 4
Ay i ik % (sin20)2d6  (? dbcosBsin 20
0% 1T n)e A2—sin@® ) _» w (A —sinb)’
2

in which
8in20cos0=2(sinf— A4+ A4) (1 —-A4%+ A% —sin 6?),
therefore
_442(1-A(*  ab o
e fo Aigingh L TR,
also b i
A?(A2—sin 02)1=1+ A~2sin 62+ A~*sin 6* + &c.,
* [HA:cosh o, cos 0/(A —sin 0)=X7,, e~ sin n<g—0) ]
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and
TNy 9 (2 1.3.5...(2n—1)
st 2 S 20 Jf — 2—2n - iy gpony 3 -n(_ 1)
nf., sin 62 df ”fo cos 62" df = 2-27 [2n]" [0] s 17 [0]" (= 1)%;
therefore
2 (2 do
f 1—A-2gin62 =(1-4-+4,
and
fi= f—/(il”? 1+24%2= —24VA2—1-1+424%=(4-VA2-1)3

fa=142(1-24Y)f, = —(A—VAT=1)%
and generally
n=2] : e e L ]
I being any integer > 0.
Hence in the present question, if ¢ be great, we have
Y= (=1} (4 +VA2=1)"¥sin (B — 2aAt).

The amplitudes therefore, in this case, decrease in geometrical proportion, being proportional
1

to the power of the fraction — ——F————.
(A+VA2-1)
98. This result, on the analytic side, bears some analogy to the well-known theorems

® cos gz dq wlin f“’qsinqxdq_ze_z
P MR WSS PGS 100 A e

in which « is any real quantity > 0, & of which the former includes the latter and may be proved
by observing that if we put
® cos qx o ® g2 cos gx e
X’=f0 _i-g_q;l—q’ we have ' X; = —.[0 q—l—_‘_g;ﬂ—d—q= X,_.—-fo cosqxdg,

whichgives X7 = X ifx be > 0; therefore X, = ae® + be—* = be~* because X o, = 0; and although the
differential equation X7, = X, does not hold good for the particular value z = 0, yet the coefficient

b must be =the limit to which e*X tends as « decreases to 0, & must therefore be equal to g

Laplace, in the Analytic Theory of Probabilities, Article 26, deduces the theorem from the
consideration of a double definite integral, as follows:

r2

X,= f da; (fi:x = Jo dx f 3 dy 2ye~v* 1+2% cos rx =/ ;fo dye Yol

=7 —’fwd '(”"'25) —rj d -z’(l $ )-l.
me ¢ ye =€ ze +\/z2+27~ 37
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And he remarks that by pursuing a similar analysis, the following theorems may be deduced:
J‘ Ew (@ + bz) cos % _
m+2ma+a®
J‘ i (a+ bzx)sinrx " _
m+ 2nx+a?
and ultimately the values of the definite integrals

- M - M
f_wdchosm, f_wdstmrx,

a—bn ' —
cosrn + bsin rn | me—rVm—n,
m—mn2

a-bn ——
becosrn — sinrn | merVm—ni,
m—n?

in which M and N are rational and integral polynomes, such that the degree of M (relatively
to z) is less than that of N, and the roots of N = 0 are all imaginary. The two last theorems may
thus be written,
J‘ a (a,+:;: co:rx_wa —rm, J‘ s (a+x)sinrz - ™
m?+ & Tt
& under this form they follow easily from those first cited in this article.
99. In the foregoing investigations, we have, expressly or tacitly, employed often the
principle that if any finite function of a real variable be multiplied by the sine or cosine of an
infinitely great multiple of that variable, & integrated within any finite limits, (or even, in most
cases, between negative and positive infinity;) the result is evanescent; & therefore that if the
function be not constantly finite, we need attend only to those values of the variable which differ
infinitely little from the values which make the function infinite.* And in some cases of a con-

stantly finite function, such as F (6) =sitfgs—0 1 (4 > 1), in article 97, or F (¢)= lq in article

98, we have been able to assign the law according to which the integral tends to become in-
finitely small as the multiplier of the variable under the sign sine or cosine in the rapidly
fluctuating factor tends to become infinitely great; namely, in these cases, the exponential law
expressed by the formulae

JQ do - C‘;S(’Asmzlo m(— 1) A+ VA =),

A being any real quantity > 1, and / being a,ny integer number > 1; and

f dq oos qx =me 9%,
z being any real quantity « 0.
It seems that in most cases of this last kind, that is, in most cases of a constantly finite
function F (¢) multiplied by the cosine of a large multiple ga of the variable ¢ & integrated from
— o0 to +o00, (F( Foo) being supposed =0), we must have, nearly, the expressionf

i 2 n
|7 aaF @oosqe=2%5 o (-11F (7);
z being large.

* [This is Hamilton’s principle of fluctuation, which he Jater developed at length in a memoir on fluctuating
functions. 7T'rans. R.I.A. (1843) X1X, pp. 264-321.]

T[zf‘" *’zr( Jobagedg.
@) u-p 7
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It will however be probably in general more exact to substitute, in this expression, instead

of the middle ordinate F (1;—") of the curve in which ¢ is abscissa and F (¢) ordinate, taken

=(n$%)1r
x

between the limits ¢ , the average ordinate of this curve between these limits, namely

z (D]
—f . % F (g); & thus we find

ko i
(n i)x

m+HZ

i 2 z
f_wqu(q)cosqx=;Zz’:;)_w(—1)’?f dg F (9);

n-»Z
T

z being large. It will be useful to test these formulae by some examples.

100. Let F(gq)=cosg; then 2cosgqcosga=cos (qz+g)+cos (g —q); & since this function
F does not vanish when ¢ = co, we shall take finite limits of integration, such as 0 and 7, & employ
the approximate formula

f :qu(q)cosqx=i{F(0)+22?17)}(_l)nF (nf)” ‘"’°°s‘”"’}’

x being now some large and positive integer. Applying this to the case F (q)=cosg, the first
member vanishes, & the 224 member ought to be found to be nearly =0. We ought therefore to

Zanl nw cosxm—1 . P
have, nearly, & Ziai(—1)"cos 7 e v el if x be a large positive integer. Now
T T 27 3 mar T mm
2c08 —| — €08 ~+4 €08 — — €08 — + ... + COS M7 COS — | = — COS — + cos M7 o8 | — +—|;
2z z x & T 2z Sl

making therefore m =z — 1, we have

w ™ o
—cos—2;+cos (2 — ) cos(w—2—x) = (cos xm — l)qos e

in this case therefore the theorem is rigorously true. If we had employed average instead of
maddle ordinates, we should have had

re 2 ( (2 57 i
f qu(q)cosqx=—{f + (=1 +cosx7rf }qu(q);
0 7(Jo (n—g)’i ,,_21
z being still a large and positive integer. Making F (¢) = cos ¢, we ought to find nearly

il 7w i nar
0=1—rsm%{l+22{n>{(—-l)”cos;‘—cosa:'rr};

& in fact this also is rigorously true. But we cannot expect to find so perfect an agreement, in
general, between the equated expressions.

101. Let F (¢)=e%; then
© L2
f dq F (q)cosqr=Vme *;

HMPII 66
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_nim?
is this then nearly = -E(n)_w (—1)re < ? In general, we have, rigorously,

2o (- F(a0)= Lt |~ dtF a2

= 2f dt F (to) (cos tmr + cos 3tmr +- cos 5t + &c.).
We ought therefore to have, nearly, in general, if z be large,
J. dq F (q)cosqx=— f th( )(costn+cos3t1r+cos5t1r+ &c.)

= ;f dq F (q) (cos gz + cos 3gx + cos 5qz + &c.).

But in the case F (¢) =7, this would give
LSl o) ThiRL . SR el |
V'me 4=7 e t4+e f+e * +&c);

m

& the second member is greater than the first, if 2 be large, in the ratio nearly of 4 to 7. There
can be no doubt but that this arises chiefly from the circumstance that the definite integral

ks
2z 2z
f : dgcosqr= :—i is greater than f z" dq e cosqx;

2z 2z

and generally from the inequality of

m+7 _nim st DT g _mn
J "dqe‘q’cosqx and e 1’[ dqcosqz (- l)"~e N
-7 Y m-b7
x

such inequalities though small being numerous & giving an accumulated result, which bears a
sensible ratio (4 — 7 to 7) to the small value of the integral in question, when z is very great. To
allow for these inequalities, at least nearly, we might make

LIt . ) ”l"l
e C=¢ Z'e =e =,

.........................................................

103. Returning to the investigation of article 97, & to the first expression there given for
Y1,1> that is for the transversal displacement of the particle P, at the time ¢, / being any integer
>0, and the particle P, being obliged to vibrate according to the law y, ,=»sin (8 — 2a4t), in
which 4 > 1, while y, =0, ¥; o=0; we see that, in order to develope this expression according
to the powers of ¢, it is sufficient to calculate generally

8 gdesm()‘c080sm2l0 da(A+sm0)sm8‘cosOsm2l0
L L8 A —sinf A2 —sin 62 ;
2

or simply
sin 6% sm 20 sin 216
—sin 62

’

fsi o fde
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since f 5;,1=A4f; 5;. And we have already found that
fi=fo=(-1*(A-VA-1),
if 1> 0; fo,0=0. Now
A%fy—fy 0= fde{Az"—2+A2i‘4sin02+...+sm02’—2}sm268m2l0

we are therefore to calculate
Gt f 2 16 sin 6% sin 20 sin 206,

; and

and it is convenient to suppose at first I > 1, reserving the case I = 1 for separate study
ith of

$in 62 = (— J)¥ BV =1 — =0V =1)2k — (_ 1)k [2k]2k B2k 20—V =1 []-@k—m) [0] - (— 1)»*
= (DF [2K]* Bk, [0]-%+M[0]-%-) (— 1) cos 2n6;

hence, coefficient of cos(210—26), if I>1, is 2(})*[2k]%* (— 1)1 [0]-*+-D[0]- kD
1)H1[0]-*k+H+D [0]-*—-D; therefore g,

coefficient of cos (200+ 20) is 2 (})*[2k]%*(
(former — latter) coefficient, if /> 1,
= (})*+1[2k]%* (— 1) [0]-*+HD[0]- D[k -1+ 1] — [k +1+ 1]%}
= (— 1)H1[2k 4 1]2%+1 (})2k+1] [0]~ Kk+HD [0]-*k—HD = ;J—d() sin 0% sin 260 sin 210
0

if />1. And
g1,5= ()¥+* [2k]** {([0]*)? — [0]~*+2 [0]~ -2}
=[2k + 1]%+1 (§)%+1 [0]* [0]-*+2 = %fzdﬁ sin 6% gin 262
i 0
so that the formula just now found for g; ;. holds even when /=1

104. Hence in the expression of article 97
(B— 2atsin 6) —sin (B — 2a.At)}

y’-l=2fg ”dO c::;s&sm 20l¢9{s
e
f de .. 20 wiid 4 {s in B {cos (2a¢sin 0) — cos (2a.At)}
+cos B (sin (2a4t)— %sin (2atsin 0))}
-2 f jdoﬁjf_‘f*—s:inn—%—if 58 1 (A% —sin 0%) (2at)2 [0] -2 (— 1)’ { Sin e ;ffi o ,s}
i T ¢08 B—sin ﬁ} Tl Ar-%-2g, .

=nZg1(— -4a??)1 [0]% { %+l
=1 Z; (—4a24%?) [0]_%{ 2aA1 cos f—sin 8 } A2 Z50 A% g,
66-2

* [[n]™=n!/(n—m)!; [0]"™=1/(m!); this is Vandermonde’s notation. See Vol. 1, p. 468.]
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we have g; o= (— 1)1 é [0]-@+[0]-0-D, - g, o=1%,and g, o= 0if I > 1; 80 that the part of y; , which
involves ¢2 and #* vanishes for all the particles beyond P,, but becomes, for that particle,

-2,

In fact, the differential equations are, in the present question,

't;a,zt2

Yy, =a*{nsin (B—2adt)— 2y, ;+y,} and  y,=0® Yoy, 2000+ Yisr)s
if 1> 1; also y; g =¥},0=0,if /> 0; and these conditions are satisfied if we neglect ¢*in y, ;, or #*in
At?

2
Y11, & suppose y; ,=na? (% sin B—aTcos ;3) s Ya,1= &c.=0.
For the parts involving ¢* and 5, we are to suppose ¢=2, & to calculate
Zi0 A—"”‘g,'k=g,.0+A—2g, 1

in which we already know g, , and in which g; ;= (— 1)“’1 [0] @+)[0]-®-), so that

95,1=0s,1=&c.=0, and g,,=2[0]°=§, gp,=—3[0]"*=—15;
these parts therefore vanish for all particles beyond P,; they are, for P,,

2a At 1 A nattt [ . 2a At
204 4244 i el 30 gt - 2
-gfqut( 5 cos B— smﬁ)( 3 )— i3 (smﬁ 5 cosﬁ)(1+2A ),
and, for P,,

4
= #( ,3——— cos ﬂ)
Accordingly, if we suppose
a2 2 a4t4

L a’t®
PR,

(1+2A’)}+1)Acosﬁ{ at5(1+2A’)}

) i atte
Ya=7sin for — nACOSB Ys,0= &c.=0,

60 4
and neglect ¢4 in y; ;, we shall have
Yau=&c.=0; y3,=a%yy
Y1+ 2a%, = a’y {sin B (1 — 2a24%*) + A cos B(— 2at + §a*A%*)} = a’y sin (B — 2a4t);
so that the differential equations are as well satisfied as they ought to be.

105. No power of ¢ being neglected, the displacement of the particle P, is

Yr,e=nA2EE, [0]7% (- 4a24%3) { o § o B—sin ﬂ} 5 A%gy 0
in which
J1,k6= 2-@k+D) [ + 1]2k+1 0] [0]—*+2,
We may order y, , according to the ascending powers of 4; & the coefficient of 4°is
—sin B.9 2§, [0]7% (- 4a**) g, ;_y =7 sin I, [0]7[0]- P (at)* (- 1)™*1;

z\? 22 \2 2 \2 :
which latter series can be summed, if we can sum 1 — (T) s (1—2) - (1 2 3) + &c. Now this
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1L{7 20 P - : )
last sum = ;f dr cos (2zsinr), because %"_ [O]"z‘f drsinr? = ([0]~%)2, (see page 523); therefore,
0 0

differentiating relatively to z,

23 D 28
¥R T9.9

m
%f drsinrsin (2zsinr)=x — &e.;
0

s ; 3 ) R p gt
*.* coefficient of 4°in y, ,is {1 - "—xj‘ drsinrsin (22 sin r)} nsin B, if x=at. In fact
' 0

™ w
f drsinrsin (2zsinr)= — A {cosrsin (2zsinr)} + 2xf drcosr?cos (2xsin7);
0 0
the coefficient of 4°in y, , is therefore
/ 2 ;
nsin B {1 — ;f drcosr?cos (2atsmr)} :
0

& accordingly if we make 4 =0, =1, in the expression of 97 or 104 for y, ,, we get

Y1,0= o s;n sz d0 2cos 0%{1 —cos (2atsin 0)} = bt fﬂdG &e.
0 i 0

But it is probably improper, or at least disadvantageous, to develope according to ascending
powers of A, when 4 is > 1.

106. It mdy be convenient to make 4 —V A2—1= B, and therefore

2
A+VA%— =—IE, A=%(B+B-1)=l—+£

2B -
_(-—1)’1; 7 2Bsinfsin 200 . . ; %
P 0d0 S Bieon D Bz{sm (B—2aAt)—sin (B — 2atcos 0)}

ey 3 ™
_2( ( ,,l) " zﬁ‘)lfo d9 B" sin nf sin 210 {sin (B — 2aAt) — sin (B — 2at cos )}

- 1) T

=7 (— B?sin (ﬁ—2aAt)+n(ﬂ_ 1) Z{;’L)IB"f {cos (216 + nB) — cos (2160 —nb)}
0

x sin (B — 2at cos ) d6.

Accordingly it is evident that this last expression for y; , satisfies the equation in mixed differ-
ences Yy, =a%(Yuq,i— 2+ Y1-14), because B2+ B-24+2=442 also y,,=7sin(B—2ald), &
Y0=Y10=0if [>0.
We may therefore write
Yiu=n(— B*)'sin (B—2a4t)

% 72_7 7 (—1)'sin B, B J *d8 {cos (216 + 2n6) — cos (210 — 2n0)} cos (2at cos )
0

&L ?Tn (—1}cos BES), B‘:m—IJ.2 db {cos (210 + 2n0 — 0) — cos (210 — 2nf + 0)} sin (2at cos 0).
0

And we see that it remains to calculate the values of the definite integrals
1 gom 1 g2mtlg
2 J‘ g T cos (2atx) 2 J‘ Jp T sin (2atx)

0 Viezz = w)o V1—2?

o
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or simply of the former. We may even deduce all, by differentiation, from the function

1
. d cos(ﬂ%ﬁc) fdﬁcos(%cos())- Jdﬂcos(2atsm0)

V1-
at\%" ' [a¥? a®? \2
=1"(T) +(1—2) "(1—23) 15
Or we may consider the question as being now to determine, at least approximately & for
integer values of m much larger than ¢, the definite integrals

szﬂcos 2m0 cos (2atcos 0)=M,,,
0

J‘z d0 cos (2mb — 0) sin (2at cos 0) =N,
0

107. Adopting this last view, & integrating by parts, so as to develope according to
descending powers of m, we find

2m0

f df cos 2m# cos (2at cos 0)— cos (2at cos 0)— —f df sin 0 sin 2m0 sin (2at cos ),

f df cos (2mb — 0) cos (2at cos 9)
0

__sin (2mf —0)
T 2m-—-1

If then we employ the symbols M,, and N,, as deﬁned in the last article, we have*
at
Mm=%(Nm+1—Nm)’ N " (Mm—l m);

0
sin (2at cos 6) + %J. dfsin 0 sin (2m0 — 0) cos (2at cos 0).
—=1Jo

a??

s M= Mpyn), My,= W—i‘){

(2m=1)(M,,— M,,,)
—(2m+1) (Mm—l"Mm)};

m+1= 2m+ 1

- 2a%? @ ( Myiq Mm—l),
O‘M"'{l‘mz-l} %(2m+1+2m—1 '
4m?
*.* nearly, bemgla e, My 1—2M, +M,_ =——=M,.
y rg -+ m=1 azta
[Manuscript ends.]

* [Mp=(=)"Jm (2at); Np=(—)" Jam—1 (2at).]
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