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Description of thermo-mechanical properties of viscoelastic irradiated 
materials 

R. P~CHERSKI (WARSZAWA) 

A NEW concept of a description of coupling between the process of neutron transport and thermo· 
mechanical effects in viscoelastic irradiated materials is presented. A mixed material structure 
of a differential type is proposed with an irradiation dose as a certain kind of history. A thermo
radiation-mechanical coupling is discussed. For anisotropic materials new theorem is proved 
on the vanishing of a heat flux under zero temperature gradient and on the positive definitness 
of a heat conduction tensor. A quasi-linear theory is considered which is characterized by un
coupled equations of thermo-radiation problem and mechanical problem "embedded" in the 
known fields of temperature and neutron flux. 

W pracy przedstawiono now(! koncepcj~ opisu sprz~unia efekt6w transportu neutron6w z efek
tami termo-mechanicznymi w napromieniowanych materialach lepkospr~stych. Zapropono
wano mieszanct struktur~ materialnct ciala typu r6zniczkowego z pewnym rodzajem historii, 
kt6rct jest doza napromieniowania. Przedyskutowano sp~Zenia termo-radiacyjno-mechaniczne. 
Udowodniono nowe twierdzenie dla material6w anizotropowych o znikaniu strumienia ciepla 
przy zerowym gradiencie temperatury oraz o dodatniej okreslonosci tensora przewodnictwa 
ciepJnego. Wyprowadzono r6wnania teorii quasi-liniowej. W efekcie uzyskano rozsp~i:one 
r6wnania problemu termoradiacyjnego oraz problemu mechanicznego "zanurzonego" w zna
nym polu temperatury i strumienia neutron6w. 

B pa6oTe npe,n;craBJieHa l:lOBWI KOH~en~IDI onHcaHIDI conpx>KeHIDI 3<l>cJ>eKTOB nepeaoca Heii
TpoHoB c TepMo-MexamNeCKHMH 3~~eKTaMH B o6JiytlaeMbiX BH3KoynpyrHX MaTepHanax. ITpe,n;
nomeHa rMewaHHWI MaTepHam.HaH CTpyKTYpa Tena AH~~peH~am.Horo nma c HeKoToporo 
po,n;a HCTOpHeii, KOTOpOH HBJIHeTCH ,ll;03a 06JiytleHIDI. 06cy>K,n;eHbl TepMo-pa,n;Ha~OHI:lo-Mexa
l:lWieCKHe COnpH>KeHIDI. ,1J;OKa3aHa HOBaH TeopeMa ,ll;JIH aHH30TpOnHbiX MaTepHaJIOB o6 HClle3-
HOBeHHH llOTOKa TenJia npH HyJieBOM rpa,n;HeHTe TeMnepaTypbi, a TaiOKe 0 llOJIO>KHTeJibHOH 
onpe,n;eneHHOCTH TeH3opa TennonpoBo,n;HoCTH. BbiBe,n;eHbi ypaBHeHIDI KBa3HJIHHeiiHoH: TeopHH. 
B 3~~eKTe nonylleHbi pacnpH>KeHHbie ypaBHeHIDI TepMo-pa.n;Ha~oHaoH: 3a,n;aliH, a TaK>Ke 
MexaHWieCKOH 3a)l;aliH ,norpy>KeHHOH" B H3BeCTHOM none TeMnepaTypbl H llOTOKa HeHTpOHOB. 

1. Introduction 

THE paper is devoted to the development of a new concept of a phenomenological descrip
tion of thermo-mechanical properties of non-fissionable crystalline materials irradiated 
by a neutron flux. 

A similar problem has first been considered by PERZYNA who established a mathematical 
structure of thermodynamic theory of plasticity [12, 14] and viscoplasticity [15] for irradiat
ed materials. Using an internal parameter description of dissipation mechanisms for time
dependent plasticity, constitutive equations were developed for irradiated materials in the 
viscoplastic range. 

In the present paper, restricting considerations to the viscoelastic range, the method 
suggested by PERZYNA is extended by introducing a new description of irradiation effects 

http://rcin.org.pl



216 R. P~CHERSKI 

and considering coupling between the process of neutron transport and thermo-mechanical 
effects. 

In Sect. 2 assumptions are discussed under which general equations .of the neutron 
transport can be reduced to the diffusion equation. A general theory of irradiated viscoelas
tic materials (Sect. 3) is developed in the framework of the thermodynamics of materials 
of differential type [6]. Known concepts of a state and a method of preparation [13] are 
also incorporated in the present approach. In the description of the method of preparation 
two sources of the internal dissipation are considered: one connected with viscous properties 
of the material and the other with internal structural changes generated by irradiation. 
It is further assumed that the latter source is governed by the irradiation dose in the particle 
X at time t. 

In Sect. 4 a detailed discussion on the nature of thermo-radiation-mechanical coupling 
is presented. Possibilities of certain simplifications of the problem are indicated. Quasi
linear equations of thermo-radiation problem and mechanical problem "embedded" in 
the known fields of temperature and neutron flux are presented in Sect. 5, cf. PERZYNA [12]. 
For an inelastic anisotropic material new theorem is also proved that a heat flux vanishes 
when the temperature gradient is zero and that the heat conduction tensor is positive 
definite. 

2. Basic assumptions 

Consider a deformable body fJ8 composed of particles X subjected to neutron radiation. 
Assume that the body can conduct heat. The radiation effects in the material will be describ
ed using a theory of neutron transport. We shall show how this theory couples with a 
thermodynamic description of viscoelastic materials. 

The motion of neutrons are governed by the Boltzmann transport equation (I) 

(2.1) 
1 1\ A 1\ 

- otif>(X, Q, E, t) +!J · Vif>(X, Q, E, t) + ftt(X, E)if>(X, Q, E, t) 
V 

= J J fts(X, e')J>(X, w', e', t) gt(w', e', w, e)de'dw' +S(X, Q, E, t), 
E Q 

where J>(x, Q, E, t) denotes an amount of neutrons moving with the velocity V = vQ 
and carrying the energy E per unit area and per second in the particle X at time t, at if> 
is a spatial derivative of the function J> with respect to time and ftt(X, E) denotes an energy 
dependent total macroscopic cross-section interaction coefficient of neutrons with a medium 
in the particle X 

(2.2) flr(X, E)= fts(X, E)+fta(X, E)= fte{X, E)+fti(X, E)+fta(X, E), 

where the macroscopic cross-section coefficients fls, fla, fle and fli describe respectively 
scattering, absorption, elastic scattering and inelastic scattering. The function gs(Q', E', Q, E) 
denotes a relative probability of a change in kinematic parameters of neutrons (Q', E') 

--. (Q, E) due to scattering and S(X, Q, E, T) is an intensity of external and internal 

(1) Derivation of this equation and extensive discussion of approximation methods can be found, 
e.g., in [17]. 
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neutron sources whose velocity and energy in the particle X and time t is respectively 
V= vfJ and E. 

A general boundary value problem of the neutron transport is rather complex and 
difficult to solve and usually various approximations are introduced to the equation (2.1)(2). 

A thermo-radiation-mechanical coupling can be influenced significantly by the internal 
heat sources generated in the material by neutron radiation. The transport equation (2.1) 
can be conveniently approximated by a coupled system of neutron diffusion equations 
using a multigroup method. Such a possibility was discussed by A. B. CHILTON [5]. 

It is reasonable to study first a one-group approximation in which the neutron transport 
in the body f!J is characterized by a single diffusion equation. 

As a starting point in the derivation of a neutron diffusion equation is the transport 
equation in the one-velocity theory(3) 

1 - - -
(2.3) -- c/P(X, Q, t)+Q · VcfJ(X, Q, t)+Jlr(X)cfJ(X, Q, t) 

'(.,~ 

= Jle(X) J ii>(X, w', t)ge(w', w)dw' +S(X, Q, t), 
n 

where 

(2.4) S(X,Q, t) = /li(X) J ii>(X,w', t)g,(w,w')dw' 
n 

+Sext(X, Q, t)+[1'Jlt(X)/4n] J cfJ(X, w', w)dw', 
Q 

gi(Q, Q') is a relative probability of a change in the direction of motion due to inelastic 
scattering, 1' denotes a number of prompt neutrons generated in the fission process, #t is 
a macroscopic coefficient of fission in the particle X and sext(X, Q, t) is an intensity of 
external neutron sources. 

We shall consider non-fissionable materials in which effects of radioactivity caused by 
irradiation can be neglected. Under these assumptions the last term in the Eq. (2.4) becomes 
unimportant. 

In a one-velocity theory the neutron diffusion equations can be obtained from transport 
equations as a first approximation in the spherical harmonic method [3 and 7]. It is assum
ed that the material is isotropic with respect to the properties of neutron transport and 
homogeneous in sufficiently large subregions. 

The main idea of a spherical harmonic method consists in the expansion of the functions 
d> and S in the series of spherical functions and the function ge in a series of Legendn~ 
polynomials. 

It can be shown that a two-term expansion of the function has the form 

(2.5) <i>(X, Q, t) :>: (! n) [<P(X, t)+3J(X, t) · Q]. 

The quantity cfJ(X, t), called a neutron flux in the particle X at timet, is a measure of an 
amount of neutrons per unit area and per unit time. 

(2) Discussion of various approximation methods of the transport equation can be found in the pa
pers by H. SOODAK [17] and M. CLARK and K. F. HANSEN [7]. 

e) cr. H. sooDAK [t7J. 
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218 R. ~CHERSKI 

The vector quantity J(X, t) called a neutron current in the particle X at time t defines 
an amount of neutrons per unit area of an oriented surface and per unit time. 

According to (2.5), the first approximation of the Eq. (2.3) is the desired linearized 
diffusion equation (4) in the particle X 

(2.6) 
1 
- a,C/J(t) = DV 2C/J(t)-p,aC/J(t)+s(t), 
V 

where D stands for a coefficient of diffusion, s(t) is an intensity of isotropic neutron 
source and quantities J(t) and VC/J(t) are related through the Pick's law 

(2.7) J(t) = -DVC/J(t). 

In the theory of neutron diffusion the quantities J(X, t) and C/J(X, t) fully describe the 
radiation field. The Eq. (2.7) can be regarded as the simplest example of a constitutive 
equation on the neutron flux in the classical diffusion theory. However, in the present 
thermo-radiation-mechanical problem in the material whose properties may depend on time, 
the constraint imposed by (2. 7) appears to be too strong and the neutron absorption 
coefficient may be time variable. We shall thus assume the following form of the equation 
governing the neutron flux 

(2.8) _!_ a,C/J(t) = -DivJ(t)-p,a(t)C/J(t)+s(t), 
V 

where no particular relation is specified between the functions J(t) and C/J(t). The operator 
Div is defined in the material coordinate system in the motion x of the body fJB. 

3. General theory 

The deformation, temperature and radiation fields in the material are completly spec
ified by a right Cauchy-Green deformation tensor C(X, t), temperature {}(X, t), neutron 
flux C/J(X, t) and gradients of temperature and neutron flux V{}(X, t) and Vl/>(X, t), res
pectively, computed in the reference configuration in the particle X at time t 

(3.1) A(t) = {C(t), {}(t), VfJ(t), C/J(t), VC/J(t)}. 

A local thermodynamic process [t0 , tk] in the particle X of the irradiated body fJB subject
ed to the motion x is a family of functions defined for every t e [t0 , tk] c R1

: 

(3.2) &'x = {A(t), n(t), r(t)} 

satisfying Cauchy equations with certain body forces b(t) 

(3.3) Div[F(t)T(t)]+eb(t) = ex(t), T(t) = TT(t), 

the first law of thermodynamics 

(3.4) ~ tr[T(t)C(t)]-Divq(t)-e[,P(t)+{}(t)ij(t)+D(t)rJ(t)]+er(t) = 0 

(
4

) Cf. K. M. CASE and P. Z. ZWEIFEL [3], p. 226. 
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DESCRIPTION OF THERM~MECHANICAL PROPERTIES OF VISCOELASTIC IRRADIATED MATERIALS 219 

the Clausius-Duhem inequality 

. 1 • 1 
(3.5) -~ (t)- t? (t)rJ (t) + 2e tr[T (t)C(t)]- et?(t) q (t) · Vt? (t) ;;::: 0 

and the balance equation for the neutron flux c})(t) with certain intensity of the neutron 
source s(t) in the particle X 

(3.6) _!_ a,c})(t) = -Div J(t)-p,4 (t)c})(t)+s(t) 
V 

at each instant of time t e [t0 , tk] provided the derivatives ,P(t), C(t), D(t), ~(t), a,cp 
exist. A dot denotes here material differentiation with respect to time, F(t) is a deforma
tion gradient in the particle X at time t and e denotes mass density in the reference configu
ration. 

The set of functions 

(3.7) n(t) = {VJ(t), T(t), rJ(t), q(t), J(t)} 

represents respectively the specific free energy per unit mass 1p(t), second Piola-Kirchhoff 
stress tensor T(t), specific enetropy per unit mass rJ(t), heat flux vector per unit surface 
in the reference configuration q(t) and neutron current vector J(t) per unit surface in the 
reference configuration in the particle X at time t. The intensity of internal heat sources 
per unit mass generated by neutron irradiation is denoted by r(t). 

A thermodynamic process in the particle X of the body 111 is described by the local 
configuration A(t) of the particle X, the dependent variables n(t) related by A(t) through 
constitutive equations and the independently determined quantity r(t). 

It should be noted that introducing a new vector field of a neutron current together 
with its balance equation to the definition of a thermodynamic process does not lead ot 
a full description of a thermo-radiation coupling. However, the simplified theory might 
prove useful in solving certain practical problems. Local equations describing fully a coupled 
thermodynamic-radiation process can only be derived by considering a global process. 

A set of values which the function &> x takes for given values of t E [t0 , tk] is called 
a thermo-radiation-mechanical state of a particle X at time t. 

The material structure of the body 111 in the particle X is described by the following 
constitutive equation 

(3.8) 

where 

(3.9) 

n(t) = ~(g(t)), 

g(t) = {A(t), C(t), D(t), cp(t)} 

is a value of the function describing a thermo-radiation-mechanical state of the particle 
X at time t. This function is determined by a local configuration A(t) and a method of 
preparation(5

) (C(t), D(t), cp(t)) in the particle X at ime t. A dot denotes a material 
differentiation with respect to time, cp(t) is a value of the irradiation dose in the particle X 
at time t defined for an integrable function C/)( -r), -r e (t0 , t] belonging to the process &> .x 

t 

(3.10) <p(t) = J c})( -r)d-r, t E [10 , tk]. 
to 

{
5

) Cf. P. PERzyNA [13]. 
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The operation 

(3.11) ~= {~,N,f,Q,i} 
represents the constitutive functions for the free energy P, entropy N, stress T, heat flux 
Q and neutron current J. 

We assume hence and after that the constitutive functions are bijections defined on the 
region f0 where f0 is a collection of all { C(t), {}(t), V{}(t), f/>(t), Vf/>(t), C(t), D(t), cp(t)}. 
The second rank tensor C(t) = FT(t)F(t) is symmetric, the deformation gradient F(t) 
being subjected to the condition 0 < detF(t) < oo. The quantities V{}(t) and Vf/>(t) 
represent vectors, whereas {}(t), f/>(t), D(t) and cp(t) are real numbers satisfying {}(t) > 0, 
f/>(t) > 0, cp(t) ~ 0 for every t E [t0 , tk]. 

We also assume that the function Q is piecewise of the class C 1 on f0 and the functions 
P, Nand Tare piecewise of the class C2 on f0. 

The Eqs. (3.8) define the material of differential type with irradiation effects. The inter
nal dissipation is described by specifying the functions C(t), '{}(t) and cp(t), according 
to the discussion presented in the introduction. While the proposed description of radiation 
effects through the neutron dose and flux does not provide an insight into the mechanisms 
responsible for dissipation, it allows to make use of the available experimental data{6

) 

in which the change in mechanical properties of the material are usually measured as a 
function of the neutron dose cp(t) or flux f/>(t). 

The Clausius-Duhem inequality (3.5) imposes certain restriction on the form of consti
tutive equations (3.8). It can be shown that for arbitrary values of C(t), {}(t), V{}(t), 
f/>(t), Vf/>(t), C(t), and D(t) in the generic point of the body X E 111 in the interval t E [t0 , tk] 
one can construct functions x, {}, cp such that an admissible thermodynamic process will 
exist, provided certain smoothness conditions are satisfied. By the admissible process it is 
understood a local process r!J x consistent with the constitutive assumption (3.8). 

From the Clausius-Duhem inequality and the smoothness requirement for the function 
"P it follows that C): 

(3.12) 
ov~ p = 0, a(jl p = 0, a~ p = 0, av~ p = 0, 

1 A o A o 

2 tr{ [T(t)- 2eoc<o P(. )] C(t)- [n(t) + a~<o P( · )]{}(t) 

A 1 
- o(jl<t> P( ·)W(t)- e{}(t) q(t)V{}(t) ~ 0. 

The thermo-radiation-mechanical state in the particle X at time t is said to be in equilibrium 
if it is described by the value of the following functions in t E [t0 , tk]: 

(3.13) g#(t) = {C(t), {}(t), O(t), O(t), O(t), O(t), cp(t)}. 

The thermo-radiation-mechanical state in the particle X at time t under a fixed reference 
configuration of the body 11 is called a deformationless equilibrium state if it is described 
by the values of the following functions in t E [t0 , tk]: 

(3.14) g~(t) = {1(t), {}(t), O(t), O(t), O(t), O(t), cp(t)}. 

(
6

) A different concept of a description of irradiation effects through a certain internal parameter 
with an appropriate evolution equation was presented by PERZYNA in Refs. [12, 14 and 15]. This parameter 
has been identified with a defect concentration density. 

C) B. D. CoLEMAN and V. J. MIZEL [6]. 
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Using known arguments(8
) it can be proved that for an equilibrium state we get the rela

tions 

(3.15) 

where 

(3.16) 

denote respectively stress and equilibrium entropy of the irradiation body. 
A difference in the values 

(3.17) 
T4(g(t)) = T(g(t))-T0 (t), 

N 4(g(t)) = N(g(t))-rtCt) 

will be called a dissipative part of stress and entropy, respectively. It represents the change 
in the stress and entropy due to the temperature gradient, neutron flux, gradient of the 
neutron flux, strain and temperature rate and irradiation dose. The inequality (3.12)2 

can be written 

1 A , A • A 1 A 

(3.18) letr[T4 (g(t)) C(t)] -N4(g(t))D(t)- a!p(t> lJf(g#(t)) (/>(t)- eD(t) Q(g(t)) · VD(t) ~ 0. 

The internal dissipation of the material in the particle X at time t is determined by 

The first two terms in the expression (3.19) are responsible for the dissipation caused by 
viscous properties of the material, whereas the last term describes the dissipation caused 
by internal structural changes due to irradiation. 

The constitutive equations (3.8) take now the form 

tp(t) = P(C(t), D(t), cp(t)), 

'Y}(t) = 'YJ
0 (t)+N4(g(t)), 

(3.20) 
T(t) = T 0 (t)+T4(g(t)), 

q(t) = Q(g(t)), J(t) = l(g(t)). 

The assumption about the isotropy of the material with respect to neutron diffusion implies 
that the functions N4

, T4
, Q are isotropic with respect to V(/>(t), whereas J is an isotropic 

function with respect to all variables. From the definition of the isotropic function it follows 
that 

(3.21) 

"d • • 
8vrp<t>N (C(t),D(t), VD(t),(/>(t)O, C(t),D(t),cp(t) = 0, 

aVrp(r) T4(C(t), D(t), VD(t), (/>(t), 0, C(t), t?(t), cp(t)) = 0. 

(
8

) Cf. B. D. COLEMAN and V. J. MIZEL [6]. 

6 Arch. Mech. Stos. nr 2176 

http://rcin.org.pl



222 R. P~RSKI 

According to the theorem on the representation of an isotropic vector function we 
have (9

) 

(3.22) J(t) = [(X1 1 + (X2 C + (X3 C2 + (X4 C + (X5 C2 + (X6 CC+ (X7 C C]V D(t) 

+ L81 1 +P2 C+PJ C2+P4C+Ps C2+P6CC+P1 CC]Vif>(t), 

where (X 1 , ••• , (X7 ; p 1 , ••• , P1 are scalar functions of a complete minimal set of invariants 
of elements from the domain of the function /It is seen that the functions Q and f are 
coupled through a dependence on the temperature gradient VD(t) and the neutron flux 
gradient V(/J(t). Thus, the process of heat conduction and neutron diffusion are interre
lated. 

4. Discussion of a thermo-radiation-mechanical coupling 

A full system of governing equation for a viscoelastic body subjected to irradiation 
consists of constitutive equations (3.20), expersion for the internal dissipation (3.19), 
balance equations for energy 

(4.1) eD(t)~(t) = -Divq(t)+er(t)+eD(t)t(t), 

for neutron flux 

(4.2) 1 " - iJtfl>(t) = -Div J(t)-fta(t)f!>(t)+s(t), 
V 

equation of motion and appropriate initial and boundary conditions. 
Substituting into (4.1) the constitutive equation for the entropy (3.20h and differentia

ting with respect to time we obtain 

(4.3) fJ(t)a~<t>N(g(t))ti(t) + &(t) ao<t> N4(g~t)) ri(t) + &(t) av8<t> !{d(g(t)) V{}(tj 

1 " " . + -Divq(t) = r(t)+D(t)i(t)-O(t)tr[iJc<t>N(g(t))C(t)] 
(! 

. - O(t) a;<t>N(g(t)) (/J(t)- O(t) ac<t>Nd(g(t)) C(t)- O(t)a~<t>Nd(g(t))d>(t) 

- {}(t)iJvo,<t>Nd(g(t))V 4>(t). 

The above equation describes the change in the temperature and heat flux fields due to the 
presence of internal heat sources generated by irradiation, internal dissipation and appro
priate thermo-radiation-mechanical couplings. 

The following terms can be identified in the Eq. (4.3): 
i) the term D(t)tr[iJc<r>N (g(t)) C{t)] is responsible for heat effects generated by a thermo

mechanical coupling; 
ii) the term D(t) a,<t>N(g(t)) f/>(t) is responsible for heat effects generated by a thermo

radiation coupling. These effects are due to the entropy change caused by the variable 
concentration of defects which in turn are generated by the irradiation process; 

c~) Cf. C.-C. w ANG [22]. Assuming that the function J can be expressed in the form of a polynomial, 
we could give its representation in terms of the integrity basis. However, such a representation would be 
very complicated, since this is not a minimal set (Cf. A. J. M. SPENCER [18]). 
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iii) the term D(t)[ Oc(t) Nd(g(t)) c(t) + a~(t)Nd(g(t)) cP(t)] is responsible for heat effects 
generated in the material as a result of a coupling between mechanisms describing viscous 
properties with a temperature field; 

iv) the term D(t) ov~<•>Nd(g(t)) vd>(t) is responsible for heat effects generated by a ther
mo-diffusion coupling. 

Viscous effects characterize rate-type quantities C(t), D(t) and l/>(t). 
The intensity of a neutron flux l/>(t) controls the rate of change of the defect concentra

tion which in turn can influence the process of neutron transport and thermo-mechanical 
properties of the material. Such an interrelation was found experimentally by T. H. BLEWITT, 

R. R. COLT-MAN, R. E. JAMISON and J. K. REDMAN in Ref. [2] where irradiated copper 
monocrystals were subjected to the isothermal annealing in the temperature range 305°C 
-385°C. With increasing temperature the rate of decay of the yield stress was observed to 
increase which is explained by the rise in the rate of change of defect concentration. 

We restrict our considerations to the problems in which the influence of the rate of 
change of defects concentration is of minor significance and thus will be disregarded 
in the subsequent analysis. 

In a general case the Eqs. (3.20) describe also coupling of a strain field and an inhomo
geneous temperature field with an inhomogeneous neutron flux field. The problem of neutron 
diffusion is formally similar to the classical problem of diffusion of gases in solids, 
where all couplings mentioned above can exist and in special circumstances become signif
icant. For our purposes however these effects are disregarded. This assumption is justi
fied, since the character of interaction between the neutrons and medium is here different. 
Thus, the coefficient of neutron diffusion is taken to be the function of temperature {}(t) 
and irradiation dose cp(t). 

With the introduced assumptions the system of the Eqs. (3.20h_4 and (4.2), (4.3) is 
reduced to the form 

(4.4) 

f}(t) = rJ 0 (t)+Nd(C(t), D(t), VD(t), C(t), D(t), cp(t)), 

T(t) = T 0 (t} + Td( C(t), D(t), VD(t), C(t), D(t), cp(t)), 

q(t) = Q(C(t), D(t), VD(t), C(t), D(t), cp(t)), 
A • Ad •• A -'-

fJ(t) oo<r>N(g(t})D(t) +D(t) oo<r> N (g(t)D(t) +D(t) 8vo<o Nd(g(t) VfJ(t) 

1 A A o 

+- Divq(t) = r(t)+D(t)i(t)-D(t)tr[oc<t> N(g(t)) C(t)] 
e 

-D(t) Ocp(t)N(g(t))l/>(t)-D(t) OC<r>Nd(g(t)) C(t), 

_!_ otl/>(t) = Div[D0 ( fJ(t); cp(t)) Vl/>(t)]- ,Ua(t)l/>(t)+s(t). 
V 

The Eq. (4.4)4 takes into account effects of thermo-mechanical and thermo-radiation 
coupling and effects of thermal effects of internal dissipation. It is of interest to examine 
more closely the effect of irradiation on the change in the temperature field. The major part 
of the kinetic energy of the neutron flux which the material can absorb is converted into 
heat, leading to the creation of internal heat sources generated by thei rradiation. A detail
ed discussion of this problem was given by A. B. CHILTON [5] who determined the inten-

6* 
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sity of heat sources using methods of the physics of interactions between the radiation and 
medium and the neutron diffusion theory. The remaining part of the kinetic energy absorb
ed by the material goes into internal structural changes caused by irradiation. The two 
terms in the Eq. (4.4)4 responsible for the above mentioned effects are respectively 

IJ(t) arp<0 N(g(t)) C/J(t) and IJ(t) aq<r>P(g*(t)) C/J(t). It is convenient in practical calculations 
to assume that the whole kinetic energy of the neutron flux is converted into heat. Then, 
the Eq. (4.4)4 is approximated by 

(4.5) IJ(t) a{)<t>N(g(t)) n(r) + IJ(t) a;,<t>Nd(g(t))D(t) + D(t) av{)<t>Nd(g(t)) vo(r) 

1 1 A • A• 0 +- Divq(t) = r(t) + -&_

2 
.tr[Td(g(t)) C(t)]- Nd(g(t))D(t) 

e e 

-IJ(t) tr[ac<r>N(g(t)) C(t)l -D(t) ac<t>( Nd(g(t)) C(t). 

From (4.5) one can derive a quasi-linear hiperbolic heat conduction equation which 
leads to a finite velocity of propagation of thermal disturbances. A similar type of equation 
for a rigid heat conductor in the absence of radiation was obtained D. B. BoGY and 
P. M. NAGHDI [1]. Assuming that the material is isotropic and the entropy and heat flux 
depend linearly on the rate of temperature, conditions were examined in [1] under which 
the velocity of thermal wave is finite. 

Moreover, it was proved that both in the linear theory, in which the rate of temperature 
and temperature gradient are infinitesimal and in the case when an inhomogeneous tem
perature field with a finite value of the gradient is superposed on the infinitesimal chan
ges of the rate of temperature, the dissipation inequality excludes the possibility of 
occurence of a finite velocity of propagation of thermal disturbances. 

A similar results was reported in Ref. [10] by I. MuLLER who considered a linearized 
form of the heat conduction equation with coefficients computed at the equilibrium state. 
M tiller proved that when the coldness is equal to reciprocity of the absolute temperature, 
the heat conduction equation ceases to be of the hyperbolic type. 

The Eqs. (4.4)1_ 3 , (4.4)5 and (4.5) together with equation of motion and appropriate 
boundary and initial conditions furnish a full set of equations describing a coupled thermo
-radiation-mechanical problem. In particular coupling exists between mechanical and 
thermal effects and between thermal and radiation effects. In spite of the already intro
duced simplifications the so formulated problem is extremely complicated. Further approxi
mations may be obtained through a linearization of the constitutive equations and restricting 
consideration to small deformations, rate of deformations, temperature gradients and 
rate of temperature and through decoupling of the above system into !the equations 
governing a thermo-radiation problem and equations governing the mechanical problem 
with thermal and radiation effects. 

5. Quasi-linear theory 

In many problems of modem technology structural elements are often exposed to the 
action of aggressive surroundings and to the influence of high temperature. For example 

http://rcin.org.pl



DESCRIPTION OF THERMQ-MECHANICAL PROPERTIES OF VISCOELASTIC IRRADIATED MATERIALS 225 

in the problems of reactor technology it was found that the properties of many structural 
materials depend strongly on the temperature and irradiation dose. 

A description of irradiated materials in a frame-work of a linear theory, where the flux 
and dose increments should be assumed infinitesimal, is not consistent with the real behav
iour of materials in a reactor under the action of neutron irradiation field. The reason 
of this is that the mechanisms of internal structural changes accompaning weak irradiation 
are different than those which would be induced in a material subjected to strong reactor 
irradiation. This fact is fully confirmed by the experimental examinations of the effects of 
irradiation(! 0). 

In view of the above arguments we shall introduce approximations of the general 
constitutive relations by assuming the dependence of the material functions on the temper
ature and the irradiation dose and retaining finite increments. Such a theory will be called 
the quasi-linear theory. 

In a quasi-linear theory the rate of temperature #(t) will be infinitesimal. We assume 
that the stress, entropy and heat flux do not depend on the rate of change of temperature 
field. 

The quasi-linear constitutive relations and solutions of boundary-value problems with 
the dependence of the material functions on temperature were considered by many au
thors. As an example, the papers by R. TROOSTEL [20, 21] and the monography by Ko
v ALENKO (8](1 1) may be cited. 

The formulation of the linear theory is based on a concept of the initial state of equilib
rium and the properly defined b-close state. In the quasi-linear theory we shall approxi
mate the constitutive functions in an undeformed state of equilibrium. 

The thermo-radiation-mechanical state in the particle X described by the value of the 
function g(t) in t E[t0 , tk] is thermo-mechanically <5-close to the undeformed equilibrium 
state described by the value of the function gtf(t) in t if the following conditions are sat
isfied 

(5.1) IC(t)-l(t)l6 < b, IVO(t)l3 < b, IC(t)l6 < b, b > 0, 

where 

g(t) = {C(t), {}(t), V{}(t), <P(t), V<P(t), C(t), cp(t)}. 

The norms 1·1 6 , I ·1 3 are the natural norms reduced to the dimensionless form. 
Note that the quantities <P(t), V<P(t) may be arbitrary, whereas the functions {}(t) 

and cp(t) are the same as in the actual state of equilibrium. 
We shall introduce approximations only for the stress and heat flux functions. 

The entropy equation for finite increments ofj temperature jand dose! is retained in the 
non-linear form. 

Let us examine what restrictions are imposed on the general form of the constitutive 
functions ( 4.4) 1 _ 3 by the assumption of b-small temperature gradients and dissipation 
inequality (3.18). 

(1°) Cf. forexampleJ. SILCOXandP. B. HIRSCH 161, M. J. MAKIN,A. D. WHAPHAMand F. J. MINTER[9)• 
{11) NOWACKI [11] gave a survey of results concerning the thermal stresses in an elastic isotropic body 

with nonhomogeneity which is induced by the dependence of the material function on temperature. 
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Consider a thermo-radiation-mechanical state described by the value of function g(t}, 
for VIJ(t) = 0 in the particle X and at time t: 

(5.2) gh(t} = {C(t}, IJ(t), O(t), $(t), V$(t}, C(t), cp(t)}. 

Using the assumption on the smoothness of the constitutive functions we may formulate 
the following 

LEMMA. If we assume that the temperature gradients are b-sma/1 and we fix the quantities 
(C(t), IJ(t), $(t}, C(t}, cp(t}}, then the function of internal dissipation t(t) in the 
particle X and at time t should have the following properties: 

- 2 -(5.3} Ov8<t> i(O) = 0, Ov8<t> i(O) ~ 0, 

where 

(5.4) i( ·) = t(C(t), IJ(t), ·, $(t), C(t), cp(t)). 

P r o o f. The inequality of a general dissipation (3.18) may be written now in the form: 

(5.5) 
- 1 
i(VIJ(t))- elf2(t) q(t) · VD(t) ~ 0. 

Using the continuity of the function i( ·) the inequality (5.5) and a theorem on the local 
conservation of sign by a continuous function it follows that there exist such b-small 
values of temperature gradients VIJ(t) that 

(5.6) 
holds. 

t(VD(t}) ~ 0 

Let us expand now the function i( ·)in a Taylor series at the point VIJ(t) = 0 and retain 
second order terms 

(5.7) f(VD(t)) = f(O)+ov(}(r/(O)VD(t)+VD(t)o~8<,/(0}VIJ(t)+o(t52) 
the inequality (5.6} may be rewritten now in the form: 

(5.8) f(O)+ov8<,/(0)VIJ(t}+VD(t)o~8<t>l(O)VIJ(t)+o(IVIJ(t)l~) ~ 0. 

Thus the relations (5.3) follow from the requirement that the Eq. (5.8) holds for arbitrary 
t5-small temperature gradients VIJ(t). 

Now we can prove the following 
THEOREM(! 5). If we assume that the temperature gradients V D(t) arft t5-small and we fix 

the quantities C(t), D(t), C(t), cp(t) then the constitutive function for heat flux in the par
ticle X at time t has the following properties: 

(5.9) Q(C(t), IJ(t), O(t}, C(t), cp(t)) = 0 

and the tensor of heat conduction 

(5.10) K(C(t), IJ(t), C(t), O(t), cp(t)) = -o96<,>Q(C(t), D(t), O(t), C(t), cp(t)) 

(1 5
) This is a generalization of a theorem given by D. E. CARLSON [4) for anisotropic thermoelastic 

materials. Similar theorems have been presented earlier for various isotropic materials and may be found 
in references cited by CARLSON. A lack of assumption on the isotropy of material has led to the conclusion 
that the heat flux is nonzero in a case of uniform temperature field, and in the case of a linear approxima
tion direct dependence exists not only on the temperature gradient but also on other state variables. These 
facts cannot be justified physically. 
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is positive definite 

(5.11) K(C(t), 1J(t), C(t), q>(t)) ~ 0. 

Proof. Let us expand Q(·) = Q(C(t),1J(t), ·,C(t),q>(t)) at fixed (C(t),1J(t), 
C(t), q>(t)) in Taylor series for V1J(t) = 0. Let us restrict our considerations to the linear 
element 

(5.12) Q(VD(t)) = Q(O)-K( ·)V1J(t)+o(t5). 

Substituting (5.7) and (5.12) into dissipation inequality (5.5) one obtains 

(5.13) - - 2 1 -i (O) + ov{}(t) i (O)VDV(t) + VD(t) owJ<t>VD(t)- e1J2 (t) Q (O)VD(t) 

1 
+ e1J2 (t) V1J(t)K( ·)V1J(t)+o(t52

) ~ 0. 

From the requirement that the above inequality hold for the arbitrary t5-small temperature 
gradients VD(t) and from the just proved Lemma the relations' (5.9)-(5.11) follow, which 
complete the proof. 

CoROLLARY 1. The functions T4 and N4 , determined in a small neighbourhood of the 
homothermal state, are independent of the temperature gradient: 

(5.14) 
0V{}(t)T4(C(t), 1J(t), O(t)", C(t), q>(t)) = 0, 

0V{}(t)N4
( C(t); 1J(t); O(t); C(t); q>(t)) = 0. 

COROLLARY 2. The heat flux function Q determined in a small neighbourhood of the 
homothermal state depends solely on the temperature gradtent 

(5.15) 
A 

Og<t>Q(g(t), O(t)) = 0, 

where 

(5.16) g(t) = (C(t), 1J(t), C(t), q>(t)). 

In view of the Eqs. (5.14)1 the constitutive equations (4.4)1 and (4.4h for t5-small tem
perature gradients take the following form: 

(5.17) 
'YJ(t) = rt(t)+N4(C(t), D(t), c(t), q>(t)), 

T(t) = T 0 (t)+ T4( C(t), 1J(t), C(t), q>(t)). 

Using the assumption on the differentiability of the constitutive functions T and Q, 
the definition of the dissipative part of stress and the Corollary 2, we may write the follow
ing relations for the given deformationless state of equilibrium and for corresponding 
thermo-mechanically t5-close state 

(5.18) 
T(t) = T0 (gf(t)) + Oc~t>T0(gf(t)) [C(t) -1(t)] + Occt> T4(gf(t)) [C(t)]+o(t5), 

q(t) = ov{}(t>Q(gf(t)) [V1J(t)]+o(t5). 

The term T((gf(t)) in the Eq. (5.18) 1 describes the change of stress due to irradiation 
and temperature. 
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Let us denote this term by: 

(5.19) fi{{}(t), qJ(t)) = T0 (gg=(t)). 

Let us compute the rate of change of stress caused by the irradiation and tempeature: 

(5.20) T0 (t) = afi<t>fi"(D(t), qJ(t))tf(t)+ all'(t>fi"(D(t), qJ(t))f/>(t). 

Integrating in time (5.20) in the interval (t0, tk) we get 

t t 

(5.21) T 0 (t) = T 0 (to)+ f afi(T).r(D(r), qJ(r))b(r)dr+ f a!p(T).r(D(r), cp(r))f!>(r)dr; 
to to 

T 0 (t0 ) is the internal stress which may exist in the material at the beginning of the process. 
If we assume that the process of irradiation starts in time t0 and the body is initially in 
a natural state then the value of T 0 (t0 ) is equal to zero. 

The full quasi-linear equation for the stress in the particle X and at timet may be written 

in the form 
fi(t) 

(5.22) T(t) = CE(D(t), qJ(t)) [E(t)]+ J Cv(Ht), qJ(t))d~ 
fio 

tp(t) 

+ j Ctp(D(t),C(t))d~+Cv(D(t),qJ(t))[E(t)], 
0 

where 

28cT0 = CE, 8tT4 = Cv, afi!T = cfi, a!p!T = c(/J, 
(5.23) 

C(t) = E(t)+o(~2), C(t) = E(t)+o(~2). 

In the case of infinitesimal deformations, effects of thermo-mechanical coupling and the 
thermal effects of internal dissipation may be neglected for a broad class of boundary
value problems. The energy balance equation then assumes a form 

(5.24) eD(t)8o<t>N8,D(t) = div[K(D(t), qJ(t))VD(t)]+er(t). 

Using the assumptions that the function N is smooth and the deformation is a-small 
we may write: 

(5.25) a0<1>N(E(t), D(t), C(t), qJ(t)) = a0(t)N(O(t), D(t), O(t), qJ(t))+o(l). 

The quantity 

(5.26) c(D(t), <p(t)) = D(t)afi<t>N(O(t), D(t), O(t), <p(t)) 

is by definition the specific heat at a constant deformation. 
The complete system of equations for the coupled thermo-radiation-mechanical problem 

may be reduced now to the system of quasi-linear parabolic equations of the thermo
radiation problem: 

ec( D(t); <p(t)) a,D(t) = div[K( D(t), qJ(t))VD(t)] + er(t), 

(5.27) 
_!_ a,f!>(t) = div[D0 ( D(t), <p(t))Vf/>(t)]- ,Ua( D(t)) f/>(t)+s(t), 
V 
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with the correponding initial and boundary conditions, and to the equations of mechanical 
problem, with thermal and irradiation effects. These equations consist of the equation of 
motion, the Eq. (5.22), and correponding initial and boundary conditions. When writting 
the Eq. (5.27h we have assumed that there is a dependence of absorption coefficient on 
time through the dependence on the temperature field (1 6

). 

Equations of the quasi-linear theory may constitute a basis for solving a class of 
boundary-value problems encountered in reactor technology. 
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