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Variational principles in the linear theory of mixtures
M. ARON (JASSY)

In the linear theory of isotropic mixtures of two elastic solids the principle of minimum potential
energy, the principle of minimum complementary energy and the counterparts of the Hu-Washizu
and Reissner-Hellinger variational principles are established. A reciprocity theorem is also
given.

W ramach liniowej teorii izotropowych mieszanin dwoch sprezystych ciat stalych wyprowadzono
zasade minimum energii potencjalnej, zasade minimum energii dopelniajacej oraz odpowied-
niki zasad wariacyjnych Hu-Washizu i Reissnera-Hellingera. Podano réwniez twierdzenie
0 wzajemnosci.

B pamrax nuHeiHO# TEOpPHM H3OTPOITHEIX cMecell JBYX YIPYIHX TBEPALIX TeJ1 BhIBEAEHLI
TIPHHIMIT MHHEMYMa ITOTEHLHANIBHOM SHEPIHH, NMPHHIKII MHHEMYMA JOTIOTHUTENEHOH SHEPrun,
a TaK)Ke SKBHBAJICHTHI BAPHALMOHHBIX NpuHipnoB I'y-Baumay u Peiichepa-Tenunrepa. ITpu-
BeJIeHa TOXKe TEOpeMa B3aMMHOCTH.

1. Introduction

IN the last few years a number of problems have been solved in the linear theory of
mixtures. In our previous papers [1] and [2] we have considered the problem of the ex-
istence and uniqueness of weak solutions in the linear theory of mixtures of two elastic
solids. Here we deal with some variational theorems which rank among very important
approximative methods. Thus, we establish a principle of minimum complementary
energy and a principle of minimum potential energy. Variational principles which corre-
spond to the principle of Hu-WasHizu [3]) and REISSNER-HELLINGER [4] in classical elas-
ticity are also given. In the last section we prove a reciprocity theorem. The first section
deals with a brief summary of results obtained in [2].

2. Summary on boundary-value problems

The basic equations of the linear theory of isotropic mixtures of two elastic solids as
given in [6] are:
— constitutive law

Oy = { =02+ A€+ A3 8pp ) O+ 21, €5+ 215 835,

@1 Tajy = {2+ Aa€pp+ A28pp } O+ 2us €5+ 2p, 815,
Oujy = — gy = —2Ashgp,  m = %ﬂzepp.i + %“zgpp_ﬁ
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— the equations of static equilibrium
(22) UJ'!,}"‘-"‘:"‘FI =0, Wﬂ,yi"?!.--FG; =0;
— the geometrical equations

1 1
&y = 'i'(ml.,f"‘wj.l): 8y = 5(’?:.1'*'??1.(),
2.3) i
hyjy = 7 (@i~ @i+ 71,5= 73,0

In the above o, and 7y, oy and my;; represent, respectively, the symmetric and
the skew symmetric parts of the partial stresses o;; and 7;;, m; — the components of the
diffusive force, w;, 77, — the components of the two displacement vectors, p,, p, — the
initial mass-densities of the two solids, F;, G; — the components of the two body forces
and «,, 4,, 4, ... etc. — the material constants. We have denoted also
(2.4) 0 =01+0:.

Throughout the paper an orthogonal Cartesian coordinate system is employed. As usu-
ally, a comma denotes the partial derivative and the convention of summing over repeated
indices is adopted.

We consider the following boundary conditions which seem to be of practical inter-
st [6]:

wy=m=k onl,

{2.5) (g+m)m; =T, wy=n only,
ﬁUFz=P, I'nl, =4,
where I' is the boundary of the bounded region £ occupied by the m.ixture..
We suppose that I" is a Lipschitz boundary (see [7]) and that
2.6) kieWi(Q), TielL,(I),

where W3(Q) is the Sobolev’s space and L,(I';) is the space of square-integrable func-
tions on [';.

Let W1(R) be the closure of D(Q) in W3(2), D(2) being the space of real functions
having continuous partial derivatives of all orders and compact support in £2, and let V be
a closed subspace of W!(Q) such that W!(Q) = V = W*(R), where

W) = Wi(Q)x...x W), (6 times),
WI(Q) = Wi(Q)x...x Wi(R), (6 times).
WL(Q) is a Hilbert space, provided with the norm

X))

3 L]
@9 llallwiay = [ 3 oy +lindiio)] s
f=1

u = {w;,w;,w5, N, 72,73}

V is the subspace of W(£2) of all elements which satisfy the homogeneous boundary
conditions (2.5).
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In [2] the weak solution of the boundary value problem is defined to be a function
u e Wi(0), so that

(2.9) l.l—ﬁ ev, ﬁE{kl,kzl ka;kpkz,ka},

and

(210) f[Mnl‘jéneij +Pnlj(§rle!j+ ‘éngu)+Qrﬂj§nglj'_22$5ﬁﬂh[lﬂlm
o
= [ Fd+GiiydQ+ [ Tiwdl
2 r

holds for each v = {@,, @,, @1, 71, 72,73} € V.
In the above we have denoted

i 1
M, g; = L(;{l —%az) s Oy +5#1 (04 Ojs + Oy 51:)]‘

. 1 .
(2.11) Ppgij = L(Za - %‘ 0'-2) Ors O+ 113 (3ir e+ 6:;(’;.)] .

- .
Qrsij = (;»z +%¢z) Ors 5{1+§#2(5b Oj+34s 6}-)];

Er.s = e,,(") = %((Br.s +i:’s.r)v

(2 1 2) érs gn(‘) e % (ﬁr.a + ﬁa.r) H

i

- 1 . 2 i 5
hirsy = (V) = 7 ("‘-’s.r — W s+ Nps—Ts,r) -

The signification of this definition is obvious (see also [8]) in view of the principle of
virtual work in the linear theory of isotropic mixtures of two elastic solids [2]:

(2.13) f [Mysijerseiy+ 2P,y 8rsiy+ Qrotj 8rs 81y — 225 hup Aup]dR2 =
2

= f(a_,.+nﬂ)k;r:,dr+fﬂw,df+f(ﬂwi+6'm,)d9.
I, r, Q
The quantity

@.14) A@,v) = [ Wie; grs; h)d@,
Q2

where

(2' 15) 2 W(ers s 8rs> h[u]) = Mnuen eu +2Prsljgn elj + Qraljgrlglj - 215 h[ij] h[i}] ]

represents the global internal energy of the body.
Essentially in [2], we have proved the following two theorems regarding the existence
and uniqueness of solutions of boundary value problems.
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THEOREM 1. The first and the mixed boundary value problems in the linear theory of
isotropic mixtures of two elastic solids have a unique weak solution if

3
(2.16) W(eys; 8rs3 hersy) = € 2 (eFe+ 8P+ hiesy),

ra=1
where c is a strictly positive constant.
R e m a r k. The last inequality, which means that the quadratic form W{(e,s; g.s; Aprsy)
is positive definite, leads to the following restrictions on the material constants:

2 2
Ay +‘§#1“%“2 >0, 4 +§#2 +%0€2 >0,
2 A 2 2
(2.17) (23'{"‘5#3_% az) “: (11 +‘§'al "‘%az) (Az +"j"u2 +‘%I_a2),

B >0,y >0,  p3 < pyps, s <O.

The above inequalities have also been obtained in [6] as conditions for the uniqueness of
classical solutions.

THEOREM 2. Let the condition (2.16) hold. Then the second boundary value problem
(I’ = I',, I'y = ¢) in the linear theory of isotropic mixtures of two elastic solids has a unique
weak solution if, and only if,

[FE+Gyag+ [Tar =o,
0 r

2.18)
fsmx_,(Fk+Gk)dQ+ fs,-ﬁ‘x,deF =0.
o r

The weak solution belongs to the function space defined by

6
(2.19) Vv, ={veV; Yot = 0,p) = [wd®, (i = 1,2,3), p(¥)
o

i=1
= f-gu—amwr.;d@,f =4,5, 6}.
a

The conditions (2.18) express the total equilibrium of external forces.

3. The principle of minimum potential energy and the principle of minimum complementary
energy

Since the quantity
(31) A(‘"’ ll) = f[MrsUErs eij +Prxlj(§n et‘j +§ngij) + Qrsijérsglj_ z‘lsﬁllﬂ Ihl:ijl']]d'?
2

is a symmetric bilinear form we can apply the general theory developed in [7] in order to
establish the principle of minimum potential energy. Thus, we define the quadratic func-
tional on V by

(32 D(v) = ANV, V) -2{f(V)+g(vV)—A(v, B)},
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where
(3.3) ) = [(Ra+G7)d2, g@) = [T,
o " r

and consider u e W*(£2) to be a weak solution of the bqundary value problem. Taking into
account the definition of the weak solution we have

(3.9) i-a=weV,
and
(3.5 A(v, W) = f()+g(V)— A, ), veV.
Then, the equality
(3.6) A(v,u) = A(u,v)
and (3.4) and (3.5) imply that
3.7 D(v) = A(v,v)—24(V,w) = AVv—w,v—w)— A(w, w).
Now (2.16) implies that @(v) attains its minimum on V if, and only if, [7]
(3.8) v=u—u+p, peP,
where [2]
(3.9) P = {veV; oy = fx = @+ Eumbi Xm, ax, by = const}.
Since

D(u—n) = A(u, w)—2[f(w)+gW)]- A, fl)+2[f(ﬁ)+g(ﬁ)].

(3.10) .
ueW!i(Q), u-—-ueV,

the functional

G1) L@ =A@, )~/
1 T LS o
- 26[[(21 e OI;)8"+(22+ e az)g”+2(13 e az)e”g”

+ g e+ 28 +24, eugu]d.Q— f(FI w;+Gyny)dQ2 — J‘TI wydl’,
el Ir

attains its minimum on the set

(3.12) udVv,
if, and only if,
(3.13) u=u+p, peP.

This is the principle of minimum potential energy in the linear theory of isotropic
mixtures of two elastic solids. We can also formulate this principle as follows [7]:
The quadratic functional (3.11) attains its minimum on the set

(3.14) ioVv,

3‘
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if, and only if,
3.15 u=u,
where i is the weak solution being unique in V,,.
In order to obtain the principle of minimum complementary energy we shall use the
method of orthogonal projections in Hilbert spaces [8].
If we suppose that the determinant
34,4+2u;  3243+4+2u,
T 34a+2us  324,+2u,
is different from zero, the inequalities (2.17)s,, assure the reversibility of the constitutive
equations (2.1),,,,3 such that we can obtain:

(3.16)

Cps = rﬂJO'(UJ+Lr.|I]n(U);

3.17) 8rs = LpsiyOujy + Nost iy »
1 1
h[ra} = EZ Oprs) = 22 Trs)s
where

Knﬂ‘j - Ikl ars 6[] + kz (étr ajs o= ais ajr) s
(3' 1 8) Lrslj = Il ars 611 + l‘,2 (6fr 6)‘3 + 61: djr) s
Nnij = ny 6‘,, ‘SU + ny (alr 3}: 2 6& ajr) ]
and
(3.19) Gup = Oap+o2 by, Tap = Tajp— %2 0.

The density of internal energy on unit volume is given by [5]:

(3.20) H = —-[O’(u;eu +74y) 81y + Oty hyiyy + 78],

where

(.21) n= a,(%’-e,,,+ -?Qig,,,), 0 = gpp—epp-
Taking into account (3.17), we have

(3.22) = %[K;Ua(n) Oap +2LE00ws Rapy + NisyBeny Rap

=7y 3. Ouujy Oy + %2 (&pp— e”)]

where K%; etc. represent the quantities K,,;; etc. to which are added additional terms which
come from the product #f.
In view of boundary conditions, we obtain

(3.23) [ @r—emd@ =0
o
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such that the global internal energy of the body is given by

I ~ ~ A A
(3.24) A(,u) = 5 fl:xﬁijﬂ(mo’m) +2L3%;00rs) Tiij)
0

A A 1
+ N5y Ty Tty — “2"1;‘0[‘!] 0[!11]‘“" .

We construct the Hilbert space 5# of the stress field
(3.25) S = {Gup, ﬁun » Ot} s 5’(0), ﬁ'tij), ouij) € L, (Q),
defining the scalar product
(3.26) (8,8 = f [K:ﬁj&;ﬂ)&gih+L:!Ij(&;rs}ﬁ;;j)+6E;s)ﬁ;ij})
2

Ny =y on i |40

The inequality (2.16) and (3.6) imply that all the axioms of the scalar product are
satisfied.

Let 3, — 3 be the subset of all S € 2 to which u eV exists such that using (2.3),

the Egs. (2.1) hold, and let 3, = 5 be the subset of all S € 2 such that for eachveV,

(32?) ’![&(u)fu+J%(,'ng+O'[U]h[ul+ﬂ'9]d9 = 0.
Let 8’ e #,, 8" € #,. Then from (3.26) and (3.20) we obtain
(3.28) (8,8 = J[&;b) e+ 75 815+ Otin hupn +7'0'1dR,

and there exists u’ € V such that

¥ l ’ ’ ! 1 f £
Cps = 5 (wrst@s,), &= 7 (r.s+1s.0),
(3.29)

(d 1 ’ ’ ’
h[rs] == 7 (w;.r — Wy s+ Np,s— Ne,r)

The definition of 5, involves that
(3.30) (S, S") =0,
so that ##, and 5, are orthogonal.

Let S € 5 be an arbitrary stress field for which (2.10) holds for each v eV and let $
be the stress field which corresponds to the weak solution i, by means of (2.1) and (2.3),

ie. § = S(i).
The definition (3.9) of the set P implies
(3.31) S(u+p) = S@), peP.

From (3.4), we have

(3.32) S = S(@@)+SW), SW)eH,.
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2

1t is clear that § satisfies (2.10) such that S—Ses# ,. Hence, we can obtain
3.3) IS=S@)I% = IS=8+SMi% = [IS—S|%+ISW)]l%.

Now it is obvious that the functional
334 A(S) = +{IS=S@I%~IS@I¥} = 5 (> 9)~(S, @)

attains its minimum on the set of S which satisfy (2.10) if, and only if, S = S.
Taking into account that

(3.35) e = ey() = gy(l) = '%(kl.j +k;.0) = ky,

huyy = hap@) =0, = 6@) =0,
we have

(3.36) (S.8m) = f [Outjy +Taplki;dR = J-[U(u)'*'“(u)]kudﬂ .
I o

Now, the principle of minimum complementary energy can be stated as below:
The quadratic functional

(337) X{S) - f [Krgu &(u) &( i) + 2L:!I} a'(ln'.:) ﬁ( ij) +Nr‘a‘lj ﬁ:( rs) ﬁ(ij]
Q

1
- 2—250:1110'[!11]49 = f[“un + 7y ki dR2,
2

attains its minimum on the set S e # which satisfy the equations of equilibrium (2.2)
and the boundary conditions (2.5) in the sense of (2.13) if, and only if, S = S, where
S = S(ii), & being the weak solution.

We consider the weak solution § such that S(d) satisfies the equilibrium equations
{(2.2) in the sense of L,(£2) and the boundary conditions in the sense of traces and take S
to satisfy the same conditions. By applying the principle of virtual work to the field S
in 4, we obtain

(3.38) f[“(:j)"'”(u)]kum == I(E+Gi)ktdg+J.(Uji+ﬂji)k.-njdp+fTiﬂ’idp-
0 2 r, Ir;

If we omit the integrals not depending on S, the principle of minimum complementary
energy can be stated in the following form:
The quadratic functional

B39 XS = f[Kr"sijaun&cm+2Lfszj3(u) gy + N Ty Toajy

2

1
__zni:dim“ujl]m_ f(aji""‘»fi}ki"i dr,

Iy
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attains its minimum on the set of statically admissible stress fields S e # (which satisfy
the equilibrium equations in the sense of L,(£2) and the boundary conditions in the sense

of traces) if, and only if, S = S.

4. Other variational principles

We shall use the method of Lagrange multipliers in order to obtain the counterparts
of Hu-WasHIzu [3] and ReissNER-HELLINGER [4] variational principles.
Starting from the functional (3.11) we consider a new functional of the form

@.1)  H#(wi, M, €y ij» Prijns Aijs Mis Vigs &y G1) = f[ W ey, &ij, hupl— Fiw;—G; n:]dQ2
2
- fTa wdl'+ ,” Aijloq, ;= eyl + piy [a,5 — 8yl 74 [0 + @00 — by
I Q

+7(0— ﬂi,i‘i‘wi.:)}d-o = f[Ea(wi — ki) + Ci(ni— kp)dr'.
I

From the necessary conditions for 65 = 0 it is obvious'that A;, u;;, v;;, have the sense
of 64j, 7ujy, Oy, Tespectively, and

4.2) & = (_Uij+6ijn)nj’ & = (—my;—0ym)n;.

Now we can establish the following variational principle: The condition 6 (w;, i, ey,
&ijs hujy) = 0, where

4.3)  H(wi,m, €ijs Bij» h[u)) = I[W(eu; 83 huip) — Oy € — Tap &ij
a

— Opjy By — 70 + 045 @4, + 704, + (ke — Ok 1) — Fr 0 — G;n;1d2

~ [ Ty wdl'~ [ {{oyy(ey~ky) +y(ny— k)l + oy — )y} T,
f'g J":

yields the following Euler’s conditions in £2 and the boundary conditions, respectively:
the equilibrium equations (2.2), the geometrical equations (2.3), the constitutive equations
(2.1) and the boundary conditions (2.5).

Taking into account (3.22) we add to the functional (3.37), by means of Lagrange
multipliers, the equilibrium equations (2.2) and the boundary conditions (2.5) and obtain
the following variational principle:

The condition 0%(cy;,, 7aj), Opjy, @i,7;) = 0, where

@44)  R(ouy, 7gjy, oup, Wi, M) = f[H(aw) s Waijys Oginn) — (Oajy €y + ijy 81y + Ounn hugy
o
+70+ Fii+Ginild+ [ Tioidl+ [ {{oy(w;—ks)+my(ny— k)l +noy; —op)mydl,
r; r

yields as Euler’s conditions the equilibrium equations (2.2), the boundary conditions (2.5)
and the Eqs. (3.17) where e,,, g,s, A5 are replaced by (2.3).
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5. A reciprocity theorem

Consider the body subjected to two different systems of elastic loads:

(5.1) IJ® ={F, G, k*, T®}, a=1,2,

and let ¥, « = 1, 2, be two distinct elastic configurations of the body
(5.2) € = {of”, nf*}.

We have noticed already that

(5.3) (8%, 8%?) = (82, 8YH,

the above product being defined in (3.28).

Using the Green-Gauss theorem and taking into account the equilibrium equa-
tions (2.2) and the boundary conditions (2.5) it is easily seen that the relation (5.3)
reduces to

(5.4)
[TOKOAr+ [ (FPofP+GPnf)d@ = [TOKP A+ [ (FPof +6{07i2)d2,
Q r Q2

which represents the required reciprocity theorem.
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