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[1. The principal function for an elliptic orbit.]

For the undisturbed motion of a planet, with Newton’s law of attraction, let*
(&2 +0
[{E 2
0 2 7‘,

&, mp» 7y being the two rectangular heliocentric coordinates and the heliocentric distance of a
planet, and p being the sum of the two masses; so that the differential equations of motion of
the second order are '

1= —p&rr® M= —pnery,
and, by my general theorem of dynamics,f
8 S 4 8 ’ / ’ l‘l' 522 + 17;2 8
8= 5136 — §o86o + mdm—modmo + =5 | 3,
in which the coefficient of 8¢ is constant,
E-h @+ =GR )
t 0

The function s will therefore satisfy the two partial difterential equations following:}

8T 1 TR
8 ' 2\8¢, 2(87,,) ) & 2\88) T 2\5y, "ro’|

& being considered as dependent on the 5 independent variables &,, 7, &, 7, and #, besides the
constant p.

* [See Appendix, Note 5, p. 624.]
T [Cf. pp. 160, 166.]
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218 V. NEARLY CIRCULAR ORBITS [1

Let ry=a+B, ro=a—pB, (&—E&)2+ (n—n0)2=(r+7,)?sinA2. I have found,* first, that s
depends only on the three variables a, A, £, being independent of §8; and, secondly, that when A
is given, 8/v/pa depends only on ¢V u/a?; so that if we put

W oritllh, 2 4
=KV U, é/a:a=l/,

« will be a certain function, of which the form is to be discovered, of the two variables A and v.
And if the motion is nearly circular, these two variables A, v will be nearly equal to each other.
(In some loose sheets of investigations begun in May, 1834, I have used the symbol » to denote

B

Taking the variation of the expression s =« V pa, we find

ss=\/,7&(§;m+ 8) [sa,

in which
A _ &8 +my8my | €48Ep+medn0
da= 13 (8r,+0ry) = o, + org 5
dv=- A/ﬁ&‘,-——[ £’8§'+1”87h £08€0+m05m0
2r, 27,y 4
and
Sh= (&1— o) (88— 8&,) + (my— o) (81— Ong) — (7 +7) 8In A% (37 + 8”0)
(r+7y)*sinAcos A
Hence 4 e
(< [p_Btpdk i\ (£:3&+mBny | £4Eo+m00mg
8""(§A/Z—4a28v st b R
osec2\ [ d 8
= s s (6= £0) (G8—380) + (= mo) (B — o} + - 5= 5t;
therefore
ds o8
se=At B (et 8——=A%+B<m—m,>,
88 go 88 o 88_
8—5—1‘1 To —B(&—£), S"l— A — B (my—0)s i q,
if we put, for abridgment,
k tanldk 3vdk [ cosec 2A 3k Ok
A_(Z_ 2 ﬁ_fﬁ) i 2a O\ o 208’
and since

R 3 e

,%{ft (&—&o) + e (mg—m0)} = 73 —73+4o?sin A2 ’

Ty

"rgo{'fo (gt_‘fo)+7)o(17‘-,70)}=73“’r¥+4a2sin)‘2’

Ty

* [See Appendix, Note 5, p. 624.]
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1] V. NEARLY CIRCULAR ORBITS 219

the two partial differential equations become, when multiplied by 7, 7,, and then added and
subtracted, and divided by 2, 28,

K — 0+ 342+ 2B%2sin X% + 24 Basin X2,
0=C+}A42+2B%?sin A* + 24 Bo.
Resolving these two equations for the two quantities C' + $42+ 2B%?sin A? and 24 Ba, we find

2= 2sgecA?;

% (20 + A2 + 4B%2?si
’l.

therefore

(4 +2Basin \)?=2 (gsec)\z— C’—’isin/\sec)\z),

(A—2Bocsin)\)2=2(§sechz— C’+§sin)\sec)\2);

and, substituting for 4, B, C their values, the equations become

2
(x 2ta,n)\8K SK) +4(8 ) sec A2 4 16%=32secz\2,

8 B A o
Stan 35 0y LR
K— an 8/\ v8 8A+ a,

[Hence
dx Sk ok
(K 3V8 ) +4(8/\) +16(8 )=0.]
These two equations ought to be compatible; that is, they ought to give equal values of

88)\’; , whether we calculate by elimination gh and differentiate it with respect to v, or calculate

by elimination g—v and differentiate it with respect to A. Without this previous elimination, we

may differentiate the two partial differential equations separately and successively with respect
to Aand v, and then eliminate, between the four resulting equations, the three partial differential

2
coefficients of the second order g/\:, 8?\; g :, the resulting equation ought to be true either

identically or at least in virtue of the two partial differential equations of the first order.
After some reduction it is easy to see that this condition of compatibility is

O (Bk Sk . o[ (O
0=—4- (8/\) + 16 tan A% (4sec A2 — 1)+2{(8A) S}tan)& sec A {(SA) +4}

v
: —secA? e (2sec)\ -1) e )2—-83ec)\2
By 3A y

in which, by the first partial differential equation,

Ok (dk i 4 O\ 4 g dk\2 3
—.4%(5}_) =16tan A +(a) sec A —-8(§) sec A2,

so that the condition is in fact satisfied, and the two partial differential equations are compatible.

28-2
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220 V. NEARLY CIRCULAR ORBITS [2

[2. Approximations to the principal function in the case of nearly circular orbits.]

Of these two partial differential equations, the second, namely

die Sk Ok
(K—2tanhﬁ—3v$)a+8tan/\=0,

seems well adapted for determining the coefficients of a series such as the following:

(v—2)2 (v=2)
Wil 7

3
K=Kyt Ky (V—2A)+ Ky +ete.,

if it is possible, as it seems likely that it is, to represent « by such a series for the case of nearly
circular orbits.* Assuming this series, we have

) flg | L iixag

O e g (v ) (s e AR e A L Y
SA 2 2.3

Ok —)A)2 —A)3

§;=x1+(v—/\);<‘2+(v 3 ) K3+(V2.3) ks +ete.;

x; being a function of A only, and «; being its first derivative with respect to A. Thus, comparing
the terms independent of v— A, we find the equation

0={Ko— 2tan A (kg— ;) — 3Aky} (kg — 1) + 8 tan A;
in which, from the theory of circular motion, x,= 3, and therefore «, =3, so that the equation

becomes
0= (ry;— 3){K, (3A—2tan))+ 3 (2tanA—A)} + 8tan),
that is,
0=} (31— 2tan )+ 12«, (tanA—2A)+ 92— 10tan A

= (k;— 1) {Ky (BA— 2tan ) — (9A— 10 tan A)};

therefore either x, =1, or else
9A—10tanA_

T3\ —2tanA’

and in order to decide which of these two roots we are to take, it seems necessary, in the present
method, to employ the other partial differential equation, namely,

g Sk o\ 2 Sk \2 4 Sk .
O—(x—2tan)\§—3v$) +4(§X) sec A +16($—2sec)\).

This equation gives, by making v=2,
0={Kko— 3Ak; + 2 tan A (ky — rg)}% + 4 (1 — k)2 s€C A% + 16 (k; — 2800 A%);
therefore, since xy=3A, ko=3,
0={(3A—2tanA) k; + 3 (2tanA—A)}>+ 4 (k; — 3)2sec A + 16 («; — 2sec A?)
=x3{(8A—2tan )2+ 4sec A%} + 2, {3 (BA— 2tan ) (2 tan A — A) — 12sec A%+ 8}
+9(2tanA—2)%+ 4secA?
= (rk;— 1) {ry (9A2— 122 tan A + 8 tan A%+ 4) — (9A2— 36Atan A+ 40 tan A% + 4)};
* [(=v—] is small when the orbit is nearly circular. See Appendix, Note 5, p. 626.]

K
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2] V. NEARLY CIRCULAR ORBITS 221

therefore by this equation we have either x; =1, or

_9(2tanA—2)*+4secA?
*1= (3X—2tan )+ 4sec A2’

and, since, by the former equation, we had either x;=1 or «; = %_1201;—%1%, we must conclude

that «; =1. If we then neglect (v — )% we have simply

k=Kot Ky (v—A)=2A+v,

because ky=3A, k;=1.

Since the two partial differential equations separately gave, as we just now said, ambiguous
results, but such that the ambiguity was removed when the results of the one equation were
compared with those of the other, it seems evident that some combination of the two equations
must be capable of giving unambiguous results, at least for the coefficient «,, and probably for
0k Ok Ok

the other coefficients. Accordingly, if we put g 3 under the form gt e and then eliminate

the square of that g which is not added to g)\ , we shall accomplish the purpose proposed; and

the same object may be accomplished still more simply by introducing a new variable ¢, which
shall be equal to »—A, and shall therefore be small for nearly circular orbits, and thus changing

2
gk zx d to g; SSK in the two partial d;ﬁerentlal equations, and then eliminating (2’;)
between them.

In this manner we have
2 3
K=K0+K1L+K2§+K32—§+etc.,

BA . ethtThag g3 "

SK_K_’_' s L2+ g Che
o ATkl T T KagTy fy

«; being some function of A, and «}= %X’ also the two partial differential equations become

Sk Ok B Ok 3 3k A
Q= {x 2tan)\ +(2tan)\ 3)«)8 3;8} 4(8/\_8_) secA +16(g—2sec)\),

S\ 8

0= {x 2tan)\—l+(2ta,n)\ 3)«)8 3;8"}(8" 8K)+8ta,n)\

2
The coefficient of (%?) in the first is (2tanA—3A—3:)%+4secA?, and in the second it is

2
— (2tanA—3A—3.); and since the terms of the form const. x ¢ (i\—':) cannot cause ambiguity, it

www.rcin.org.pl



222 V. NEARLY CIRCULAR ORBITS [2

is sufficient for our present purpose to multiply the first equation by 2tan A — 3A and the second
by (2tan)— 31)*+4secA?, and to add the products together. In this manner we get

Ok Ok Ok Sk
O={x—-2tan)\gx+(2ta,n)\—3)«)8—t }(2tan)\ 3/\){:: 3)\8)\ 348—}

ok Ok . Sk 8K dr &
+4(§-—8—)sec)\ {x ) it SN 8 }+16(—8——2sec)«)(2ta,n)« 3A)

+ 8tan A {(2tan A — 3))2+ 4 sec A%};

that is,
SK Ok
. i ! -~ ghai
0= {(K 3 )(Ztan)\ 3)\)+2(2+3)\tan)\)8)\+(9)\ 12 tan A — 4)8}( ) 3;&)

+16 (2tanA — 3A) (g—2sec)@)+8tanA{(2tanA—3A)2+4sec)\“};

that is, :
Sk A Sk SK Sk Ok
0=(K—3A§x ) (2tanA— 30)+ (9N — 12\ tan A— 4) (K 3)«8/\ &) (g-g)
+16(2tanA— 3A)8—c+ 8tan A (9A%2—4)+ 96A.
Making, in this, x =k, 8—:\5—«{,, 2\" Ky, 0=0, we get

0= (g — 3\icj) (2tan A — BX) + (9A2 — 122 tan A — 4) (g — 3Akey) (ky — K§)
+16 (2tan A — 3)) x, + 8 tan A (9A2 — 4) + 96);

and if we further employ the values «y=3A, x; =3, we find
0= 36)2 (2 tan A — 31) — 6 (9A2— 12\ tan A — 4) (x, — 3)
+16 (2tanA— 31) k; + 8 tan A (9A% — 4) + 96A
=2 (i, — 1) (922 + 4) {4 tan A — 3A};
therefore x; =1, as before.
In general,

oK dx 9A2+ 4 Sk Qc_)( Sk SK)
Q= { K+3)\ +3L8} (6A+2tanh 3/\)(§_8A K+3A3/\+3L8
Sk 9244

d 2 R ™72 - A
+168 +4(9%2—4)+ 12A2tan)\—3)\’

ok SK
=Ky, becomes

a formula which, when ¢=0, k=3A, & A 3, 5
9/\2 +4

IN2+4 8. P o B P
Sk 8

and gives «, = 1. When we make x = B\ iy, 5= e 3, e 1+ Ky, and neglect «2, the formula becomes
A%+ 6(1 4(9N2—4 12A——9A2+4 :
0=(6A+ 2.)%+ (6/\+2m)(_2+“2‘)(6)‘+2‘)+1 Srps Lo Lot b 2tanA—3X’

that is, - oA+ 4
0= 24X+ (6Axy— 4) (6A+m) + 16k,

9X2 44 Xt 44
=~2{36'\2+6"2‘tan)\—3)\+16}‘42tana-3x

www.rcin.org.pl



2] V. NEARLY CIRCULAR ORBITS 223

: 2
that 18, ﬁnally, K2=m.
Thus
LZ
K=3A+L+—_——4tan/\—3)k’

neglecting (2.
If we make the same substitutions, (K 3A+, g; 3, i—x— 14y c) , and still neglect 2, in

the partial differential equation

Sk Ok Ok
0= {K 2ta,n/\ +(2ta,n)« 33— 3‘)8}(8/\ 8)+8tan)\
we find
0={3A+c¢—6tanA+ (2tanA — 3A—3u) (1 + kyt)} (2 — kpt) + 8 tan A,
that is,
0=2{1-3+ (2tan— 3) k,} + 4xytan A,
or
A 2
2= LtanA—3X’

as before. But it is remarkable that this value has been deduced without ambiguity from the
tolerably simple partial differential equation which we set aside before as likely to give only
ambiguous results.

If we return to the system of variables , A, v, instead of «, A, ¢, and therefore resume the old
partial differential equation

Ok 8 Ok
0=(K—2tan)\§ Vs )8A+8tan)\
together with the old development
K=K0+K1(V—A)+x2(v_2)‘) + 3(V2 g) +ete.,

we may propose to determine the several coefficients «, «;, k,, ... as the values of the partial
differential coefficients

% ot O

§0 S’ S’

when v becomes equal to A. Thus, differentiating the equation with respect to » once, we find
G i ( 8") +2tan > (8") paleie, g0 (3—"8—")

- ) Mk b Sabed M F Ve
Sk &% Sk 8% Sk Ok 82 Sk 8%
“3”(8;\8 2 svs,\sv)“ﬁ?;; S Pk VY Y
oK. L Sk % &2k

which, if we make v=A2, k= Ko» 5y =Ko~ k1> 5 K"W—Kl KZ,S—_.,‘—xz,becomes

0= 8X{ (ko — rey) kg + g (161 = Keg)} + 2ucy (s — K1) — K (17 — g) + 4 tan A (1cg = teq) (11 — ieg),
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224 V. NEARLY CIRCULAR ORBITS [2

that is, 0={(8A—4tan }) (kg— xy) — (BAry — o)} (g — k1) + (BAky + 211) (kg — K1)
and this, when we make ko= 3A, k; =1, kg =3, k1 =0, becomes
2
*2= Ltan2—3)’
as before.
Accurately, for elliptic orbits, the relation between &, A, ¢ may be found by eliminating the
auxiliary variables e and v between the three following equations:*

3v+esinv 2 J1+e v, v—esiny
@ +‘=__—_
(1 ecosv)i (1—ecosv)¥’

and if the orbit be nearly circular, then « and ¢ will be small and of one common order.

Moreover, if a be the semiaxis major of the elliptic orbit and « (as before) the semi-sum of

the two given distances » and 7y, then
o Ok Ok

iy

A being treated as a constant. Hence, in series,
o ¢ i# £
E=K1+K2L+K3§+K4'2‘—.—3+etc.,

and hence we might have easily foreseen that x, must be equal to 1, because it is the value of

a/a for circular motion. The finding of this value «, = 1 was almost the only difficulty in the use
of the partial differential equation

+8tanA;

O=(x—21;an)\8"c SK)SK

A 2 ov) oA
and if we assume, as we now see that we may,
(=22  (v—Ap®
. Wil T
the labour of calculating k,, 3 will be but trifling and the operation will become one of elemen-
tary facility. In fact, to resume, we have, neglecting ¢,

) X 2
_8’—;\=2—K2L+ ("2""3)5:

Sk o
F 1+K2L+K32,

k=2\+v+kK, +etc.,

K=3A+L+K2L§, v=>A+1;

and, if we substitute these values in the partial differential equation, we find

ok, 8
K—2tan)\8,\ 3v8—:— —4tan )+ {iy (2tan X — 3X) — 2}

2
+5 {3 (2 tan ) — 33) — 51y — 2 tan A},

* [Cf. Appendix, Note 5, p. 625.]
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2, 3] V. NEARLY CIRCULAR ORBITS 225

2
Therefore, multiplying this by g—; =2— Kyt —% (k3 — 3), adding 8 tan A, and equating to zero the
coefficients of « and 2, we have
O=ry(4tand—31)—2, 0=y (4tand—31)—«3(2tan) —3)) — 3k, — 4kytan A;

the first equation gives
2
2= ftana— 3\’
as before, and therefore
, _—2(1+4tanA?)
2= "(dtanA— 322 °
and then the second equation gives
kg (4tand —31)3 =4 (2tanA— 31) + 6 (4 tan A — 3X) — 8 (1 + 4 tan A%) tan A

= — 301+ 24 tan A — 32 tan A3,

that is,
R 32tan A3 — 24 tan A + 30A
e (4tanA—3))3
Hence, neglecting 4,
2 3 8 12
gy | f 316 tan X tan A+ 151

4tanA—3\ 3 (4tan)—3))3

It is extremely remarkable how little laborious this process is, as compared with any other
likely to occur to a mathematician, for the elimination of e and v between the three equations
_ 3v+esinv A J1+e v

= z n—, v=A+i= v—-e_s_u_u{_'
(1—ecosv)? 2" (1—ecosv)t

[8. The general expansion of k in terms of ]

To calculate now the general expression for «, from the partial differential equation

Sk 31( Sk
0=(K—2ta,n)\§ v )&\J’St an.
We have*
k=270 k; [0]74;
Sk

Yy ZDo ki :[0]* z&o) 1 #eg [0] (D 1= 2o (k= repyq) [0] %= — 2o [0]-%4%;
vs——f—‘ =(A+ L) 8 =331 A+10) i [0] EDLED=23  (A+1) ez [0] ¢

=Z o (Aregyq +ir;) [0]7 45

therefore,
"+2““"§a+3”§ =330 [0]7 ¢ {— rey+ 2 6an X (€ —egy0) + By + Bineg} = 2o b [0]7 4.
* [[0]-*=1/i! See Mathematical Papers, Vol. 1, Appendix, Note 4, p. 468.]
HMPII 29
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226 V. NEARLY CIRCULAR ORBITS (3

The partial differential equation gives
{250 [0]7%¢} x {Z30b; [0] 4} = — 8tan;
that is,

ayby= —8tanA;

and when 7> 0, j
E‘(”i')o ai_,t: b‘i' [O]_(i_il) [O] g = 0 3

a formula which may also be thus written*

O=(a+b)‘i'

Here
a,i=Ki+1— K,::, b’i= (3A—' 2tan)t) K.t+1+ 2K.£ta:nA+ (37:—' ].) K‘i;

@y=kK;—kKys by= —Ko+ 2xotan A+ (3A—2tan ) «y;
and, since we know by the circular values of x and a that «y= 3], , =1, ky=3, kj =0, we have
ay=—2, by=4tan),
values which satisfy, accordingly, the condition a,b,= —8tanA. Again
Ay =Ky— Ky =Ky, by=2k;+2kitanA+ (3A—2tan))x,=(3A—2tand)xy+2;

therefore the condition
(@+b)y=agb; +a,b,=0

becomes
0=2(2tanA—3X) ky— 4+ 4x,tan A,
that is,
Uit ol
“2= ftanA— 3\’

as before. Again,
by=(3A—2tan ) kz+ 2k tan A+ bky, @y=kK3— K3,

by=(3A—2tan ) ky+ 2kstan A+ 8kg, @5=rKy—K3;

therefore the condition
(@+b)y=ayby+ 2a,b, +ayb,=0

becomes :
0=4tan A (g — ky) + 2«3 (3A — 2 tan A) + 4k, + 2 (2 tan A — 3A) kg — 4x; tan A — 10k,
that is, :
0=(4tan X — 3X) k3 — 4x;tan A + «3 (31 — 2tan A) — 3k,
in which
2 , _ —2(1+4tanA?)
“2= ftanA—3)’ "7 (4tanA—38))? °
Therefore
0=1iz(4tanA—3))%+ 4 tan A (1 +4tanA?) + 2(3A—2tan A) — 3 (4 tan A — 3A),
and so v
_ —2(16tan2®—12tan A+ 15))
i (4tanA— 3))3 !
as before.

% e
[(“+b)‘=a‘bo+ia;_lb¢+ ‘_(12 lzai—xbz"' +“ob":|
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3] V. NEARLY CIRCULAR ORBITS 227

It might have been convenient to have calculated a,, b, as functions of A, and @y, b2 83

functions of A and «;, before we proceeded to calculate «; from the equation 0= (@ + b)g-
this way we should have had
ay=—2, by=4tanA;
2 4tan A

i b e R e A B

$ 2(1+4tanA?)
B=aTRa= 4T Lt =3P
by=(3A—2tan ) kg + 2«3 tan A + 5ic,
16 tan A* — 36 tan A + 30A

(4tan A — 3A)* $

80 that the condition 0= (a4 b), =ayb, + 2, b, + ayb, would have become

ay=

=(8A—2tanA) kg3 —

0=2x;{4tan A —3A} + {2tan) (1 +4tan)?) +4 tan A+ 8tan A*— 18tanA + 151},

that is,

+
(4 tan A — 3))2

_ —2{16tan)®—12tan )+ 15A}
o (4tanA— 3))° :

as before.
In like manner, substituting this value of x; in @, and b,, we find
la, (4tanA—3))3 = — (16 tanA®— 12tan A+ 15)) + (4 tanA*+ 1) (4tanA—3A)
=16tanA—12Atan A2 — 18,

therefore -
géEtenin Wit~ 9)),
%= " (dtanr—3))° :
1b, (4tand— 32)3=(2tanA—3X) (16 tan A* — 12tan A + 15A)
—(4tanA—3)) (8 tan A*— 18 tan A + 15A)
, =48tan A2— 241 tan A® — 48X tan A,
therefore
gis 48tan A (2tan A —Atan A% — 2))
o (4tan A — 3A)3
Hence
salb £ 85 5 _ 48tan)(20tanA— 121 tan A2 — 21A)
oo B o i (dtanA—3A) ‘
Also
agby+ @by =4 tan A (i, — k5) + 2 (2tan X — 3)) k, — dicy tan A — 16k,
=2 (4tan A — 31) kg — 8 (k3 tan A + 2xy);
and
3 (4tanA—3))4k; = (4tanA®+ 1) (16 tan A* — 12tan A+ 154)
—(4tanA—3)) (16 tan A+ 12tan A%+ 1)
= — 80 tan A3 — 16 tan A+ 48) tan A*+ 96) tan A%+ 18,
therefore

, 12(—40tanX®—8tanA+ 24A tan A + 48 tan A* + 9A)
Rt (4tanA— 3))4

29-2



228 V. NEARLY CIRCULAR ORBITS (3,4

Substituting these values in the condition

(@ +b)3=aobs+ 3a, by + 3ayby +azby =0,
we get
— % (4tan X — 3X)% k, = 3tan A (80 tan A% + 36 tan A — 48) tan A* — 108) tan A% — 39A)

+2(64tan A% — 48 tan A2 — 48X tan A3 + 96A tan A — 45)%)
=368 tan !+ 12 tan A2 — 144 tan A5 — 420A tan A® 4+ 75) tan A — 90A%,

that is, finally,

8
s 2 2 4 2_25)+ 90A2}.
K4—( oy 3)\)5{ 4tanA?(92tan +3)+ 3\ tan A (48 tan A + 140 tan X ) }

Thus if we only neglect (5, or (v—A)5, we have

¢ ¢ 16tanA®—12tanA+ 151
4tanA—3X 3° (4tan A — 3A)3
4 —4tanA?(92tan A2+ 3) + 3Atan A (48 tan A% + 140 tan A2 — 25) + 90A?

3 (4tanA—3\)5

k=34 1+

[4. The results expressed in polar coordinates.]
Here, to recapitulate, A is the half of the angle 6,— 6, described in the time ¢, reduced to the
case of equal final and initial radii vectores 7;, 7y; so that
(&= o)+ (i —m0)® + (L — o) = (ry+70)?sin A2,
(&, my, ¢, being the three rectangular heliocentric coordinates of a planet at the time ¢, and
&0 Mo» Lo being their values at the time 0), and

0,—0,\2 [r;—1,\2 0,—0,\2
§R Y RO =) t—"o t—Y)",
sin A _(sm 3 ) +(7':+7'o) (cos 3 ) s

¢ is the following quantity, which is small for nearly circular orbits (such as here considered),

2p
(ry+79)*’
w being a constant such that the differential equations of relative motion are
Ei=—p&r® mi=—pry® L= —plr®;

e
Vulr+ry)

8 being the principal function of the motion, or the definite integral

t ’2 /2
ik j {:*tm +&}dt,
0 2 7',

which, when considered as depending on &, 7, {;, &y, 19, {, and ¢, has (by my general theorem)
its variation equal to

138, 30 + 7B —miBno + 30~ L dlo+ 5 B,
2a being the axis major of the ellipse.

t=—A+t

and
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. o o PP ) B
Accurately cos 2) =cos (0'—00)—2(r,+1‘0) (cos ol i
therefore

A 0,—0.\2
0= 0= 00psina 0000y = () (o5

Therefore, nearly, A = 0‘; 0“; more nearly

more nearly still

40 —r\2 —0.\2 1 [(r,—7y\2 6,—0
A=L_04 (r,_ro) (cos BLEEQ) cosec {0, —0y+ (:‘—_’_ri’) cotan —‘—2—0 }

2 7+ 17, 2\ry+7,
0,—0, 1 (r,—ry\2 0,— 6, 1 (r,—175)2 6,— 0,
il ol o T R | LR 0
3 - 3 (n "'o) cotan 3 {l 3 (7’: To cotan ) cotan (6, 00)}
0,— 0y 1 [r,—7,\2 0,—0, 1 r,—ro)“( 0,—00)2
Skl J 8 75 chies e 0 tan (0,— 0. ):
) + 5 (7'1 7'0) cotan 3 2 (r, To cotan 3 cotan (6,—6,);

and since, in general,
(cosx)?cos 2z

S ein 3 =} (cotan 2®— cotan x),

(cotan z)? cotan 2x =

e 6
we have, neglecting (:f——_*_:—") f
t*7o

_0i—0 1 (r—7)® =0 1 7'“"0)4{ 0 — 0, ( 0 —6o)?
A_T+§(r,+ro) cotan 3 +§(m cotan ) cotan T) }

If we neglect the square of the eccentricity, then
=l - B A
A———z—, K—01_00+t (r‘+1‘0)3'

C plrgtrg) pt
2= (0,—0o) 2 +r,+ro'

And if, in this expression, we change r,into 7y + 7, —,, and still neglect the square of the eccen-
tricity, we find more simply (but less symmetrically)

AW
8=(0,—0,) \/F-"o"'é:._o;

because the coefficient of r,—r, is equal to

0:—00A/;7 #_ (o _ /ﬁ) i
b 4 Nr, 47 il T 3] N 16r,’

and 6,—0,—1¢ :"—3 is small of the order of the eccentricity.
0
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230 V. NEARLY CIRCULAR ORBITS {4, 5

We can carry s to a further approximation as follows. We have

Wy A/ Tt'”'o J Ti—"7o
\/[Lro 7‘0 21'0 v

accurately; therefore, nearly,
8 ry—19 1 (7‘,-—7‘0)2}
= = ped I S s e
Vur, { dro 2\ 41y

neglecting the cube of the eccentricity. Neglecting the same cube,

Lz 3 0,—00 1 7',—-1'0 2 nt'
it i T e 1 +§( 2r0)°°tan2’

where we have put n=+/u/r3;

i By ik nt A b 9 nt 3 r,—ro) E(n——'ror}_
g A+tA/(r,+ro)3“"A {H' 2r0} oy { 2\er, )T\ 2 ) P

therefore

AP 1A
_3nt 3nt (r,—1o\ . (1,—70\2 (16mE nt 5 i 2 27'0 ;
; Baaits _”t)__( 27, )+( i | Rt | 8tan yni— 3ni ’
and hence
. % + (6, — 0y —nt) + 3nt —+ cotan o + »ﬂ—}
Vur, i 27'0 2 ' 8tan jnt—3ni
i —"
4tan% (”27:0) (6,— 0, —nt)+ % (6,— 6,— nit)?
8 tan ynt — 3nt Z

[5. The principal function in the three-body problem.]

Also, if we consider the system of the sun, M/, and 2 planets, m, m,, the Principal Function S
of the relative motion of this system mustsatisfy the two partial differential equations following :*

w2l ae) ) ) 2730 (Ge) + () )

(88’ o8 +SS 38 88’ SS) mM B m, M mm, i
M \8¢, 8¢, Sﬂts”’),t 84,5, Vi3+83 Ve +¢ \/{ =&+ (=2 + (L, — 5

w3 ) (Ge) + o) + )2 s +M){(%‘,°%,) *(one) * o)

(ss 5 38 38 35S 88 ) mM m, M mm,
M \8£y0¢,o Omyg 8%0 850 8,0 Vri+ 3 \/7’20 + 3 \/{(f,o —&0)%+ (n,0—10)2+ (L,0— L0)?}

* [These equations follow easily from (D%.), p. 153.]
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If we put
f‘=7‘0080l, "7¢="15in0n fo=7‘000800, 770=1‘08in00a
and similarly
§u=r,0080,, 7n,=r,8n0,, §,=7,8n0,, n,0=r,800,,
we have
38 88 sinf,38 88 _ 88  cosf,d8
3, v, r, 80, om t5r, " 1, 86,
and therefore
88)2 (8;5‘)3 SS)’ 1 88)2 (88’)2 (88)2 (88)2 1 (88)2
) +l5=) =) *ata)« 6e) ) =15-) +3l55)
(sz o (87‘1 % (801 B¢, 01,4 or,) 13 \80,
38388 8888 (8888 1 8888 13888 1 3888
e, im0 8030,) 0= 00+ (35 =7 50,3, i =0,
The first of the above two partial differential equations gives
SS M+m{(88)2 (SS )2 (88)2} M+m{(88)2 ( 38 )2 (88’)2} Mm
0= o) +l==a) +l57) t+ | +l=—=5) +|55) {——===
2Mm |\dr, 7,00, 3¢, 2Mm \\or,, r,00, 8L, VL
Mm, cos(6,—06,) (§§ 88 88 &8 )+sin(9,,—0,) (ﬁﬁ_ﬁ 38 )
R %+ 0% M Sry dr,, " 7,80,7,,80,, M or, 7,80, dr, 7,50,
18838 mon,
MOLSL,e Vrd+12,—2rr,c08(0,,—0)+ (L, —L)?

and the second may be similarly transformed. The first five terms may be made to vanish by
employing elliptic values; the remaining terms give the perturbations.

We shall assume that the inclinations are neglected, and shall put {,={,=0, {,={,,=0.
It is easy to perceive that in a system attracting according to Newton’s law all the linear
coordinates may be multiplied by any one common factor / (besides altering all the positions
by any common motion of rotation), and all the masses may be multiplied by any other common
factor [,, provided that the time ¢ is multiplied by the factor /3/;%. And then, in the general
expression for the principal function of relative motion,

t t
S=f T,dt+f Udt,
0 0

the coefficient U will be multiplied by 72/l and 7', will be multiplied by 7,12/I3%;1 =12/, and there-
fore Udt and T',dt and finally S itself will each be multiplied by I!/*. Hence, in the present
system, in which the orbits are both in one plane,
Po I
= Mirt i~ e i T S S
8 = Mir} x funct. (M’ M1 7y 1o 0,
rigorously, or, if we choose to express it so, then

b 00 050, nt)

\

M‘ J Tt+ro J I‘+r10 mml W,
i S Em T s m)
Te—T, 'r, =70
W =Vry+7r,funct. (A, AL L,,r:+r:: -,z?,—o 00)
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232 V. NEARLY CIRCULAR ORBITS [5

K, A, « having the same significance as before for the first orbit and «,, A, , ¢, similar quantities
for the second orbit. In rigour, W involves m/M, m,/M, but these small ratios may be treated
as equal to zero in W, if we wish only to deduce those perturbations which are of the first order
with respect to the disturbing masses. For greater symmetry we might put

W= A/r»——"+r";r’°+r°funct. (0——————""0';0"’"0”, N WP o r—""r"’)

’rl+lr0, rlt+r10 i
Thus, if we put for abridgment, as before, « =4 (r,+7,), p =M +m, and similarly

a,=%(7‘,,+1',0), “I=M+ml;

and if we put also
=" Vst Vo0 ‘(}_0,1'“9,0_0:"'00

1y’ T v, 2 2

=

we may write

S:MmA/;‘-iHMm,J%K,+mm,J“;I“'¢(s, A BB

and may form two partial differential equations relatively to the function ¢ as follows.
Sisexplicitly a function of o, &, , A, A, , B, B, , ¢, ¢, and &, involving also the masses; its variation
may therefore be thus expressed

88 88 88 88 88 88 88
o S s +8 3% +5A)‘ 5)‘+33f3+‘38/3+ 8L+8 8¢+ﬁ8&
Now
TN RS
SinA?= (sin b 3 00) + B2 (cos ___0, D) 00) s
and so
_1—B?sin (6,—6) 1+ cos (6,— 6,)
Mg <in 2N (6,—36,) + _Wﬁsﬁ'
Also
0,—05\* _cosX® (. 6,—0p)® sinA2—p2
(cos 3 ) =g (sm - ) bt
that is,
1+cos (6,—6,) _cotand  (1—B2)sin(6,—60) _ , ./ i—p——3z
sin 2\ T S 2 = +V1— B2cosec A2,
therefore
3= 1V~ FFoosee (30, 305 + cotan 28,
sl *
NOW B—T,+'ro’ o %(7‘,+ro),
and hence v

_On—dry_ B A -~ B 1+8
SB—T—£(8r,+37’0)——§:8n-—~—2&——870.

Also ¢=—)\+%th,
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therefore gy
1 /p 3t [p o7 _3()\+L)
8L=—8A+§,\/;58t—1,\/;8a=—SA-I-EJ&Sat e dat.
Hence
SS 38 _IA/FSS 88 3A+:88) dr,+dry
Soc+ ﬂ818+ 8A+—8 = 38‘o‘t {_—§T§}~T
B (38 _88\| (1—B)dr,—(1+B)br, ——2————2(88 88)8@ 6,
{sﬁ+cotan)\1 @l w = +v/1—PB2cosec A s Sty
that is,
sg= ) A/,Léss 1, 88\ 5, , (38 _3A+.38) dr,+3r, (38 32, +z85’)3r,,+8r
2\W o3 & ol 8¢, Do Ao ngy 2 Sa, 2 «, & 2

) eangesnm, g o )

(1=B)8ry—(1+B)8r,e iz (38 _88) 80—y 1—m—
x %, +4/1— B2cosec A R B i B2 cosec A2

(SS 85’) 86,,—80,4 0, 28 8886,,—36,+86,,— 800
3\, & 2 o9 2
From this equation we immediately deduce the partial derivatives of S with respect to the
variables t, 7, 7,4, 6;, 0,4, 74, 7,4, 0,, and 6,,, and we have then to substitute these values in the
two partial differential equations (for the case of null inclinations)
oA )] A ()t
ot  2Mm (\or, 7,00, 2Mm, \\ér, 7,80, 7 7,4
008 0,,—6,) (EEL_S’ 38 88 &8 ) sin (0,,—0,) (SS 38 &8 oS )

M ' 87" ST"+T‘T0lrlt80d M Sr_/lrt_sgl_glr/tsell

mm,
T )
\/r?, +13—2r,,r,c08(0,,— 6;)

‘and
0_§§'+M+m{(§§)2+ 38 \2) M+m, ((88)2 88 )?_@_Mm
e St 2Mm 87'0 (70800) }+ 2’Mml {(8710) +("'/080/0 7'0 T’O
+cos(0,0 00)(SS§ 58 88 )+sin(0,o—00)(88__8§__§§_86’__)
M \Srydr,y  7,50,7.950,, M \5r,57980, 8re7,090,0
mm,
V72, + 13— 27,479 c08 (6,0 — b,) .
We have e
0,-6, 0,—6 0,—9, -
0, —0,=9+-1t_—10 "2 A ‘2 o 0,0_00=,9____t?__°+L2_9,
and
91—00 e cos A : 0,—00 sin A '\/—-—2_—5
T iy 1_32, sin = Bz 1 — B%cosec A
0,1_9,0_ cOSA, 4 0,;—0,0_ sm)( ,\/——-—2—_?‘
cos—— ‘\/1——;3?’ s e Vi g 1— B2 cosec
HMPII 30
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234 V. NEARLY CIRCULAR ORBITS [

therefore
cos (0,,—6;)=Kcosd— Lsin®d, sin(0,,—6,)=K cosd+ Lsin9,

where we have put for abridgment

K_cos(f?,,—H,O_O,—()o) cosAcosA, +sinAsinA, V1 — Bzcosec)«“’\/l Bzcoasec)\2
VI-BVI-F

2 2
L —sin (0,,—0,0 0,—00) cosAsin, V1 — B’cosec)\z—sm)«cos)« Vi- B? cosec A*
g R

vispyi=g

Thus, making the above substitutions, the first partial differential equation becomes rigorously
(for the case of null inclinations)

88 1J,T,as_ Mm_ Mm,
2N o3 8 38, a(l+B) « (1+8,)

— mml

\/a2(1+ﬁz+m’ (1+B,)2—2ax, (1+B) (1 +B,) (K cos & — Lsin 9)

O=

7 88 ﬂcotan)\ 88 88
+8ana{ S oiher ﬁ)sﬁ %A+) 1+8 (5/\ 8&)}
M+ : 88 )3 cotan}, (88 88))2
" 83tm, m'“z{ 8, i B)SB A tu)5, Tp,(b‘h,_&,)}
. R P ] s g _88’}2
+mz—w{\/l—ﬁcosecx (87__8:) =

Miw; (b ieallAg SS) 3_3}2
+8Mm,oc?(l+ﬁ,2{ i (8)\ 5.) 59

K cos 9 — Lsin & 38 ﬁcotan)\ 38 88
0w, { i B)sp t0+I5 + 558 (aA st)}

R )

Kcosd— Lsind Lt LT RO0 Mttt
4Maa, (1+B)( I+B){‘/l—ﬁzcosecm(____)__}

————— (88 88\ 88) Ksin9+Lcosd ( —p—, (08 SS) 35’}
2 Aeme+LOoMS | i e sy e
{\/1 VRSP eed A, (S)t S ) 33} 4 Moo, (1+B) {\/ e (

{ g B)SB 3, +L)8S &%ﬂ(gi—%ﬁ’)}

Ksm8+Lcos% 5 (88 SS) @}
Moz, 1+p){' — B cosec X, (a)\ B 8%

{ +(1- B)sp LR Bclo:agx(gf Zf)}

and the second partial differential equation may be rigorously formed from this by merely
changing the signs of B, B,, 9.
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[6. Approximations in the case of nearly circular orbits.]
If we entirely neglect f and B, , or rather suppose them rigorously to vanish, then the partial

differential equations become

ol [r38 EA/E,SS Mm_ Mm, mm,
2W o® B AL % °‘, \/az+a?—2ococ cos(9+A,—A)
M+m ( 88 SS 2 M+m, ( 88 8S
+8Mmot2{ B %()H_)B } 8Mm a’{“ /3 -3, +L)8 }
M+m §1_S'_8_S_8_S) +M+m 38 88 SS
*8ima2\SA " 5~ 58) T 8Mm, o2 SA 78, 5
cos (S—fﬁ—_)\){ SS 38 SS SS 38
O sa iy 1005 ovg, 45— 10+
cos (9 +A, —4) (SS 38 88\ (38 &8 SS
T iMar,  \82 5 58)(8X, 75, T30
sin (9 -+A +A, - )\)(8_@_8_8_@ { BS 38 SS
e | P § Vet > sa) t3p, Ay }
_sin (8424, —4) (SS 38 SS) SS 38 38
e BT B s Ay }
together with the other similar partial dlﬁerentlal equation derived from this by changing the

38
sign of & and those of g:: 88'73 '5B.° .In these equations no power of any mass is neglected nor any

of ¢, ¢,; but if we put ¥
; +o

S:MMKA/E-*-M’”L,K,JE-FMM, 70

® K, VT

and neglect m®n, and mm?, the equations become, after being reduced by the partial differential
equations of elliptic motion and divided by mm, /16,

0= B S (e -3 5) (5 22565 -0 5)
A/A/H“(" 'sK' 3'8'-)(a-!'-(/o!c 557“3" - ssib)
o B i (e 2 Qo) o o S G -5 ) (3% 25)
e e N NS

3 ) 3k, )
____cos(+3+)( A)‘[(K 3)\8—’(—36;)(, 3)\'8; 3L,8K)

\/ waV
ok : 5 BK_SK 3k, Bk,
(5v-50) v -50))
Sic,\ (dr Bk Sk S\ (Sk, Ok,
S=—8in(+ 8+, - A){( 3"'3 ,SL,)(SX—S;)—(K—&\-S:_&E)(S_AIMB_;)}

Vw\/ﬂ, o
16

—\/?+a?—2aa, cos(i«&+)\,—)\)

30-2
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236 V. NEARLY CIRCULAR ORBITS (6
This double equation is rigorous so far as powers of « are concerned, though B, B, and mm?,

m®m, have been neglected. But if we change « and «, to their approximate values 3A+¢ a,nd
3), +¢,, and then neglect ¢, ¢, , the double equation becomes

o-L 5T ) )

If we now put

and therefore

Mecos(+9+A,—2)
VpaVip,a,
1 R . g
Vo2 + o2 —2a0, c08 (+ & +A, —A)

8, ~ 89

oy’
A A
Vpa=na?, Vp,a =n0a, -

’

At
n,’ vV

and make as a sufficient approximation u/M =pu,/M =1, we shall change the double equation
to the following:

o=Vt a (e 30)+a, (o < )}

that is,

N

SA

and

=) (1-3)8

>

We have seen that

have

89

n, [a\} .
gt (u—) ; if then we put for a moment /%,

il +A,—A)
s T35 +2/\Acos(+1‘} :
TVt t—aa A Teos (1942, =N
”"’) 2 A, =) cos § — e
PN % ()\,) cos (A, —A) cos & — — e e
'\/l+(7T,) -2 i cos ( /
1 L ———
i, — e
A/1_+_(;\) ’_-2()\’) cos(—1‘)+}‘,")‘)
&

A\ \
2()T) sin (A, —A)sin & —

1
—% A\t
//1+(%) —2(X;) COS(9+A1—A)

1

gy - =,
i A3
A/H_()%) ,2()7') cos(—9+7‘,"h)

=a'and A, —A=A", we shall

A s, ALY
=o' Ml e
1 x*, A ‘*—1, " ‘* 1,
S8 234X _ s 28N,
5\, o T35 AT BA 8N 38'Al
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and hence
ilé_*.ﬁ 8_",’— ]__/\ Sl?b
L e e Yy
Therefore
O=\/1+oc‘(1—oc“*)f¢+—:cos)\‘cos& £ —*r—sﬁ__/l cre
' Vg Vita?—2x cos(9+)\) V1toaiz 22cos(— 9+ )’
and
2 1 1
0=VI1+a' (1—a"? < —=sinA'sind — — —
it )59~ Vo' V1+02—2a cos ($+A) \/l+a‘2 Do 008(— 9 +A)
Treating «' as constant, this gives
3% +8A"
V1+ —aH3s —— sinA'sin 389 —cos A'cos 99A" —  _———
Ot( ®x )‘/J ( ) \/1+0(2 20(005(9+/\)
oA’ — 89 ok 198
\/1+:x‘2 20" cos( —§+AY)’
that is,
9+ e
V1+a' (1—a"H)=funct. («') — ——sin X' cos 9 e
+o' (1 —a' %) =Ffunct. («') \/m sinA' cos & + ) A\/1+a‘2 = sy

But the arbitrary function of o', introduced by this integration, must be identically zero because
otherwise it would not vanish with X', as it must do, since i does so, independently of «' and 9.
Thus, finally

%ag' D+A,—A do\
Voatoa,p=Va,V1ita'p=— O{T_——%cos{)sm()\ —A)+ amﬁ‘) Lt \/oc2+oc2 — 2m S
which may also be written
At 3t { , FO-+N—A e
AT oabidoo e T e = e
P A=A cos &sin (A, —A)+ bor AV AT AT — Xt c0s 0)

orin the alternate form

ey A S Bt i

s e NSRRI 3 S '






