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Similarity analysis for impact of rods of non-linear rate-sensitive strain­
hardening materials(*) 

R. SESHADRI (EDMONTON) and M. C. SINGH (WAR.SZAWA) 

SIMILARITY solutions are determined for a semi-infinite rate-sensitive strain-hardening rod sub­
jected to a velocity impact. The system of governing non-linear partial differential equations is. 
transformed to a system of ordinary differential equations by means of a similarity transformation. 
The method of HELLUMS and CHuRcHILL is utilized for obtaining a one-dimensional similarity 
representation. The method of collocation is used to obtain approximate solutions of the result-· 
ing system of ordinary differential equations and their auxiliary conditions. For special forms. 
of the non-linear constitutive relationship, closed form solutions are obtained. 

Okreslono rozwi~zania podobieiistwa dla p61nieskoilczonego pr~ta poddanego uderzeniu 
pr~dkosci. Prctt wykonany jest z materialu wra:iliwego na pr~dkosc odksztalcenia ze wzmoc­
nieniem. Uklad podstawowych nieliniowych r6wnail r6:iniczkowych c:14stkowych zostal prze­
ksztalcony do ukladu r6wnail r6i:niczkowych zwyczajnych za pomoc~ transformacji podobieii­
stwa. W celu uzyskania bezwymiarowej reprezentacji podobieiistwa wykorzystano metodct· 
HELLUMSA i OruRcmLLA. Rozwi~zanie przybli:ione wyprowadzonego uldadu r6wnaii r6:inicz­
kowych zwyczajnych z warunkami pomocniczymi otrzymano metod~ kollokacji. Dla szcze­
g6lnych postaci nieliniowego zwi~zku konstytutywnego uzyskano rozwi~zanie w postaci zam­
knicttej. 

Onpe.u;eJieHbi pemeHHH no.u;o6HH ,D;JIH noJiy6ecKolietn~oro crep>KHR:, no.u;aepruyroro .u;eiicramo 
y.u;apa CKOpOCTbJO. CTepmeHb H3roTOBJieH; H3 ltiaTepHana, l.fYBCTBHTeJibHoro Ha CI<opOCTb .u;e­
cl>opMaUHH C ynpotiHeHHeM. CHCTeMa OCHOBHbiX lieJIHHeHHbiX ,D;H<t><t>epeHQHaJibH;biX ypaBHeHHH 
B l.J:aCTHbiX npOH3BO,D;HbiX npeo6pa30BaHa B cHCTeMy 06bii<HOBeHHbiX ,D;H<t><t>epeHQHaJibHbiX 
ypaaueuHii npH noMomH npeo6paaoaauHH no.u;o6HH. C ueJibro noJIYlleHHH · 6eapaaMepuoro 
npe.u;craaJieHHH no.u;o6HH HcnOJib30BaH MeTo.u; XeJIJiyMca H 't.Jepl.IHJIJIH. llpHtiJm>Keuaoe peme-· 
HHe BbiBe,D;eHHOH CHCTeMbl 06bii<HOBeHHbiX ,D;H<t><t>epeHQHaJibHbiX ypaBHeHHH C BCllOMOraTeJib­
HbiMH yCJioBHHMH noJiyqeuo MeTo.u;oM nporoHI<H. ,UiiH l.fBCTHbiX BH.u;OB uemmeibloro onpe­
.u;eJIHJOmero COOTHOllieHHH noJiyqeHbi pellieHHH S SaMKHYTOM BH,D;e. 

Notations 
x coordinate along the axis of the rod (this is a Lagrangian coordinate system, 

where x denotes the position of the particle in the initial unstrained state), 
t time, 

a(x, t) nominal compressive stress (force transmitted across a cross-sec~ion of the rod 
divided by initial cross-sectional area), compressive stress is assumed to be 
positive, 

e(x, t) nominal compressive strain (change in length divided by the in(tial length of 
an element parallel to x axis) compressive strain is assumed to be positive,. 

v(x, t) particle velocity, 
(! mass density of the material in initial unstrained state, 

k, p, q material constants for a limited range of stress at constant temperature in 
an equation of state describing stationary creep phenomena, 

(•) This paper is based on a part of the first author's Ph. D. thesis submitted to the Department of 
Mechanical Engineering, The University of Calgary, Calgary, Alberta, Canada 1973. 
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(X exponent of time in the velocity end condition, 
~ similarity variable, non-dimensional, 

x 1 generalized variables, 
P 1 generalized parameters, 
a, parameters of the group of transformation, 

X~ unspecified (reference) generalized variables, 
n" functionally dependent dimensionless products, 
n1 functionally independent dimensionless products, 
A.~: 1 matrix of exponents of the functionally independent dimensionless products, 
~ rank of matrix of exponents (A.~:,), 

p. total number of generalized variables (x,). 

IN the recent past the problem of impact of non-linear rate-sensitive rods has been a source 
of keen interest among the research workers in the area of wave propagation. An effective 
technique used for the analysis of non-linear partial differential equations arising in such 
problems has been that of similarity analysis [1] which essentially deals with the reduction 
of the number of variables in a system of partial differential equations and their associated 
auxiliary conditions. 

T AULBEE, CozzARELLI and DYM [2] used separation of variable technique [3] to de­
termine the similarity variables and obtained some closed form solutions for the impact 
<>f non-linear elastic and non-linear viscous rods. SINGH and SEsiiADRI [4] used a group 
theoretic procedure [5] and obtained similarity solutions for the problem of a semi-infinite 
non-linear viscoplastic rod. BURNISTON and CHANG [6] considered the propagation of 
non-linear waves in rate-sensitive, elastoplastic material. 

In this paper, similarity solutions are obtained for non-linear rate-sensitive strain­
hardening rods subjected to velocity impact. The constitutive equation considered describes 
the stationary creep behaviour of materials for a certain range of stress. For special types 
-of non-linearity, closed form solutions are obtained, however, for the general problem, 
.approximate solutions are obtained using the method of collocation where the errors are 
.minimized using maximum norm criteria [7]. 

For specific initial and boundary value problems in engineering, it is desirable to employ 
:a procedure for determining:a similarity representation which takes into account the auxil­
jary conditions at the outset of the analysis. HELLUMS and CHURCHILL technique [5] is such 
a procedure, whi9h can be used to obtain either a normalized representation or a similarity 
representation for a given physical problem. This procedure is essentially an extension of 
Birkhoff's method of search for symmetric solutions [8] and is based on group-theoretic 
~oncepts. The routine selection of mass, length and time as fundamental dimensions is 
implied in the procedure. 

MoRAN [8, 9] sought a generalization of the technique by making use of a multipara­
meter group of dimensional transformations. In contrast to Moran's development in 
which reference is made to a very general representation of the problem, the theory discus­
sed herein is applied to a representation involving a given set of partial differential equa­
tions and associated conditions arising from the physical considerations. More concrete-
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ly, a similarity representation is determined for the problem of impact of rate-sensi­
tive/strain-hardening rods that are subjected to a power law time variation in stress. The 
resulting system of ordinary di!ferential equations is solved by collocation where the 
equations-residuals are nrinimized by making use of maximum norm criteria. For spe­
cial values of the exponents the results obtained by collocation are compared with numer­
ical solutions. Despite the nature of approximation in the construction of the trial 
functions, there is a good agreement in the results. 

2. Group theoretic analysis of Hellums and Churchill procedure 

Consider the following system of partial differential equations and conditions describing 
a certain class of physical problems with m independent variables and n dependent va­
riables: 

(2.1) </>y(x•, ... ,x•;y1 , ••• ,y.; ~~~·····a~)') =0, r= I, ... ,N 

subjected to auxiliary conditions [7]: 

(2.2) P.( a~;)., ... , ~~ ,y1 , ••• , y., x 1
, ••• , x"') = B,.(<t1

, ••• , 0"'), 

on E,:{xi = b~(at, ... , 0")}, t ~m, for ell in the region of validity, where CJ'l(q = 1, ... , t) 
locate the boundaries. Replacing xt, ... , xm; y1 , ••• , y,. by X 1

, ••• , X"' respectively (p = 

= m+ n) and noting the fact that, in addition to variables, there can be physical parame· 
ters entering the problem, a generalization of Hellums-Churchill procedure is obtained 
by using a multiparameter group of dimensional transformations (FD) pertaining to the 
form used in the theory of generalized dimensional analysis, i.e., 

(2.3) [
X1 = a~11 

••• a~''X'] , i = 1, ... , ,u 
rD: -

P 1 = afh ... a~'' P 1 
, I = 1 , ... , p 

where Xi are the variables, P' are the parameters, {a 1 , ••• , ar} are the parameters of the 
transformations. As the dimensional group of transformations (FD) is not general, not 
every similarity representation can be deduced, i.e., the similarity transformation is obtained 
using an assumed class of transformations. 

The dimensional matrix for rD can be written in the following form: 

S Arch. Mech. Stos. nr 1176 

Xl ... X"', p1 . .. pP 

a1 flu · ·· fJ,.,1' Cu, ···, Cp1 

a2 fJ12 ··· f:J,.,2,c12, .•• ,cp2 
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Let the rank of the dimensional matrix be r and the rank of matrix [c,a] (I = 1, ... , p; 
a = 1, ... , r) be s, where s ~ r. 

Defining a set of non-dimensional variables, we have 

(2.4) 
-~ x~ 
X= X~' 

XJ are initially unspecified quantities corresponding to Xi and are introduced with the 
stipulation that XJ > 0. By definition, XJ has the same dimensions as Xi, so that 

(2.5) 

The Xj will be determined subsequently in order to produce a description of the problem 
in terms of minimum possible number of parameters. 

On introducing the Eq. (2.4) into the Eqs. (2.1) and (2.2), a non-dimensional repre­
sentation for the system of differential equations and conditions can be written in terms 

of the non-dimensional variables Xi and the set C of non-dimensional products of the form 

(2.6) 

Since the n are absolutely invariant, the .A.'s and c5's satisfy 

1-' p 

(2.7) }; A.Jli« + ,l, c5, c,« = 0, a = 1 , 2, ... , r. 
i=l 1=1 

When Hellums-Churchill procedure is applied to . differential equations and auxiliary 
condition& arising out of physical requirements of a continuum theory, the equations and 
conditions are dimensionally homogeneous [3], and as such imply the existence of a one­
dimensional representation. 

By setting .A.i = 0 in the Eq. (2.6), a subset C 1 of non-dimensional products purely 
in terms of the parameters can be obtained as 

(2.8) 

The other subset C2 consists of all the remaining products of C. Suppose that there are ~ 
such members denoted by 

(2.9) nk = [{XJ)Atl ... (XC)Ak1A}{(P1)~k1 ... (PP)~"P}], k = 1, ... , ~. 

Let the rank of the matrix of exponents [J..k1] be equal to a(D- ~ p,). Thus, there is a subset ci 
which contains D- functionally independent rows of the exponents of the Eq. (2.9), so that 

In view of the functional independence of ni, 

(2.11) 
"' a 

.A.k1 = }; Aki J..i, k = 1 , ... , ~; i = 1 , ... , p,, 
i=l 

where A1i are real numbers. 

http://rcin.org.pl



SIMILARITY ANALYSIS FOR IMPAcr OF RODS OF NON•LINEAR RATE·SBNSITIVB . .. 

On substituting the Eq. (2.11) into the Eq. (2.9) and rearranging, we have 

where 

(2.12h 

and 

(2.12h 
"' (I 

L1 kl = <5t, - 2 AkJ <51,. 
)=1 

67 

Thus, the products nk can be expressed in terms of a functionally independent members 

of (:2 ' nj; j = 1 ' ... ' a and a non-dimensional parameter-product ~ (k = 1 ' ... ' ~). 
~ is appended to the subset C 1 and subsequently a functionally independent set C 1 is 
obtained. 

A representation for the system of equations and conditions can now be obtained in 
terms of 

(i) the non-dimensional variables fi (i = 1, ... , p,), 

(ii) the non-dimensional functionally independent products 1tj (j = 1 ' ... ' a)' 
and 

(iii) the functionally independent set of parameter products cl . 
The functionJ.lly independent products n1 are determined before seeking a minimum 

description for the problem. In practice this can be done by choosing a members out of the 
1lt (k = 1 , .. . , ~) that correspond to a linearly independent rows of the matrix [A.k,]. This is 
a direct consequence of the determination of the rank a of this matrix. The remaining 
nt(k = a+ 1, ... , ~)can be expressed as a function of the n1 through the Eqs. (2.12). 

For a minimum description of the problem, 

(2.13) n1 = 1 , j = 1 , .. . , a. 
As a consequence, the representation is simplified considerably. Depending on whether 
a ~ p,, two distinct possil;>ilities arise: 

Case 1. Normalized representation 
In this case, a = p, and the reference quantities can be fixed in terms of the system 

parameters, so that Eq. (2.13) is satisfied. 
Case 2. Similarity representation 
When a < p,, a normalized representation cannot evolve. Designating 

(2.14) 

it is seen that an invariant representation evolves. In practice, this is obtained by suitably 
eliminating the reference variables that remain after setting n1 = 1 . With a larger number 
of reference variables remaining arbitrary, the process of their elimination becomes manipu­
lative and increasingly difficult. Thus, for ii < p,, the system of equations and conditions 
is invaria~t under a e-parameter group of transformations. 
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68 R. SESHADRI AND M. C. SINGH 

3. Basic equations for the velocity impact ol rate-sensitive strain-hardening rods 

The governing equations of motion for small deformations, within the framework of 
tmiaxial theory of thin rods are 

(3.1) 

where x is a Lagrangian coordinate and u and e are nominal compressive stress and nominal 
compressive strain, respectively. 

The Eq. (3.1h is a one-dimensional constitutive relationship which expresses the 
dependence of strain rate on stress and strain. k, p and q are material constants that are 
valid for a limited range of stress at constant temperature [10]. For structural steel, 
k = 1/531.000; p = 10, q = -2. The relationship (3.1h describes the stationary creep 
behaviour of materials. The exponent q is negative, zero or positive according as creep is 
primary, secondary or tertiary, respectively. 

The system of equations (3.1) is quasi-linear, parabolic and coupled, however, for q = 0 
the system uncouples. 

The auxiliary conditions are 

v(O, t) = Vct 11
, t > 0, 

Vc > 0; CL is a parameter. 

When CL • = 0, we have the familiar constant velocity impact. When CL is allowed to take 
on negative values, the physically interesting case of an applied volocity which is infinitely 
large at t = 0, is accounted for. Further, 

(3.2):z v(x, 0) = u(x, 0) = e(x, 0) = 0, x ~ 0. 

Based on physical considerations, stress, strain and the particle velocity tend to zero as x 
goes to infinity, i.e. 

(3.2h u(x--+ oo, t) = e(x--+ oo, t) = v(x--+ oo, t) = 0. 

In the transformed system, the Eqs. (3.2):z and (3.2h coalesce into one set of conditions 
in the similarity coordinate. 

4. Similarity analysis 

The variables appearing in the description of the problem are rendered non-dimensional 
by introducing arbitrary reference quantities as follows: 

(4;1) - V 
V=-, 

VB 

- (J 
U= -, 

Uo 

- e 
e=-, 

eo 

_ X - t 
x =-and t = -, 

Xo to 

where vB, u0, e0, x0 and t0 are the reference quantities with tlte same dimensions as their 
respective variables. 
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Using the Eq. (4.1), the non-dimensional products that factoredout of the Eq. (3.1) 
and conditions (3.2) can now be written as 

(4.2) 

b veto 
n1 = --, 

!'B 

where the superscripts e and b refer to the products factored out from the equations and the 
boundary conditions, respectively. The rank, a, of the exponents of these products is equal 
to 4. Thus, all of the products are functionally independent. 

The functional form of the solution can now be written as 

(4.3) - (1 (- - e _. e • ___b) (/ = - = g x, t; n1 , Jr.2, n3, m , 
aB 

- e h(- - _. e e ___b) e = - = x, t; Jr.1, n 2, n3; n:t . 
eo 

The products n~ , n~ , n; , and ~ contain arbitrary reference quantities which need to be 
specified. One way of doing this is to set the non-dimensional products equal to unity, i.e. 

(4.4) n~ =n~=n~ =~ =1. 

Thus, the representation is considerably simplified. Since the total number of variables, 
p., is 5 and the rank, a, is equal to 4, the number of reference quantities remaining arbitrary 
is equal to one. Accordingly, 

q-1 2(q-1) 1 2cz(q-1)+1 

(4.5) q-11-l q-p-1 k•-p-1 t q-p-1 
ao = (! Vc 0 ' 

P P+t-1 1 P-f-CI(P+t-1) 
_ q-P-1 q-P-1 kq-p-1 t p-q+ 1 

Xo- (! Vc 0 

Since the arbitrary reference quantity t0 does not occur in the original description of the 
problem, it can be eliminated by suitably combining the remaining arguments in the 
Eq. (4.5). 

Thus, the similarity representation can be written as 

V= Vct11/(~), 

q-1 2(q-1) 1 2cz(q-1)+1 

(4.6)1-3 _ q-P-1 q-p-1 kq-p-1 t q-p-1 (l:) 
(]- (! Vc g ~' 

p 2p 1 2pcz+1 

e = (!P-q+1v:-q+l kP-q+1 tP-q+l h(~), 
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where 

X 
~ = --:-1--P--P-+-q-___,1,...----p--q--oc-(p_+_q_--:7"1) 

kq-P-1 (/-p-1 V~-P-1 t- p-q+1 

is the similarity variable and/, g and hare unknown functions of the similarity variable ~. 
These unknown functions are to be determined by solving the resulting similarity repre­
sentation. 

Substituting the Eqs. (4.6) into the system of governing equations (3.1) a system of 
ordinary differential equations can be obtained in the following form: 

(4.7) 
dg df 
d[ = -rxf+r~d[, 

dh df 
flh-y~-= --

d~ d~' 

dh 
{Jh-y~d[ = gPhf, 

where 

fl 
= 2rxp+1 

p-rJ+ 1 ' 
and 

p-q..- rx(p+q-1) 
'Y = p-q+1 . 

The transformed set of auxiliary conditions are: 

(4.8)1 /(0) = 1 , f(~ -+ oo) = 0. 

Evaluating g and hat~= 0 by makinguse of the Eq. (4.7) we get 

h(O) = p-q+ 1 (- df) , 
2rxp+ 1 d~ ~c:O 

and 

(4.8h (O) = 2rxp+ 1 (h(o))'. 
( )

1fp 1-f 

g p-q+1 

Moreover, 

g(~-+ oo)= 0 

and 

h(~-+ oo) = 0. 

5. Solution of the simllarity representation 

(i) When p = 1 , q = 0, a. ::1: 0, the system of the Eqs. ( 4. 7) uncouples and can be writ­

ten as 

(5.1) 

The solution of the Eq. (5.1) satisfyingthe boundary conditions (4.8) 1 can be written as [2] 

(5.2) 
2t1+ 1/2 . ( 1 ~ ) 

v(x, t) = Vctrz yn F(rx+l)e-~z18 U 2rx+ 2' y'2" , 
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where U(2a.+ 1/h, ~tv2) is the parabolic cylinder function. For values a. = -1/2, 0, 1/2, 
1, ... etc., the solution is 

(5.3) 

where i 2 a. erfc (~ /2) is the repeated integral of the error function. 
(ii) When p =1= 0, q = 0, a. = 0; the system of the Eqs. (4.7) can be written as 

(5.4)1,2 
df 
(if= -gP, dg ( p ) df 

(if= p+1 ~d[· 

Integrating the Eqs. (5.4), the following results [4] can be obtained on using the conditions 
(4.8)1 

(5.5)1,2 

where 

(5.5h-s 

; 

v(x, t) = Vc{l- [ (C+P~;)PIP<-O }• 

= ( k(!p )1/(P+l) X 

~ 1-p tPI<P+l) ' 
Vc 

p(p-1) 
{1 = 2(p+ 1) ' 

c = { 4{1 F(pjp-1) }1-2P/(P-1). 

n F((pfp-1)-1/2) 

(iii) For the case when p =1= 0, q =1= 0, a. = 0, the similarity representation is solved 
using the method of collocation where the equation-residuals are minimized based on 
a maximum norm criterion. 

The following trial functions which satisfy the boundary conditions are chosen: 

{5.6) 

f(~) = e-~ +et (e-; -e- 3'), 

g(~) = (p-q+ 1)-qfP(1-2c1) {e-;1 +c2 (e-'2 -e- 2 '
2
)}, 

h(~) = (p-q+1)(1-2c1) {c- 2'+c3 (e- 2'-e- 3
')}, 

c1, c2, and c3 are unspecified coefficients to be determined based on a criterion which would 
minimize the equation-residuals R1 (j = 1 , 2, 3) which are obtained by substituting 
the trial functions (5.6) into the Eqs. (4.7). Collocation is performed, so that 

(5.7) 
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where the E1 are chosen such that 

(5.8) Max IRjl = Minimum over 0 < E < oo. 

The non-linear algebraic system of the Eqs. (5.7) is solved by generalized Newton-Raphson 
procedure and the matrix inversion performed by Gauss elimination method. 

In Fig. 1 the result obtained for p = 10 and q = 0 by two approaches, those of col­
location technique and Runge-Kutta routine are shown for comparison. In Figs. 2 to 5, 
the results are shown for different values of p and q as obtained by the collocation technique. 

1.00 

Q75 

Q50 

Q25 

0 Q2 

(Constant velocity impact) 
p-10, q-o 
a-collocation technique 
b-Runge-Kutfa routine 

Q6 OB 1.0 1.2 
~ (similartly variable) 

1.4 1.6 

FIG. 1. /(~)vs·~; a comparison of the profiles obtained by collocation and Runge-Kutta technique; p = 10, 
q = 0; constant velocity impact. 

ga,) 

4.0 

2.0 

0 Q4 Q8 

Collocation 
(Constant velocity t'mpact) 
p-10, q=-2, -4, 0,2,4 

1.2 1.6 2.0 

FIG. 2. Plot of g(~)vs. ~; p = 10, q = 4, -2, 0, 2, 4; constant velocity impact. 
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50.0 

40.0 

30.0 

20.0 

10.0 

0 

Collocation 
{Constant velodty impact) 
p-10, q=-2,-4,0,2,4 

2.0 3.0 

FIG. 3. Plot of h(~) vs. ~; p = 10, q = -4, 
-2, 0, 2, 4, constant velocity impact. 

g(t.) 

0 10 

h{~) 

30.0 

0 1.0 

Collocation 
{Constant velocity impact/ 
p=4,5,10, q=-0 

2.0 a.o 4.0£ 

FIG. 4. Plot of h(~) vs.~; q = 0; p = 4, 5, 10~ 
constant velocity impact. 

Collocation 
(Constant velocity impact) 
p-=4,5, 10, q=-2.0 

2.0 3.0 e. 
FIG. 5. Plot of g(~) vs.~; q = -2, p = 4, 5, 10, constant velocity impact. 

(73] 
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-6. Discussion of the results 

For p = 1, q = 0, ~ :1=- 0, that is, linear dependence of strain rate on stress, the closed 
form solution is the same as that obtained by TAULBEE et a/ [2]. For p =F 0, q = 0, ~ = 0, 
non-linear dependence of strain rate on stress, and constant velocity impact at the end 
.x = 0, the solution compares with that obtained in [4]. 

The general problem where p =F 0, q =F 0, ~ = 0 corresponding to the dependence 
·of stress on strain rate as well as strain-hardening effects, the method of collocation gives 
.good results in spite of a one term approximation for the trial function. 
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