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Basic static problems of elastic micropolar-media

T. G. GEGELIA and R. K. CHICHINADZE (TBILISD

By the method of singular integral equations and singular potentials some static boundary
value problems of the moment theory of elasticity are studied. The case under consideration is
that in which the normal displacement and rotation components are given as well as tangential
force and couple stress components, or the case in which normal force and couple stress compo-
nents and tangential displacement and rotation components are prescribed. Such problems.
arise as a result of contact between elastic micropolar media and may be of interest from the
point of view of mechanics. They are interesting also from the mathematical point of view because
they can be reduced to singular integral equations with complicated kernels.

Niektore statyczne zagadnienia brzegowe momentowej teorii sprezystoéci byly badane metoda
osobliwych réwnan catkowych i osobliwych potencjaléw. Rozwazany jest przypadek, w ktérym
dane sa zaréwno skladowe przemieszczenia w kierunku normalnym i obrét, jak i sila styczna
i skladowe naprezenn momentowych badZ przypadek, w ktorym dane sa sita normalna i sktadowe
naprgieﬂ momentowych oraz przemieszczenie w kierunku stycznym i obrét. Problemy tego typu
wystgpuja w trakcie kontaktu sprezystych oérodkéw mikropolarnych i budza stale zaintere-
sowanie mechanikéw. Sa one rOwniez atrakcyjne z matematycznego punktu widzenia, gdyz
prowadza do osobliwych réwnan catkowych ze zlozonymi jadrami.

MeToIoM CHHCY/ISIDHBIX MHTErpajibHbIX YPaBHEHHIl M CHHIY/IADHBIX TOTEHIMAIOB HcCie-
IYIOTCS TPaHHYHBIE 33/1aYH CTATHKH MOMEHTHO TEOPHH YNIPYTOCTH, KOI/JIa Ha TPaHMLIEe Cpesibl
3aJaHbl HOpPMAJIbHBIE COCTABJIANOIIIHE CMEILCHHA H Bpﬂmﬂﬂiﬁ M KacaTeJjibHbIE COCTABJIAKIIHE
CHJIOBOTO M MOMEHTHOTO HaNpsyKEHHA MJIM KOTMA Sa[aHbl HOPMaJIBHEIE COCTABJUIONINE CHII0-
BOI'0O ¥ MOMEHTHOT'O HANDPS>XEHHA M KACATENILHLIE COCTABIISIONIME CMELLICHHUSA H BpalleHuA. 3a-
JaduH TAKOoro pO}IB. BO3HHKAIOT ITPH CONPHKOCHOBCHHH YIIPYTHX Mm{poﬂ{}ﬂﬂpﬂbl’x Cpel H MOTYT
HMETh MHTEPEC C TOUKH 3PEHHMA MEXaHMKH. DTH 3aJ1a4i MHTEPecHBI B C TOUKH 3pEHHsA MaTeMa-
THKH, TaK KaK HENOCPEACTBEHHOE CBEOEHHE HX K HHTErPANIbBHBIM YPaBHCHHAM, IpHUBOIHT
K CHHIYJADHBLIM YpaBHEHHMAM BEChbMa CJIOYKHOI CTPYKTYpHI.

1. Static state of a micropolar medium

IN the study of the moment theory of elasticity sometimes referred to as the micropolar-
or asymmetric theory the point of departure are the following axioms(*):
A homogeneous isotropic elastic medium having a centre of elastic symmetry is a region
2 in a three-dimensional Euclidean space E® and an ordered set of seven real numbers
0, A, i, o, & v, f satisfying the conditions
(L) >0, u>0, 3i2+24>0, oa>0, v>0, 3e+2v>0, p>0.
This medium will be denoted by 2(o, 4, u, «, &, v, #) or simply, if a mistake is exclu~

(*) The foundations of the moment theory of elasticity are discussed in many works, of which let us
mention Refs. [1 to 6] and the monograph [7]. Detailed historical information can also be found in those:
references
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ded, by 9. The quantity p will be referred to as the density of the medium 2, the remaining
quantities being elastic constants.

In this work we shall consider a homogeneous and isotropic elastic body having
a centre of elastic symmetry, therefore the usual term, which is somewhat lengthy, will be
replaced by that of “elastic medium”.

LetF = (F,,%,,F.)and ¥ = (%,,%,,¥) be real vectors defined in the region 2.

The static state of the elastic medium 2(p, 4, i, a, &, v, f) corresponding to a mass
force # and a mass moment ¢, is an ordered set of four numbers [u, w, 7, 4], where

D) u= (uy,u;,u;) and w = (v, w,,w;) are real vectors and 7 = ||7;l/;, 3 and
& = ||myllax s are real matrices, defined in the region 2.

(12) Il u,weC*(2) NnCY(P) and 7,ueC9);
1.2) III) ‘;"’ +o%; =0,

i

%+sjﬂrﬂ+9gj=os j= 13213;

X
(1.3) IV) 7y = MU a (et ) +(u— ——j—2as;j;wg,
1.3) - el 4 +ﬁ)@+( B, ij=1,2,3
. Py == S "_ ox; T TGy R 52 Rty

where 48y is Kronecker delta, &;—the Levi-Civita symbol and x = (xy, ¥z, x3)—a
point in the space E3.

The Eqgs. (1.2) and (1.2) are the fundamental equations of static state and (1.3) and
{1.3’) express Hooke law of the moment theory of elasticity(*). The quantities #,w, T
and u are the vector of displacement and rotation and the tensor of force stress and moment
stress, respectively.

It should be observed that the relation 2w = rotu between the vectors of displacement
and rotation known from the classical theory and sometimes assumed in the moment
theory of elasticity is not assumed in the present paper.

2. Basic equations in displacement and rotation components. The stress tensor

On substituting (1.3) into (1.3") and (1.2) into (1.2’) we obtain the general equations
of static state of the elastic medium 2(p, 4, u, «, €, v, #) in components of displacement
and rotation due to the mass force # and the mass moment % :

Q.1 (u+a)Au+ (A+p—a) graddivo +2a rotu+oF =0,
.19 (v+p)dw + (e +v—p)grad dive + 2arotu—4aw+o% = 0,

where 4 is the Laplacian operator.

(*) Repeated Latin index in a term means summation with respect to that index from 1 to 3. Re-
peated Greek index does not mean summation.
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If [u, w, T, u] is the static state of the elastic body 2(p, 4, 4, «, ¢, v, ), u and w belong
to the class C2(2) n C'(2) and satisfy the relations (1.3) and (1.3'). The inverse statement
is also valid if » and w are determined from the relations (2.1) and (2.1") and belong to the
class C%(2) n C'(2), then [u, , T, u], where the matrices 7 and u have been determined
from (1.3) and (1.3') represent the static state of the medium 2 (g, 4, u, a, &, v, f).

Thus, the problem of determining the static state, which is the fundamental problem
of the present paper, reduces to that of determining a pair of vectors, 4 and w, of the class
C%(2) n CY(@), from the relations (2.1) and (2.1).

The Egs. (2.1) and (2.1"y can be written in a matricial form. Let us introduce the
following differential matrix operator

-’l(ax) — ”“gu(ax)" 6X%6
and represent it in the form

M (05), MP(0x)
MD(05), M (05)

3

‘#(h(ax) = ”-'#g)(,ax)naxa; k = l: 2’ 3’ 4:
where

2

0
1) - sy S
M (0:) = (u+0)dyd+(A+pu—a) B0, *

M (0:) = MP(0:) = —2asmaixk R

2

AP @) = [+ A~ dal+(e+v-p) 5o

Now (2.1), (2.1') can be written in the form
M(D)U +oH# =0,

where % = (U,, ..., Us), # = (#y, ..., #s), Uy =uw, i=1,2,3 and U, = ,_3,
i=4,5,6;# =F,;,i=1,2,3and #;, =%;_;,i=4,5,6.% and o will sometimes
be written in the form % = (4, w), # = (¥F,%).

Letn = (n,, n,, n5) denote any unit vector. The force stress at a point x in the direction
nis a vector ™ = (z{, 7§, 7{") where 7{”(x) = 7;;(x)m; and the moment stress at
a point x in the direction # is a vector g™ = (u{”, u$”, u{") where uf” (x) = uy;(x)n;.

Let [u, w, 7, ] be the static state of the elastic body 2(e, 4, u, «, &, v, f). Then,
from (1.3) and (1.3') we find

(2.3) ™ = A divu+(u—o) -33"— m+(p+ o) —taﬁ n;+ 2006 0k,
3x; 6x,

. ow dw
2.3 " = —B)—3 fizhvic )
239 p” = emdivw+ (v—p) 7, n+ v+ p) o "
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Let us introduce the differential matrix operator

| TO@ ) TG, 5
(2‘4) T‘(axs H) = ”T'u(a:: n)”ﬁxﬁ = Iv(;)(ax’ H) T(g](a’, H) ’
where
(2-5) Ta')(a;,ﬂ) z ”T(t)(ax,ﬂ)naxa; k = 1!2! 3$ 4;
T, )= Al (= ot e G 0 By o
SR ox; 1 0x; i on
(2‘6) mz)(axs ﬂ) — _Zasﬂ.knks J’l(ja)(ax, H) = 0:
2.7 TP (8, n) = en i+('u~-ﬂ,éi').vt —a—+(‘u+ﬁ)(5 2,
' S " ox; 7 ox; Y on
and
28 T®(x) = TU(0x, myu(x)+T®(0x, n)o(x),
2 W) = [T UWY,  for i=1,2,3,
o =TW® a.n s
29 #"(x) (0, m)w(x)

F’(in)(x) = [T(axs H)%(x)]iiﬁ’ fol’ 1 ] I" 2: 3',

T and T™® will be termed stress operators.

3. Basic problems

There are in the moment theory sixteen problems corresponding to the four problems
of the classical theory of elasticity. These problems are formulated thus:

Find the static state [u, w, 7, u] of an elastic body 2(g, 4, u, «, &, v, f) if a displace-
ment vector and a rotation vector are prescribed at the boundary of that body [prob-
lem (I.I)] or the vector of moment stress [problem (I.II)], or the normal component of the
rotation vector and the tangential components of the vector of moment stress [problem
(LIID)], or the normal component of the vector of moment strain and tangential components
of the rotation vector [problem (LIV)].

The problems (ILI) to (ILIV) are formulated in an analogous manner, the stress vector
being prescribed instead of the displacement vector. In the problems (IILI) to (IILIV)
the normal component of the displacement vector and the tangential components of the
vector of force stress are prescribed instead of the displacement vector. In the problems
(IV.I) to (IV.IV) the displacement vector is replaced by the tangential components of the
displacement vector and the normal component of the force stress vector.

A method for investigating the fundamental problems of the classical theory of elastic-
ity and thermoelasticity with the use of the theory of singular integral equations is descri-
bed in [8]. This method can be used to study all the problems above. The construction
of fundamental solutions and certain elastic potentials is explained in the monograph [7].
The problems (I.I), (ILII), (I.II), (ILI) are studied in Refs. [9, 10, 11].
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In the present paper we shall study the problems (IILIII) and (IV.IV), to which cor-
respond the third and the fourth problem of the classical theory of elasticity (see [12, 13]).
Similarly to the classical case their study comes up against certain difficulties.

In what follows a finite region in E* will be denoted by @+, its boundary by S and the
complement of the set 2* U Sby 2-.

The above problems will be studied for the elastic body 2*(p, 4, 4, a, &, v, f) and
27 (0, 4, p, &, &, v, B) as well. In the first case the problem is termed internal and will
be denoted by the symbol (p, ¢)* (p, g = L IL III, IV) and in the second case—external
and will be denoted by the symbol (p, ¢)~ (p, q = L, II, I1I, IV).

In addition to being of interest for themselves, external problems occur, with the meth-
od used in the present paper, as auxiliary problems for the solution of internal problems.
The same may be said for the internal problems, which occur as auxiliary problems for the
solution of external problems.

Let us observe that, for the statement of the problems (p, ¢)* (p, ¢ = L II, 1IL, IV),
the vectors of displacement and rotation u(z) and w(z) and the vectors of force and moment
stress 7™ (z) and u(z), when x € S, are considered to constitute the following limits(*)

[u(x))* = lix::u(z), [w(x)]* = limw(2),

FEozx Ftazrex

O = lime2@),  EOE) = o),
- I

FEazrx taz-»x

where v™(z) and u™(z) are to be found from (2.8) and (2.9) and # is a unit vector normal
to the surface § at a point x external with reference to 2*.

The problems (III. IIT)* and (IV. IV)* to be studied in the present paper are equivalent
to the following problems.

The problem (IIL. IIT)*. In a region @* find vectors u = (¥, , u,, ;) and w(w;, ®,, ®;)
or a vector # = (u, w) of the class C3(P*) n C'(2*) satisfying the relation (2.2) in the
region 2* and the boundary conditions v, eS:

(B.1) [TDG,, m)u(y) + T3, Mo (y)—n{TD,, )u(y)+ T (3,, o() )t = f“’(y),

(€AY WO = F00),
(3.2) [T, () —n{T®@,, o)L}t = FA0),
(3.2) [0 = f20),

where £ and fi® (i = 1, 2, 3, 4) are real functions prescribed on .

The problem (IV. IV)*.In a region 9+ find vectors u = (u,, 43, us)and 0 = (w,,w,,w,)
or a vector ¥ = (u, w) of the class C*(2*) n C!(2*), satisfying the relation (2.2) in the
region 2* and the boundary conditions Vy € §

G3) [W0)-n{u)hl* = §20),
6.3) (7@, MuG) + Ty, o)t = #0),
04 [0)-n{o))} = £20),
G4) [T, o)k = §20),

where ¢ and g{* (i = 1, 2, 3, 4) are real functions prescribed on S.

(*) When there is a double symbol + or F in a statement it should be understood as an abbreviated
expression of two statements, for the upper and the lower symbols.



94 T. G. GeGeLiA AND R.K . CHICHINADZE

Using the notations of the foregoing section the problems (IILIII)* and (IV.IV)*
can be formulated thus. Find in the region 2* a six-component vector % of the class
C*(2*) n CY(@*) satisfying the equation (2.2) in the region 9* and the boundary con-
dition (3.1)-(3.2") in the case (III.III) and (3.3)-(3.4') in the case (IV.IV)* in which
;=% andw;, =¥%,; (=1,2,3).

4. Uniqueness theorems

Let us assume that % = (u, ), u = (uy,u;,u3), ® = (0, w;,w3), Sell(a),
« >0, % e CX(9*) n C'(2*) and 4(3,)% is absolutely integrable over the region @*.
Then, the following formula is valid

@) [{wa@yu+E@, w)}dx = [ {lu=n@- )" [TOu+ TP —n(nT Oy
F+ s

+nTPw)]* + [0 —n(w)]* [TPw —n(TPw)]* + [mu]* [nTOu+nTPw]*

+ [nw)* [1T®w]* } dS,
where
3242u [ 0w du; é‘u A
By &%= Ty (Bx[) 2 ( 3xj 6” dx )
ou; z 33+29 Ow;
+3 Z ( o +2“"‘f‘°"*) (Bx;)

( Ow, ) B ( Owy 3&)‘)2
L ) Z ox, “T“ %7, 2\ox,  ox) -

The formula (4.1) will be referred to as Green formula. It can easily be proved by
means of the Gauss-Ostrogrodzki theorem. Let us observe that, under the condition
(1.1), we have E(%, %) = 0

Let now % = (u,w) be a solution of the equation .#(d,)% = 0 in the region 2,
of class C2(2~) NnCY(Z") satisfying, in the neighbourhood of an infinitely remote point,
the conditions

3 W = 00, () =o(™), j=1,23%
@“3) 2 oy, 2D 2o, ij=1,2,3,

where |x| = Yx2+x2+x2.
Under these conditions, by applying the Eq. (4.1) in the region 2~ n {x € E® !le < R},
where R is a sufficiently large number, and passing to the limit for R — oo, we obtain

@4 [ E@,adx = — [ {[u-n@w]" [TOu+TP0—n(n TOu+nTw))"
g- 5
+ [w—n(n )" [T®o0—n(n T®w)]" + [nu]™ [n TOu+n T®w]”

+[nwl™ [n T®w]" }dS,
which will also be termed Green formula.
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From (4.2) it follows that any solution of the equation E(#, %) = 0 of class C'(2%)
is given by the formula

u= [axx]+b, w=a,

where a = (a4, a,, as), b = (b, b,, b;) are arbitrary constant vectors.
Hence we can easily prove the following theorems:

THEOREM 4.1. The problems (II1. IID)* and (IV. IV)* have no more than one solution.
THEOREM 4.2. The problems (I11. III)~ and (IV. IV)™ have no more than one solutiorn
satisfying the conditions (4.3) and (4.3').
5. The volume potential

The term of volume potential will be used to denote the integral
51) WeEe) = L [ a-pr o)y,
91-

where ¥(x) is the fundamental solution of the equation 4 (3,)% = 0 (see [7])

1
pw g

e @ || PO = ||PPllsxs, 1=1,2,3,4,

¥ = [|¥pellexs = }

iy L 1 @« exp(=olxh)| 1 & (A+p)lx|
ﬂ”("""ﬁ[}'Tﬂ“pm@ B ]maxxax,['zmzm

(Bre e Coi)]
4u Ix| ”

(E¥))

1 d l—exp(—oa;)x])
@) () = PO (x) —
Tk; (x ) "{,.tj (x ) An ” Ejkp axp I x[ E)

) exp(—o;)x[) | S
) () — kj p 2 1
WO =npre— W Tk

exp(—0,|x|)—exp(—aa|x]) _ exp(—aa|x])—1 ]
’ alx| x| ;

[ 4 \3 _ 40 )%
1= e 20) 0 2T \wr B

We shall prove the following theorem:
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THEOREM. 5.1. If # € CO*(D*), then W € C*(2*) n C*(D*) and

(5.3) M(O) W(H)+oH =0
in the region 9*. If # € C>*(2~) and 3 is a finite-value function, the integral
) W) ) =L [ W) # )y

R

is a solution of the Eq. (5.3) in the region 9~ and, belongs to the class C*(2~) n CX(2")
and satisfies the conditions (4.3) and (4.3').

If follows that if ¥ is a solution of (2.2) in the region 2%, ¥ = V— W(3#) is a solution
of the homogeneous equation .#(3,)% = 0 in the same region. In addition, if V" satisfies
the conditions (4.3) and (4.3’), the same conditions are satisfied by #.

The boundary conditions for % will involve the volume potential and its derivatives
on S. Such a variation of the boundary data does not change their regularity character
assumed in the present work (see Sect. 6).

Thus, the problems (IIL II)* and (IV.IV)* reduce for # = 0 to (IILII)* and
(IV.IV)#, respectively. Let us observe that the problems (III, IIT)~ and (IV.IV)~, with
the additional conditions (4.3), (4.3"), reduce for # = 0 to (IILII)~ and (IV.IV)~ with
the same additional conditions.

In what follows it will be assumed, without limiting the generality of the considerations,
that 5 = 0. Let us observe that the volume potential (5.4) satisfies the conditions (4.3)
and (4.3’) for weaker limitations than that of finite-value of o#.

6. Transformation of the boundary conditions
In what follows it will be assumed (without repeating that assumption each time
verbally) that
SelL(), 0<h <1, fOf 40 4 ecths);
FO, [, 40,8 e C2M(S), 0<h<K.

We shall express the boundary conditions of the problems (IILIIN* and (IV.IV)*
in a form more convenient for further considerations. It is easy to see that the following
relationships hold

6.1)

(6.2) n T'(z“'(a,, ﬂ)w = —2aeu;n;w, =0;
auj 31:; -
(6.3 n,a—n e [ x rotu];,
6.4 TD(9,, Mu = 2;;% + Andivu+ (u—o)[n x rotu],
(64 n T, nu = 2un 2+ Adiv,

{6.5) Tin(a,, ,,)u_,,(,, T, ,,)u) = 2;:[—3% —n(n %:_):I + (e —a) [nxrotu].
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By virtue of (6.2) and (6.5) the boundary condition (3.1) takes the form

(6.6) [(p—a) [ x rotu(y)]+2u {E;LJ) —n(n a‘;(”))} +2a[nxu())]:| = fio(y).
Let us consider the sets
Wt(y;d) = UW(y;d) n 2*, S(y;d) = W(y;d)nS,
where II(y; d) is a spherical region, with its centre at the point y, its radius being d, and d
denoting the Lapunov radius.

Let x be any point in Il (y; d). Let us pass a straight line through the point x, parallel
to the normal n(y). This straight line will intersect S(y; d) at a single point which will be
denoted by x’. Let us determine in II(y; d) a function »; (i = 1, 2, 3) such that »(x) =
= m(x’). Let v = (v,,7,,7,). We have, of course »e C'(llI(y;d) and Vx eIll(y; d):
11 (@) +r3(x) +v3(x) =

The condition (6.6) can now be written by means of the limit

é
6.6") lim {(‘u~a)[r(x)xrotu(x)]+2;4[a ) —v(x )(v (x) ;:g; :I

WE(yid)ax—y

+2af(x) xw(xn} =fO).

By virtue of the identities

u(x) _ v (x)
( ) 3‘»( ) av( [ ( )]v(x) H( )a (x)

6.7) g:((:)) = ﬂ[f(x)><rotu(x)]+yj(x)graduj(x),

(6.8) v;(x)gradu;(x) = grad [u(x)} —u;(x) grady;(x),

the expression (6.6') can be rewritten thus

W (yid)ax—~y

lim { — (u+ o) [¥(x) x rotu(x)] + 2,u(grad —v(x)%) [z

¥(x) +2a[v(x) Xw(x)]} =fo().

—2uuj(x) ( grad —»(x) Wé(';)_)

If we observe that

(g““d ) av(x)) T 50 av()

where 9, is the Giinther operator (see [8]) we have from (3.1) the equation
(et =295 ben = (smad—n g2} 000
*()’.d)axw.v *)

by virtue of which the boundary condition (3.1) takes the form

[(p +a)[n x rotu(y)] + 2uu;(y) (grad —n%) n; —2a[n x w(y)]]

gkv

= "f."l’(y)+2#(grad* “‘36?) f0).

7 Arch. Mech. Stos. nr 1/76
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The condition (3.2) can be transformed in the same manner.
Thus, the boundary conditions of the problem (IILIIT)* take the form

t »
(6.9) [({J+fx)(n;—g;f —Hj—g;—’f) + 2uu; @k"j—ZGﬁmﬂiwj] =£0, Imwl* =f°,
J

+
(6.10) [(v+ﬁ)(nj—gii—n,--‘j;;’—f)+zwj @ﬁnj] =f?, (k=1,2,3), ol =2
J

where
fo = —f"’+2p(grad—n--§?)f‘”, fin =j‘f{”;
@) “ 2\ fa 2 ‘2
f® = —f@+20|grad-n—o) >, S =[P,
The boundary condition of the problem (IV.IV)* can be transformed in an analogous

manner. We have

4
[—mmu)t =g, k=1,2,3; [(14'2,“)%‘;{ —2#";'”;(9&”1)] = gs",
j

-
[wy—mmjw)t =gi», k=1,2,3; [(s+29)%?——2vnjwj(@km)j| = gi¥,
i
where
g0 =G0, gD =g BED, gD =ED, gD = G20 B,

Let us introduce the following differential matrix operators
H(l)(ay’ ﬂ) H(l)(ay, H)
H(0,,n) = [Hp(dy, M]sxs = I:H‘”(a,,ﬂ) H®(,, n)] >
R(l)(a” H) R[Z)(ay’ ﬂ)
R(3,, 1) = [Rye(8,, M)sys = [Rm(a,., ) R(..,(a”n)],
where
H® = |HP|laxs, RP = IR Jlawss &= 1,2,3,4;

[ i G
H;,}l = (}5+a)ﬂj a}' _(‘U+G)6}.}E +2,U- @yﬂj] (1 i quq,)+ﬂj (57.4.,
L. ¥

H;.}) = ZGEW','H;(I == (3?4), H:._?) = 0,

i P
HP = 0+ —(v+p) 0, 2 +zu@,n,-](1 — 8,5)+1; 0ya,
L Yy on
)
Ry’ = (8 —n,m) (1 _674)4‘[(2 +2ﬂ)‘a'; _2:“”}(9&";)] 04, RP =0,
J

R},}) =0 ) R;._?} = (6.”'. ‘—ﬂyﬂj) (l == 6,,4) + I:(S + 21})% = Zl’ﬂj(gi ﬂg}] 63,4 (‘) .

(*) In these formulae and everywhere in what follows the values of @, n, &y and @/éy, will be
considered for k = 4, to be the same as for k = 1.
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With these notations the problems (IILIIT)* and (IV.IV)* can be formulated as follows.
Find in the region 2% a vector % = (u, w) of class C2(2*) n C'(Z*) which satisfies
the equation #(&,)% = 0 and, in the case of the problem (IILITI)* the boundary con-
dition
[HG@,, W« =f, =", ... 142, ... ),
or, in the case of the problem (IV.IV)*,— the boundary condition
(R, ) =g, [g=(gi",....8", g®, ..., 8",

where f = (f, ...,fs), & = (g1, -.., gs) are real vectors prescribed on S, of class C"*(S),
satisfying the conditions

fime=0, foam =0, gm=0, gi,m=0.

These problems will be denoted in what follows by the symbols (ITLIIDZ, (IV.IV),
respectively.

7. The potentials and their properties

Let us consider the following vectors of the potential type

(7.1) Vip) (x) = [ [R@,, mP(r—2)]'9()d, S,
5
(72) W@)x) = [ [H@,, n)P(r—x)p()d,S,
5
where ¢ = ¢,, ..., @g.[ ]’ denotes the transposed matrix in square brackets.

Bearing in mind the identity [F(y—x)]' = ¥(x—y) it can be shown that if ¢ € L(S),
then V(p) and W(g) belong to the class C®(Z*), satisfy the conditions (4.3) and (4.3')
and

Vx € ENS: MEIV(@)(x) =0, M(3;) W(p)(x) = 0.

Let us observe that the value of the potential V(p)[W(p)] does not vary if the density
@ is replaced by y, where y = (y1, ..., x8) and yx = @e—MM@;, Yarx = ¢4+.-nknjep4+j’
k=1,2,3; 74 = @4, xs = @s. This can easily be found from the equations

(73) ﬂfR}_?‘)(la,,ﬂ) = 09 ["lHl(jm)(ar’n) = 0]: mn = 1,2, 3; 4’ } - l, 2, 3.

It is obvious that m yx = 0, x4,k = 0. It is concluded that, without changing the value
of the potential ¥(p)[W(g)], we can assume that the conditions

(7.4) VyeS: mp(») =0, mpa(y) =0,

are satisfied.
We shall now demonstrate the following theorems

T
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THEOREM 7.1. If @ € C*(S) and satisfies the conditions (7.4) then, for any z € S, there
exist [H(3;,v)V(p)(2)]* and [R(3,,v) W(p)(2)]* beloaging to the class C*"(S) and

[H(., ") V(p)(2)]: = F @)+ f H(2;,7) [R(3,, NP (y—2)) p(»)d, S,
§

[R@ N W@EY = +9@+ [ RE@ MA@, nP(-2]'90)4,S,

where v = n(z), n = n(y) and the integrals in the right-hand members are understood in the
sense of their principal value. _ B
If ¢ € C"(S) then V(p) and W(g) belong to the class C'(2*)[C'(27)].

THEOREM 7.2. If @ € C*"(S) and satisfies the conditions (7.4), there exist [R(0.,v)V(p)(2)]
and [R(8,,v) V(¢)(2)] belonging to the class C*"(S) and equal to each other.

8. Integral equations

Solution of the boundary value problems (IIL.III)* and (IV.IV)* will be sought for
in the form (7.1) and (7.2), respectively, with the sought for density ¢ of class C*"(S) and
satisfying the conditions (7.4). Then, bearing in mind the Theorem 7.1 we obtain the inte-
gral equations

T ¢@+ [ H@,»IR@,, NPG-2 p()d,S = f(z), (L ITD);
Y

+ @)+ [ R@,H@y, P2 ¢()d,S = g(z), (V. TV);.
Y

By (IILIID)* we denote the operator, generated by the left-hand member of the equation
(IILIIT)f . The notations (ITLII)~ and (IV.IV)* will have an analogous sense.

THeOREM 8.1. The operators (IILIID*, (IV.IV)~, (IILIIT)" and (IV.IV)" in the spaces
| 1
LE(S) and LY (S) where ~ + = 1 are adjoint.
This statement follows from the identity

@.1) [R(0., )[H(3,, )P (z—y)1 = H(3,, n)[R(é;, ) ¥(y—2)],

which can easily be verified. The symbol L{&®(S) denotes the space of vectors having the
formo = (v,, ..., vg) summed over S in the p-th power, the norm being

il ={ J (

i

P2 1/P

8
' (loi?) " a, 5]
=]
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Let us investigate the singular integral equations obtained. For this purpose it is neces-
sary to write expressions for the operators (ITLII* and (IV.IV)*.
Let us represent the fundamental solution (5.2) in the form

Av2pta 1 Adp—a XX "
Y0 = [ K+ o) (A+2m) x| k3 (u+a)(i+2u) |x|3] W (),

82 Y¥(x)= 20,

——E e ..,&,. -+ (2

2a(u+a)(v+p) P x| ki
e+2v+p 1 et+v—p X%y

M) = | o e 1 e ] A,

where y{?, 7¥ and x{} are functions continuous at every point of the space E>. These
functions have their first derivatives bounded in E*. Their second derivatives have a singu-
larity at the origin of coordinates only, of order not higher than |x|~'.

By means of the expression of the fundamental solution (8.2) just obtained it is easy
to write the singular part of the kernels of the operators (IILIIN)* and (IV.IV)*. We have

(8-3) H(a: s fp) [R(ay's ﬂ) W(},“H)}’ = y(ys :)+-Q(y$ 2.'},
where

90,2 = s lons = |l 200D e, ) - 26 2)
E] rg\.t s » 9(3)(),’2} 9(4)0;,2) ’ Vs i 4 x4

m=1,2,3,4,
1
Py, 2) = —'(1_514)(1— vm)[("y‘”v"*”') | i (n,n; 511») o y—7
" N o 1 2
+E(l— ‘514)51*4[('@'"')("’ oiy—z " ‘oz;ly—2ll T dzily- ZI(@ "
0404 01
2n v |y—2z|’

(2) g i o B 31
yjy (}’,Z) ﬂ(l 6}4)6}"48}1[”l a}’j Iy_z|s
P{(y, z) is expressed in exactly the same manner as 2§,’(y, z) except that u is replaced
by v. 2(y, z) is a matrix having the form [2(y, 2)lsxs, Where 24(y,z) is a kernel of
weak singularity. More exactly (see [8]) 2;:e G(1, h, h) is Sx S.

From the identity (8.1) it follows that an analogous expression is valid for the kernel

R(2;,v)[H(3,,m)¥(y-2)]'"

By means of the expression (8.3) it is easy to evaluate the determinant of the symbolic
matrix @, of the operator

2y(,2) =0

(U I () = —9@)+ 1 | @, RGP0 p0)d, S,

where A is a complex parameter. We find det @, = 1.
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It follows (see [8]) that the Fredholm theorems are valid for the operator (IILIII)*
in the space L§®(S). For the operator (IILIII)" in the space L{®(S) the same can be shown
in an analogous manner. Now from the theorem (see [8], p. 166) we have the following

THEOREM 8.2. Iff belongs to the class C°*"(S)[C'""(S)] any solution of the equations
(LX)} and (IV.IV)} of the class L$®(S) belongs to the class C°"(S)[C'"(S)].
Thus, we have the following

THEOREM. 8.3. The equations (IILIIN¢ and (IV.IV)} have a finite number of linearly
independent solutions in the space C*"(S)[C'"(S)]. The equations (IILIING and (IV.IV)3
and also (IILIID)g and (IV.IV)} have the same number of linearly independent solutions
in the space C*"(S)[C'"(S). Iffe C°"(S) [¢ e C'"(S)] then, for solvabilty of the Eg.
(IMLIID} [(IV.IV)Z2] in the space C°"(S) it is necessary and sufficient that the conditions

Jraas =0, [J @ yras =0,

are satisfied, where p® [y®] — is the complete set of linearly independent solutions of the
equation (IV.IV)%, [(ILLIIDE].

9. The homogeneous integral equations

Let us investigate the homogeneous singular integral equations (IILIII)§ and (IV.IV)§.
From the Eqgs. (7.3) we easily obtain the following

THEOREM 9.1. Every solution ¢ of the homogeneous equation (IILIIN [(IV.IV)$)] of
class C°*(S) satisfies the conditions (7.4).

THEOREM 9.2. Thz equations (IILII); and (IV.IV)E have only a trivial solution in the
space C°*(S).

Proof. Letus assume that the equation (ITI.II[)§ has a non-trivial solution ¢ of class
C%" (S). Then g satisfies the conditions (7.4) [see (9.1)]. Let us consider the potential
V(@) [see (7.1)]. From the Theorem 7.1 it follows that

[H@:, V()@ = —p(2)+ fH(az,v)[R(ﬁy.ﬂ)‘-r”(y—f)]'sv(J')dyS,
s

and, since @ is a solution of the equation (IILIII)§,
VzeS: [H(3.,)V(p) (2)]* = 0.

It follows that ¥(g) is a solution of the problem (IILIIT)§. But the problem (ITLIIT)§
has only the trivial solution Vx € 2*: ¥(¢)(x) = 0. From the equation it follows that

Vz e S:[R(8,, V) V(p)(@]* =0
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But, by virtue of the Theorem 7.2,
Vze S:[R(9;,»)V(p)(2)]~ = 0.

Let us consider the potential V(g) in the region &~. By virtue of (9.1) ¥(g), is a solution
of the problem (IV.IV)~. This problem has only the trivial solution Vx € 2~ : ¥(¢)(x) = 0.

From the Theorem 7.1 we find

Vz e §:2¢(2) = [H(0;,»)V(p) @) —[H(2:,»)V(p) D]* = 0.

The contradiction obtained shows that the equation (IILIIT)§ has only a trivial solution
in the space C%*(S). Similarly it can be shown that the equation (ITL.IIT); has only a triv-
ial solution in the space C%*(S). It follows (see Theorem 8.2) the equations (IV.IV),
and (IV.IV)$ have only a trivial solution.

10. The existence of solutions of boundary value problems
From what was shown above it follows that:

THEOREM 10.1. The problem (IILII)} [(IILIII),] has a solution for any vectro
feCY"(S) and it is unique. This solution can be represented in the form (1.1) where ¢
is determined from the integral equation (IILIII); [(IV.IV);].

THEOREM 10.2. The problem (IV.IV), [(IV.IV),] has a solution for any vector
g e C""(S) and it is unique. This solution can be represented in the form (1.2) where ¢
is to be determined from the integral equation (IV.IV), [(IV. IV),].

All the theorems above could have been demonstrated with much weaker limitations
on the limiting functions, namely for;"“, 29 € C%* (S) (see Sect. 6) and }3”, EPe Clh (S)
(I = 1, 2), but this has not be done, for the sake of simplicity.
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