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On a certain solution of dual integral equations and its application to
contact problems of consolidation

J. GASZYNSKI (KRAKOW)

THE paper presents the method of construction of the solutions of the dual integral equations
with trigonometric kernels

[ @) G@)icosuv, sinuvlde = fw), u<1,
0

(1) &
J’ @(v) [cosuv, sinuv]dy = 0, u>1,
(1]

where @(v) is an unknown function, and G(v) is a given function satisfying the condition
a
@ G(v) = s [1+H(v))

in which a is a constant and H(v) is such a function that the integral
oo
) j H(v)cosuvdy
0

exists. The system of dual integral equations is reduced to a Fredholm equation of the second
kind. The results derived are used for solving the problem of a punch acting on a consolidating
w;co-elaistic halfplane. The contact stresses and displacements of the punch are determined
effectively.

W pracy podano konstrukcj¢ rozwigzania dualnych réwnan catkowych z jadrami trygono-
metrycznymi

f D(v)G(v)[cosuv, sinuvlde = f(w), u<l,
0
[6))

o
[ P@) [cosuv, sinuvldv = 0, u>1,
o

gdzie P(v) jest funkcja niewiadoma, G(v) jest funkcja dana i taka, ze

o) G = = 1+ HOEN,
a — pewna stala; oraz istnieje
3 f H(v)cosuvdy.

0

Réwnania (1) sprowadzono do réwnania Fredholma drugiego rodzaju. Otrzymane rezultaty
wykorzystano do rozwigzania problemu stempla dla konsolidujacej polplaszczyzny lepko-
sprezystej. Wyznaczono efektywnie naprezenia kontaktowe i przemieszczenia stempla.
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B paGote maercsa mocTpoeHHE pelleHHA YabHbIX HHTErPATLHLIX YPABHEHHI C TPHTOHOMETPH-
YEeCKHMH SAPaMH:

[ o@)G)[cosuv, sinuvldo = flw), u <1,
(1]

)
j ®(v)[cosuv, sinuvldv = 0, u<l,
0

rae @ (v) aBnAercA HeusBecTHOH dynkumedt, G (v) — KaHHON dyHKIWeH u TaKoH, YTO
a
@ G(v) = = [1+H®)]

4@ — HEKOTOpasA NMOCTOAHHAA; & TAlOKE CYIIECTBYET
[ 4]

3) f Hi(v)cosuv do.
[}

VYpaBHenun (1) ceefens! K ypasHeHmio Ppemprosibma Broporo poaa. Ilomyduenusie pesynb-
TAThI HCIOJL3IOBAHEI JIJIA PellleHHsA 3a[[aul LITamna JUIS KOHCONHYIOIIEroca BASKO-YIIpYroro
MOJIYIIPOCTpaHCTBa. J((EKTHEHO ompefesieHbl KOHTAKTHBIE HANpKEHHA H IepeMEleHHA
1ITAMMOA.

1. Introduction

THE paper presents a certain method of solution of integral equations with trigonometric
kernels. The following equations are considered:

o0

[ 2@ G)coswvdv = fw), u<l1,

(1.1)

o

f @D(v)cosuvdy = 0, u>1,
0

as also the equations

f D(v)G(v)sinuvdy = fu), u<l,
(12) ¢

f P(v)sinuvdy = 0, u>1
0
Approximate solutions of the dual integral equations with trigonometric kernels were
given in [6], the problem being reduced to a system of algebraic equations. G. SZErER [7]
outlines a method of reducing the Egs. (1.1) and (1.2) to the Fredholm integral equations
of the second kind with a weakly singular kernel. The considerations are based on the
assumption that G(v) has the form

(1.3) G(v) = o[1+H@)],



ON A CERTAIN SOLUTION OF DUAL INTEGRAL EQUATIONS 77

where H(v) is a function ensuring the existence and convergence of the integral
[+ ]
(1.4) J- H(v)[sinuv; cosuv]do.
0

A number of papers dealing with the solution of dual integal equations is encountered
in the scientific liferature. Most of those papers are devoted to the equations with Hankel
kernels and contain numerous effective methods of solution.

The dual integral equations with trigonometric kernels are much less frequently dealt
with in the literature.

The application of Fourier transforms to the solution of mixed boundary value prob-
lems of mechanics of continua makes it possible to reduce the problems to the dual integral
equations (1.1) or (1.2). In a number of problems, like e.g. the contact problems, the function
G(v) has the form

(1.5 G) = —é— [1+H(2)],

function H(v) satisfying the condition (1.4). Such problems cannot be solved by the method
presented in [7]. The method of solution to be outlined in this paper deals with the system
(1.1), (1.2) with the condition (1.5) and constitutes a generalization of the method by N.N.
LeBEDEV - J. S. UFLIAND [9] to the dual integral equations with trigonometric kernels.
The method [9] has been generalized previously to the case of dual integral equations with
Hankel kernels of arbitrary (even or odd) order [8]. In order to construct the corresponding
solutions, the properties of Weber-Schafheitlin integrals will be used. The Egs. (1.1) and
(1.2) will be reduced to a Fredholm integral equation of the second kind what in many
cases proves to be advantageous in view of the possibility of constructing the solutions
for that type of integral equations.

Due to the applicatory character of our considerations, the conditions of existence
of the solutions will not be considered here. All the transformations will be assumed to be
possible, and all the integrals — convergent. The results will be used for solving the contact
problems of a consolidating viscoelastic halfplane.

2. Solution of the Egs. (1.1)

First of all let us tackle the problem of solution of the Egs. (1.1). The function ®(v)
is sought for in the form

1
@1 D) = v [ Ep()], (bo)d.

Inserting (2.1) into (1.1), we obtain after transformations

w 1 ) 1
@2) [oftp@® () dicosuvdn = [ [~Ep()To(E0)s+ [ (Ep (@) To(E0)dE|cosuvdo
0 0 0 0

@ 1 w
= —g(1) [ Jo@coswvdo+ [ [Ep@) [ Jo(E)cosuvdods.
0 /] 1]
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On using the properties of Weber-Schafheitlin integrals [4]
© 1

2.3) [ Jo(Ev)cosuvdv = Y &2
4 0, E<u,

we conclude that the Eq. (1.1), is identically satisfied by (2.1).
Let us now substitute the function (2.1) into (1.1)

E>u,

[:s]

1 1 4]
[ v [ &9 @®7,(¢Ev)deG@)cosuvdv = [ Ep(8) [ [1+H@)), (Ev)cosuvdvde
0 0 0

0

-] 1

1 -]
= [&p(®) [ Ji(Ev)cosuvdvdé+ [ Ep(E) [ H(@)J(Ev)cosuvdvdk = f(u).
0 0 0 0

Using the properties of the Weber-Schafheitlin integral [4]

1 u
e < E < U
0 E _ k2 2
2.4 f.fl(éﬂ)coswdv= i eVt
0 + VE =i, E>u,
we obtain
u UQ(E} 1 o0
@2.5) [ Vg dé— [ £p(®) [ H@)J,(Ev)cosuvdvdt = h(u),
0 0 0
where
1
2.6) hw) = —f@)+ [ gE)dt.
0

In the first integral of (2.5) the substitution is made & = wusinf, while in the second integral
the Bessel function representation is used

nf2

J1(80) = % [ sin(gosing)singas.
0

Then we obtain

n/2 =2 1 L]
@7 [ up(using)do— % [ [&p® [ H@)sin(Eosind)sinfcosuvdvddd = h(u).
0 0 0 0
The Eq. (2.7) is now written in the form
nf2
2.8) [ Fusinb)dd = h(w),

0

where the following definition has been used

cosuv dode.
u

1 )
(29) F(usinb) = utp(usinﬂ)—% [ep® [ H(v)sin(-iiusinﬁ) usinf
1] (1]
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The Eq. (2.8) is the well-known Schlémilch equation and possesses the solution

n2
(2.10) Fu) = %[h(0)+u [ Wasino)ds].
0

From the relatioﬁs (2.9) and (2.10) it follows that

oo

1
2.11) uqs(u)—%f&'tp(f)f H(v)sinévcosuvdvdé = F(u) .
0

0
Certain transformations and substitutions are now made in the Eq. (2.1)

sinfvcosuv = % [sinv(& +u) +sinv (& — u)],

2.12) K@, & = [ H@)sinv(E+wdo+ [ HE)sino(E—u)do,
0 0

p(u) = up(u).
Finally, we obtain

1
1
@13) w0 = [ K v(©)de = F@.

The Eq. (2.13) thus obtained is a Fredholm integral equation of the second kind. Its
solution yields the function ¢() and then @(v) what completes the solution of Eqs. (1.1).

3. Solution of the Egs. (1.2)
The function @(v) is assumed in the form
1
(E8Y Do) = © [ p(E)o(Ev)de.
0

Its substitution into the Eq. (1.2), yields after transformations

-] 1 1 @
[ o f p@uodssinuwdo = — = [ p(&) [ Jo(Ee)cosuvdvds = 0.
0 0 0 0

This equality is fulfilled due to the Eq. (2.3). Let us now insert (3.1) into (1.2),,

1 -] 1 oo
[9® [ JoE)sinuvdode + [ p(&)[ HEo(Eo)sinuvdvds = f(u).
0 0 0 0

The Weber-Schafheitlin integral [4] has the properties

@ 0, &> u,
[ To(€v)sinuvdo = 1
0

§<u,
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and hence
1

u E 4]
(2 [ w]/% &+ [ 98 [ HOVo(Eo)sinuwdods = f(u).
0 [} 0

-On substituting in the first integral £ = usinf, and in the second integral
nj2

Jo(§v) = [ cos(éosinf)dd,
0

we obtain again the Schlémilch equation
nf2

3.3) [ Fusinb)dd = ),

0
where

1 @
349 F(usinf) = q:(usinﬁ)+% Bf o J H(ﬂ)sinr.rm.:c»s(%ti usinﬂ)dvd{-').

Using the solution of the Eq. (3.3)
nj2

2 :
3.5 F) =— [f@+uf s sint)as],
0
‘we obtain the final form of the equation for ¢(£),
1
3.6 P+~ [ KGu, 9(@)ds = Fa),
0

the function F(u) being given by the formula (3.5), and the kernel is determined in the
following manner:

o o

(3.7 K(u, &) =f H(w)sinv(u+{-)dv+f H(v)sinv(u— &) do.
0 0

‘We have obtained again the second kind Fredholm integral equation. Its solution may
now be used to construct the solution of the system (1.2), and so the principal aim of our
consideration is achieved.

4. Pressure of a punch acting on a consolidating viscoelastic halfplane

Let us consider the state of stress and strain in a consolidating viscoelastic halfplane
produced by a flat-ended punch of width 2/ pressed into the halfplane by a force P(r),
Fig. 1. The displacement equations of such medium have the form [1, 3, 10]

NAH(X, t)+(N+M)S,x(Xs ‘) = Ap.x(X: f),
@1 NAwX, )+ (N+M)e (X, 1) = Ap.(X, 1),

k in ., :
_'}';'AP(X’ f) = WP(X’ f)+8(x, f).

Here, the following notations are introduced :
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u(X,t), w(X, t) — components of the displacement vector,

e(X, 1) =

ou(X, t) & ow(X,t)
ox oz '’

p(X, t) — fluid pressure inside the pores of the medium,

0* ik .
X =X(x, Z)., 4= '3}74‘?, (')‘—‘- 3/6:, { — time,
P(t)

k"

E

Fia. 1.

k — coefficient of filtration, n — porosity, ¥ — weight density of the liquid, a,, — modulus
of compressibility of the liquid;

N-1

ut [l+fK(r—r) dt], N = ,u[l— _fR(t—'r) a"rl.
0 0

At

1

ot [1+ fKu(r—r) wdd, A= oq;[l—fR,(t—r) d'r],
@2 ' ’

At = o5 [1+fx,(r—z)...dr], 4, = a,[l—fR,(r—t) .. di),
o 0

M= -;—(A‘,—ZN), A= A4,

K(t—1), K,(t—7), Kp(t—17), R(t—7), R,(t—1), Ry(t—7) — kernels

and resolvents of the kernels of shear and voluminal creep deformation as also the deform-
ation due to pressure of the liquid within the pores; y, a,, ¢, — moduli of deformation:
shear, voluminal and that produced by pressure of the liquid.

6 Arch. Mech. Stos. nr /76
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Application of the Laplace and Fourier transforms to the system (4.1) yields

ﬁ(w,z, 5) = f f u(x, z, t)sinwxe **dxdt,
b0
w(w, z, 5) ~ Twx,z,t) o
4.3) =(w’ z, s)] = ;'! éf [p(x, z, ‘):I coswxe " dx dt,

[4, N, M] = [ [4,N, Mle-%dr,
0

and the convolution theorem enables us to derive the Laplace transforms of the functions
sought for:

u(x,z,5) = %f[cl(w, s)';i-'__i{!r(ﬂ + A_)ze"”‘
3 2N

% N+M

Aw
-C. , ) ——— ™+ Cs(w, e~ | sinwxdw +u*(s),
2 (@ )SB(2N+M) 3(@, ) ] wxdw +u*(s)
(44) _
w(x,z,5) = if [C:(w,S)N+_M(3—n + _A_. ze ™
iy 2N \% N+M
-C,(w, S)E&%—ﬁ)- e ™+ Cy(w, s)e‘“’]coswxdw +w*(s),
i 2 [ j
p(x,z,5) =;f [Ci(w, s)e~ "+ C;(w, 5)e"™]coswxdw .
0

Here, the notations are used

— = 3n A
m? = w?+5B,- B=!—(———+ — __).
k\a, 2N+M

Moreover, the coefficients Ci(w, s) should satisfy the condition:

(4.5) 2Nw[Cs(w, s)— Cs(w, $)]+ [—gﬂ GBN+M)+ E] Ci(w,s)=0;

which follows from the method of solution of the system (4.1), [2, 3].
The boundary and initial value problem for the case of a frictionless punch and perme-
able halfplane boundary takes the form

w(x,0,1) = c(1), -l<x<l,
0,(x,0,) =0, x< —=lorx>I,
(4.6)
Oxz(x,0,1) =0, -0 < Xx< ©,
p(x,0,1) =0, —00 < x < 0,

p(x,z,0) = u(x, z,0) = w(x,z,0) = 0.
Obviously [3] we have
0:(X, 1) = 2Ne.(X, 1)+ Me(X, 1)— Ap(X, 1),

@7 0x:(X, 1) = 2Ne., (X, ).
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Elimination of the coefficients C,(w, s), Cs3(w, 5), Cy4(w, 5) from (4.6),—(4.6),, account
being taken of Eqgs. (4.5), (4.7), makes it possible to write the mixed boundary condition
(4.6), , in the form

2 3In IN+M A _ )
;f Ci(w,s) (Zn t + T) o] do+w*(s) =¢(s), x<I|,
0

N w/| o
4.8)
%of &, s)[%%(ﬁ+fl)+j— %—H]cosmdw =0 wsd
where
(4.9) o(s) = [ c(t)e"ar.

0
The following substitution is made in (4.8):

x=ul, =91

= 3~ — - 24Nv(m-v)
D e C1 ’ e g r——vrszioll] £
= S)[aw W sB(2N+M):=]
ol MMim e oaE 2ANv(m—v) ]_1
4.10) G(v,s)=v [_a, (N+M)+ A4 —-sﬁ(z'f+ D
: N (3 A N n o
O = ewt e zmﬁ) SR

and after simple transformation we obtain

f D(v, 5)G(v, s)cosuvdy = f(5), u<l,
(4.11) °

(=]

[ @@, s)cosuvdv = 0, u>1.
0

The function G(v, s) may be transformed as follows:
24N }“

(4.12)  G(w,s) = v~ (m+v) ‘[:—: (ﬁ+57)+2] (m+v)—m

= = _[3n 4\
=v ! [1-H(v,s N+M-1(—_'+_‘ﬁ) ,
[ @,9]( ) % TN
with the notation
ABN
2N+M

si?

oo = - . 24N '
[E:(N+M)+A](m+v) 2ﬁ+ﬂv(m+v)

4.13) H@,s) =

6*



84 J. GASZYNsSKI

The Eq. (4.11) is now written as

f % [~ Hip, MO, Hoosivde =), <1,

4.149) o
f &(v, s)cosuvdy = 0, u>1,
0
with the notation
—_ (N M ﬁ ‘Z oo ﬁ(ﬁ—}-ﬂ) _Tx
4.15)  g(s) = W+ M) 5 + Y )f(S) = ﬂmzﬁ+ﬁ [e(s)—w*(s)]-

Thus the mixed boundary value problem is reduced to the dual integral equations (1.1)
which were considered in Sect. 1 of this paper. Applying the representation (2.1) to the
Eq. (4.19)

1
D, s) = o [ Ep(£, 5) 7 (bv)dt
(1]

and using the results (2.2) and (2.5), we obtain the equation

u 1 L
@19 [EEDder [ oo [ Ho9ocosumiods = ).

Here

1
@17 h(s) = —g(©)+ [ p(€,5)de.
0

Further transformation of (4.16) leads to the equation

1
1 2
“.18) 9, )+~ ﬁf K(u, &, 5)9(E, ) = = h(s),

with the following notations:
p(u, s) = up(u,s),

(4.19) * g )
K(u,&,s) = f H(v, s)sinv($+u)dv+f H(v, s)sinv(§ —u)dv.
0 ]

The complicated form of the kernel (4.19), of the Eq. (4.18) does not allow for deter-
mining the accurate solution in a closed form containing elementary functions. The form
of the kernel (4.19), shows it to be continuous and bounded within the region of its de-
termination, and hence—in view of the continuity of A(s) (4.17) and according to the
corresponding theorems of functional analysis—the solution of the Eq. (4.18) is found
to be also continuous and bounded. The solution may be determined by approximate
methods; thus the difficulty mentioned earlier does not-exclude the possibility of analyzing
the solution qualitatively.
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In what follows we shall determine the contact stresses under the punch, ¢(x, ) =
= 0,(x, 1)|x,<1» and the corresponding displacements c(¢). These results are of primary
importance from the points of view of soil and rock mechanics.

The solution of the Eq. (4.18) is written in the form

1
2 1 2
(420 P, 5) = = h(s)— - .,f R, & 9) 2 h(s)dt,
where R(u, &, s) is the resolvent of the kernel K(u, £, 5). Using the notation

1
1
R*u,s) = 1= of R(u, &, )dE,

the Eq. (4.20) is written as
(4.21) y(u,s) = % h(s) R*(u, s).

Once the function y(u, s) is known, the Laplace transform of the stresses under the punch
may easily be determined since, according to the Egs. (4.8),, (4.10) and (2.1), we have

f Ci(o, s)[i—n (N+M)+A— M] coswxdm

elu,5) = SBQN+ M)

SERN

-] 1

- f g f £ (€, )], (Ev)dEcosuvdo.
0

0
Evaluation of the integral yields

1
iy 2 Y09 2 )
“22) W)= e T f <

and, using the relation (4.21), we obtain

1
- _ 4,  R(,s) 4 ‘R, 9)
@) Ui ) = = o B bl j =
The punch is acted on by the force P(t), and so
1 o0
4.24) 2 [, )du = P(s), P(s) = [ P(t)ed,
0 0

whence, in view of the relation (4.23), we have

8, (TR RV _ 5
= h(S)of[l/l—“z _,. '/éz_usz]du—P(s)
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and _
(4.25) h(s) = —%%
with the notation
1
R*(1,5) R (¢,5) ]
4.26 L(s) = 7 dt
( ) (-5') J‘[l/l—uz "f ;——Ez_uz

Substitution of (4.25) into (4.23) yields

— _ P(s) [ R*(,5) R;'(E 5)
@27) 4(u, s) = M(S)[ e f 7f dé].
The final expression for contact stresses (after the inverse Laplace transform) has the form
l -
*(1 4 , 8)
(4.28) qu, 1) = 5— f [ ;1(——5’) = ﬁ?_:ﬁ "'5] 2%2) i

Let us now pass to the determination of the punch displacement c(t). Like in the two-
dimensional problems of single-phase media, we shall determine the relative displacement
[5]. Assume the halfplane to be fixed at two points lying on the boundary z = 0, symmetric
with respect to the 0z-axis:

(4.29) w(xy,0,1) = w(—x,,0,2) =0
and, obviously,
(4-30) W(uu, 0, S) = 0, Uy = xo!'_l.
From (4.4), it follows that
3n 2N+M A COs oY
4.31) w*(s) = —-—f Ci(v,s )( o u° dv

On substituting here the relations (4.10),, (4.10), and (4.12) we obtain after transformations

630 W= ;(i,:’;) [ f o€, $)dE— f ko9, S) ) g

1 o0
- f R 8)f H(v, s)J,(Ev)cosuovdodE].
0 0

From the Eqs. (4.17) and (4.15) we obtain
1

_ _ NN+M) NN+M) _,
He) = —a 2D a4 S )+ of o(&, 5)dE,
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or, by means of the Eq. (4.32),

@33) k)= -2 XXM, [ Lrhid),

AN+M § Vui-2

1 o0
n f £p(E,s) f H(o, 57 (e cosusidodE.
0 0

The Eq. (4.33) is now reduced to the Schlomilch equation (like in Sect. 2), and its
solution takes the form

2N(N+m

@)y, = f Ko, & )96, $)d& = — h(s) + ),

where K(u,, £, s) is given by (4.19),. From the Eqgs. (4.21) and (4.25) it follows that

(4.35) w(u, s) = —% i’g R*(u, 5).

Taking into account the Eqgs. (4.25) and (4.35) in the Eq. (4.34) we have, after certain
transformations,

4.36) W0 =2 _ié!—-_— D(uo, )P(s),
where the following notations are introduced:
L(“O 3 S)
D (HO ] S) L(S) L]

@37 1
Lo, 5) = 1= R¥Guo,5)= — [ Kluo, &, )R¥(E, 5)d.
0

Displacements of the punch are now written in the final form

1 n 2N+M e
‘2? 8! _Al'(‘[v—_' D(ﬂo,S)P(S)e ds.

(4.38) c(t) =
The results (4.28) and (4.38) thus obtained constitute the solution of the contact boundary
value problem of the consolidation theory formulated at the beginning of this section.

5. Concluding remarks

1. The results derived in Sections 2 and 3 may be applied to the solutions of boundary
value problems of continuum mechanics as it has been shown in Sect. 4 of this paper.

2. The same method of solution may be applied to the case of a punch acting on a
consolidating, viscoelastic halfplane with an impermeable boundary. It is easily verified
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that the only difference is manifested by different forms of the functions @(v, s), G(v,s),
H(v, s) which in the present case are

— m2
B o o 2AN%(m—v)
(p’ N = 3 e N+ +A__:.___T
@) = Gl )| o N M A IO |-
i -1
e e ZAN;(m—ﬂ)
' =g | —(N+M)+4—- ——————
C@,) =o' |5 W+M) sBQN+ M)
sI? f — (m+2v)
2N+

H'(v,s) = - == .

The class of regularity of these functions being the same as in the previous case, the method
of solution remains unchanged.

3. The integrals occurring in the solutions (4.28) and (4.38) are not elementary ; however,
they satisfy all the convergence requirements and thus may effectively be evaluated by means
of the interpolation polynomials as shown in [2, 3].

4. It follows from the form of Eq. (4.28) that the contact stresses in a two-phase medium
possess the same character of singularity as the contact stresses in single-phase media.
The same result was obtained in the case of an axi-symmetric punch in [2].
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