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6, Ι∕> being the two rectangular heliocentric coordinates and the heliocentric distance of a planet, and μ, being the sum of the two masses; so that the differential equations of motion of the second order are 
and, by my general theorem of dynamics,+ 
in which the coefficient of δi is constant.
The function s will therefore satisfy the two partial differential equations following:!
s being considered as dependent on the 5 independent variables io> ’?o> besides theconstant μ.

* [See Appendix, Note 5, p. 624.]
↑ [Cf. pp. 160, 166.]
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218 V. NEARLY CIRCULAR ORBITS [1Let η = α + )3, rθ = α-)3, + -ηθ)2 = (r + rθ)≡sinλ≡. I have found,*  first, that s

* [See Appendix, Note δ, p. 624.]

depends only on the three variables α, λ, t, being independent of β; and, secondly, that when λ is given, θ∕Vμα. depends only on tVμ∕a,∖ 80 that if we put
∙'N α

κ will be a certain function, of which the form is to be discovered, of the two variables λ and v. And if the motion is nearly circular, these two variables λ, v will be nearly equal to each other. (In some loose sheets of investigations begun in May, 1834,1 have used the symbol v to denote
Taking the variation of the expression s = κ y∕μa, we find 

in which 
and
Hence 
therefore 
if we put, for abridgment, 
and since
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1] V. NEARLY CIRCULAR ORBITS 219the two partial differential equations become, when multiplied by η, Tq , and then added and subtracted, and divided by 2α, 2β,

Resolving these two equations for the two quantities C + ⅜A≡ + 2R2(χ2sinλ2 and 2A£x, we find 
therefore 

and, substituting for A, B, C their values, the equations become

[Hence
These two equations ought to be compatible; that is, they ought to give equal values of δ∕C ∙≈Vi > whether we calculate by elimination and differentiate it with respect to v, or calculate oλop oλ

δκby elimination and differentiate it with respect to λ. Without this previous elimination, we ovmay differentiate the two partial differential equations separately and successively with respect to λ and V, and then eliminate, between the four resulting equations, the three partial differential δ^∕C δ^∕c δ^∕ccoefficients of the second order the resulting equation ought to be true either
I oλ^ oλovidentically or at least in virtue of the two partial differential equations of the first order. After some reduction it is easy to see that this condition of compatibility is 

in which, by the first partial differential equation.
so that the condition is in fact satisfied, and the two partial differential equations are compatible.
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220 V. NEARLY CIRCULAR ORBITS [2[2. Approximations to the principal function in the case of nearly circular orbitsOf these two partial differential equations, the second, namely 
seems well adapted for determining the coefficients of a series such as the following: 
if it is possible, as it seems likely that it is, to represent κ by such a series for the case of nearly circular orbits.*  Assuming this series, we have

* [t = r-λ is small when the orbit is nearly circular. See Appendix, Note 5, p. 626.]

being a function of λ only, and κ^ being its first derivative with respect to λ. Thus, comparing the terms independent of v — λ, we find the equation 
in which, from the theory of circular motion, κθ = 3λ, and therefore κθ = 3, so that the equation becomes that is.
therefore either κ^ = 1, or else 
and in order to decide which of these two roots we are to take, it seems necessary, in the present method, to employ the other partial differential equation, namely.
This equation gives, by making v = λ, 
therefore, since
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2] V. NEARLY CIRCULAR ORBITS 221therefore by this equation we have either κ^ = 1, or
and, since, by the former equation, we had either ∣ we must concludethat κ^ = 1. If we then neglect we have simply
because κθ = 3λ, = 1.Since the two partial differential equations separately gave, as we just now said, ambiguous results, but such that the ambiguity was removed when the results of the one equation were compared with those of the other, it seems evident that some combination of the two equations must be capable of giving unambiguous results, at least for the coefficient , and probably for the other coefficients. Accordingly, if we put ⅛ under the form + and then eliminate∂λ oλ ov ov

δκ δκthe square of that which is not added to „ , , we shall accomphsh the purpose proposed; and the same object may be accomplished still more simply by introducing a new variable t, which shall be equal to p — λ, and shall therefore be small for nearly circular orbits, and thus changing 
8κ δκ δκ 8κ δκ ∕δκVy to y and y to y — y in the two partial differential equations, and then eliminating I y I between them.In this manner we have o o

δic.
Ki being some function of λ, and κ[ = -~; also the two partial differential equations become oλ

Zδκ∖2The coefficient of fyl in the first is (2tanλ-3λ-3t)≡ +4secλ≡, and in the second it is ∕δ∕<∖2— (2 tan λ — 3λ — 3t); and since the terms of the form const. × 11 y I cannot cause ambiguity, it
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222 V. NEARLY CIRCULAR ORBITS [2is sufficient for our present purpose to multiply the first equation by 2 tan λ — 3λ and the second by (2 tan λ — 3λ)^ + 4 sec and to add the products together. In this manner we get

that is,
that is,
Making, in this
and if we further employ the values κθ = 3λ, κθ = 3, we find
therefore Kj= 1, as before.In general.
a formula which, when i becomes
and gives ∕ι , and neglect ι^, the formula becomes
that is.

www.rcin.org.pl



2] V. NEARLY CIRCULAR ORBITS 223that is, finally,Thus
neglecting t≡.If we make the same substitutions. and still neglect ι≡, inthe partial differential equation
we find that is, or
as before. But it is remarkable that this value has been deduced without ambiguity from the tolerably simple partial differential equation which we set aside before as likely to give only ambiguous results.If we return to the system of variables ∕e, λ, v, instead of κ, λ, t, and therefore resume the old partial differential equation
together with the old development
we may propose to determine the several coefficients κθ, , ... as the values of the partialdifferential coefficients
when V becomes equal to λ. Thus, differentiating the equation with respect to v once, we find

which, if we make becomes
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224 V. NEARLY CIRCULAR ORBITS [2
and this, when we make κθ = 3λ, = 1, ∕cθ = 3, = 0, becomesthat is,
as before.Accurately, for elliptic orbits, the relation between κ, λ, t may be found by eliminating the auxiliary variables e and υ between the three following equations:*
and if the orbit be nearly circular, then t and e will be small and of one common order. Moreover, if a be the semiaxis major of the elliptic orbit and α (as before) the semi-sum of the two given distances r and rθ, then
λ being treated as a constant. Hence, in series.
and hence we might have easily foreseen that must be equal to 1, because it is the value of α∕a for circular motion. The finding of this value = 1 was almost the only difficulty in the use of the partial differential equation
and if we assume, as we now see that we may.
the labour of calculating Kg, ∙<s will be but trifling and the operation will become one of elemen­tary facility. In fact, to resume, we have, neglecting t≡,

and, if we substitute these values in the partial differential equation, we find
* [Cf. Appendix, Note 5, p. 625.]
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2, 3] V. NEARLY CIRCULAR ORBITS 225Therefore, multiplying this by = 2 — t — — κ'2), adding 8 tan λ, and equating to zero the
oΛ 2icoefficients of t and we have 

the first equation gives 
as before, and therefore 
and then the second equation gives 
that is.
Hence, neglecting

It is extremely remarkable how httle laborious this process is, as compared with any other hkely to occur to a mathematician, for the elimination of e and υ between the three equations
[3. The general expansion of κ in terms of u]To calculate now the general expression for from the partial differential equation

We have*  

therefore.
* [[θ]~*  = l∕*  ∙ ®θθ Mathematical Papers, Vol. i. Appendix, Note 4, p. 468.]
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226 V. NEARLY CIRCULAR ORBITS [3The partial differential equation gives that is, 
and when i > 0, a formula which may also be thus written*
Here
and, since we know by the circular values of κ and a that ∕eθ = 3λ, = 1, «θ = 3, κ[ = 0, we have 
values which satisfy, accordingly, the condition «0^0= — 8tanλ. Again 
tnereiore tne condition becomesthat is.
as before. Again, 
therefore the condition becomes that is, in which
Therefore and so
as before.
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3] V. NEARLY CIRCULAR ORBITSIt might have been convenient to have calculated , as functions of λ, and ’ 2 functions of λ and κ^, before we proceeded to calculate K3 from the equation 0 = (fi^÷^)2∙ this way we should have had

so that the condition 0 = (α + b}^ = ÷ + would have become0 = 2κ3 {4 tan λ - 3λ} + ^^^anA- SAp ⅛an A (1 + 4 tan A≡) + 4 tan A + 8 tan Aθ - 18 tan A + 15A}, that is,
as before.In hke manner, substituting this value of K3 in «3 ≡-∩d ^2 >

therefore

therefore 
Hence 
Also 
and
therefore
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228 V. NEARLY CIRCULAR ORBITS [3, 4Substituting these values in the conditionwe get
that is, finally,

Thus if we only neglect i®, or {v — λ)^, we have

[4. The results expressed in polar coordinates.}Here, to recapitulate, λ is the half of the angle — Θq described in the time t, reduced to the case of equal final and initial radii vectores r^, ζθ; so that 
(6, Vt> being the three rectangular heliocentric coordinates of a planet at the time t, and fo, ⅞ > being their values at the time 0), and
I is the following quantity, which is small for nearly circular orbits (such as here considered), 
μ being a constant such that the differential equations of relative motion are 
and ’ V Ϊ ' ' υ∕
s being the principal function of the motion, or the definite integral 
which, when considered as depending on η<, ζ<, ^o, Ίο» Co ^^nd t, has (by my general theorem) its variation equal to 
2a being the axis major of the ellipse.
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4] V. NEARLY CIRCULAR ORBITSAccuratelytherefore
g _ QTherefore, nearly, λ= θ; more nearly 

more nearly still 

and since, in general,(cotan cotan 2a; = _ ∣ (cotan a:^ — cotan x},(Sin sinZ v "~ τ ∖ θwe have, neglecting I ——∣ ,
νζ + Γη/

If we neglect the square of the eccentricity, then

And if, in this expression, we change r< into rθ + r, — rθ, and still neglect the square of the eccen­tricity, we find more simply (but less symmetrically) 
because the coefficient of — rθ is equal to
and Θ(-Θq-( is small of the order of the eccentricity.
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230 V. NEARLY CIRCULAR ORBITS [4, 5We can carry 5 to a further approximation as follows. We have 
accurately; therefore, nearly, 
neglecting the cube of the eccentricity. Neglecting the same cube.
where we have put n = V 
therefore 
and hence

[5. The principal function in the three-body problem.'}Also, if we consider the system of the sun, M, and 2 planets, m, m,, the Principal Function λS of the relative motion of this system must satisfy the two partial differential equations following: *

* [These equations follow easily from (D®.), p. 153.]
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5] V. NEARLY CIRCULAR ORBITS 231
If we nπtand similarly we have 

and therefore

The first of the above two partial differential equations gives 

and the second may be similarly transformed. The first five terms may be made to vanish by employing elliptic values; the remaining terms give the perturbations.We shall assume that the inchnations are neglected, and shall put ζι = ζo== 0, ζ,ι = ζ,Q = 0. It is easy to perceive that in a system attracting according to Newton’s law all the hnear coordinates may be multiplied by any one common factor I (besides altering all the positions by any common motion of rotation), and all the masses may be multiphedby any other common factor Z,, provided that the time t is multiplied by the factor Z^Zy⅛. And then, in the general expression for the principal function of relative motion.
1the coefficient U will be multiplied by Z≡∕Z and T, will be multiplied by Z, l^∣l^l~^ = Z≡∕Z, and there­fore Udt and T,dt and finally >S itself will each be multiplied by Z*Z* . Hence, in the present system, in which the orbits are both in one plane.

rigorously, or, if we choose to express it so, then
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232 V. NEARLY CIRCULAR ORBITS [5
κ, λ, I having the same significance as before for the first orbit and κ,, λ,, i, similar quantities for the second orbit. In rigour, W involves m,∣M, m,∣M, but these small ratios may be treated as equal to zero in W, if we wish only to deduce those perturbations which are of the first order with respect to the disturbing masses. For greater symmetry we might put

Thus, if we put for abridgment, as before, α = ⅜ (η + rθ), μ = M + m, and similarly 
and if we put also 
we may write 

and may form two partial differential equations relatively to the function 0 as follows.
S is explicitly a function of α, α, ,λ,λ,, β, β,,t,,ι, and θ, involving also the masses; its variation may therefore be thus expressed

Now 
and so
Also 
that is, 
therefore
Now and hence
Also
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5] V. NEARLY CIRCULAR ORBITS 233therefore
Hence 

that is,

From this equation we immediately deduce the partial derivatives of S with respect to the variables t, Tf, r,<, θ^, θ,ι, r^, Θq, and 0,θ, and we have then to substitute these values in the two partial differential eα nation st ifnr tbo case of null inclinations) 

and

We have 
and
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234 V. NEARLY CIRCULAR ORBITS [5therefore 
where we have put for abridgment

Thus, making the above substitutions, the first partial differential equation becomes rigorously (for the case of null inclinations) 

and the second partial differential equation may be rigorouMy formed from this by merely changing the signs of β, β,, -9-.
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6] V. NEARLY CIRCULAR ORBITS 235[6. Approximations in the case of nearly circular orbits.}If we entirely neglect β and β,, or rather suppose them rigorously to vanish, then the partial differential equations become

together with the other similar partial differential equation derived from this by changing the δ∕S δ∕S δ∕S∣sign of θ and those ∙ equations no power of any mass is neglected nor anyof t, t,; but if we put _ ______I I rand neglect m?m and , the equations become, after being reduced by the partial differential equations of elliptic motion and divided by mm J IQ,
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236 V. NEARLY CIRCULAR ORBITS [θThis double equation is rigorous so far as powers of t are concerned, though β, β, and , τn¾n, have been neglected. But if we change κ and κ, to their approximate values 3λ +1 and 3λ, +1,, and then neglect t, i,, the double equation becomes

If we now put 
and therefore 
and make as a sufficient approximation μlM = μ,∣^ = 1, we shall change the double equation to the following: 
that is, 

and

We have seen that 5 pnt for a moment α∕<×∕ ≡≡ λ, — λ = λ , we shallhave
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6] V. NEARLY CIRCULAR ORBITS 237and hence
Therefore 

that is,
But the arbitrary function of α', introduced by this integration, must be identically zero because otherwise it would not vanish with λ', as it must do, since ψ does so, independently of α' and θ∙. Thus, finally 
which may also be writton 
or in the alternate form
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